首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of human monocyte-conditioned medium on the proliferation of osteoblastic MC3T3-E1 cells were investigated in serum-free cultured condition. Monocyte-conditioned medium significantly stimulated osteoblast proliferation at the concentration between 10 and 30%, compared to that in the absence of monocytes. 17 beta-estradiol directly stimulated osteoblast proliferation at the concentrations of 10(-8) and 10(-10)M. On the contrary, the conditioned medium prepared by monocytes cultured in the presence of 17 beta-estradiol at the concentrations of 10(-8) and 10(-10)M significantly inhibited osteoblast proliferation. Present data indicate that in addition to direct effect on osteoblasts, 17 beta-estradiol affected osteoblast proliferation presumably through modulating the release of several local regulators of bone turnover from monocytes. The effect on osteoblastic activity via monocytes might be linked to the coupling of osteoclast and osteoblast actions.  相似文献   

2.
The osteoclast is unique in its capacity to resorb bone. An unbalanced increase in this activity causes osteoporosis, a crippling bone disease that poses a major public health problem. Despite this, our understanding of osteoclast regulation is very limited. Calcitonin is the only known physiological inhibitor of osteoclast function. We demonstrate here for the first time that the concentration of calcium ions at the resorptive site directly regulates osteoclast function by modulating the intracellular free calcium concentration. This represents an important feedback mechanism of osteoclast control.  相似文献   

3.
Mutations and/or deletions of Pkd1 in mouse models resulted in attenuation of osteoblast function and defective bone formation; however, the function of PKD1 in human osteoblast and bone remains uncertain. In the current study, we used lentivirus-mediated shRNA technology to stably knock down PKD1 in the human osteoblastic MG-63 cell line and to investigate the role of PKD1 on human osteoblast function and molecular mechanisms. We found that a 53% reduction of PKD1 by PKD1 shRNA in stable, transfected MG-63 cells resulted in increased cell proliferation and impaired osteoblastic differentiation as reflected by increased BrdU incorporation, decreased alkaline phosphatase activity, and calcium deposition and by decreased expression of RUNX2 and OSTERIX compared to control shRNA MG-63 cells. In addition, knockdown of PKD1 mRNA caused enhanced adipogenesis in stable PKD1 shRNA MG-63 cells as evidenced by elevated lipid accumulation and increased expression of adipocyte-related markers such as PPARγ and aP2. The stable PKD1 shRNA MG-63 cells exhibited lower basal intracellular calcium, which led to attenuated cytosolic calcium signaling in response to fluid flow shear stress, as well as increased intracellular cAMP messages in response to forskolin (10 μM) stimulation. Moreover, increased cell proliferation, inhibited osteoblastic differentiation, and osteogenic and adipogenic gene markers were significantly reversed in stable PKD1 shRNA MG-63 cells when treated with H89 (1 μM), an inhibitor of PKA. These findings suggest that downregulation of PKD1 in human MG-63 cells resulted in defective osteoblast function via intracellular calcium-cAMP/PKA signaling pathway.  相似文献   

4.
The endocannabinoid system is expressed in bone, although its role in the regulation of bone growth is controversial. Many studies have examined the effect of endocannabinoids directly on osteoclast function, but few have examined their role in human osteoblast function, which was the aim of the present study. Human osteoblasts were treated from seeding with increasing concentrations of anandamide or 2-arachidonoylglycerol for between 1 and 21 days. Cell proliferation (DNA content) and differentiation (alkaline phosphatase (ALP), collagen and osteocalcin secretion and calcium deposition) were measured. Anandamide and 2-arachidonoylglycerol significantly decreased osteoblast proliferation after 4 days, associated with a concentration-dependent increase in ALP. Inhibition of endocannabinoid degradation enzymes to increase endocannabinoid tone resulted in similar increases in ALP production. 2-arachidonoylglycerol also decreased osteocalcin secretion. After prolonged (21 day) treatment with 2-arachidonoylglycerol, there was a decrease in collagen content, but no change in calcium deposition. Anandamide did not affect collagen or osteocalcin, but reduced calcium deposition. Anandamide increased levels of phosphorylated CREB, ERK 1/2 and JNK, while 2-arachidonoylglycerol increased phosphorylated CREB and Akt. RT-PCR demonstrated the expression of CB2 and TRPV1, but not CB1 in HOBs. Anandamide-induced changes in HOB differentiation were CB1 and CB2-independent and partially reduced by TRPV1 antagonism, and reduced by inhibition of ERK 1/2 and JNK. Our results have demonstrated a clear involvement of anandamide and 2-arachidonoylglycerol in modulating the activity of human osteoblasts, with anandamide increasing early cell differentiation and 2-AG increasing early, but decreasing late osteoblast-specific markers of differentiation.  相似文献   

5.
Chemokines are secreted by a wide variety of cells; their functions are dependent on the binding to their chemokine receptors (CCRs) which induce directed chemotaxis in nearby responsive cells. Chemokines and their receptors can be induced under several different conditions. Based on data from clinical studies showing an increased expression of chemokine receptor 3 (CCR3) in circulating monocytes of human subjects with lower bone mineral density (BMD) as compared to those with high BMD, we predicted a role for CCR3 in the development of peak bone mass. We, therefore, first evaluated the expression pattern of Ccr3 in bone cells, in comparison to other CCRs, that have common ligands with CCR3. While Ccr1 and Ccr3 messenger RNA (mRNA) levels increased during both RANKL-induced osteoclast differentiation and AA-induced osteoblast differentiation, the levels of Ccr5 mRNA only increased during osteoblast differentiation. To examine if CCR3 influences osteoclast and/or osteoblast differentiation, we evaluated the consequence of blocking CCR3 function using neutralizing antibody on the expression of osteoclast and osteoblast differentiation markers. Treatment with CCR3 neutralizing antibody increased mRNA levels of Trap and cathepsin K in osteoclasts and osteocalcin in osteoblasts compared to cells treated with control IgG. Based on these in vitro findings, we next assessed the role of CCR3 in vivo by evaluating the skeletal phenotypes of Ccr3 knockout and corresponding control littermate mice. Disruption of CCR3 resulted in a significant increase in femur areal BMD at 5 and 8 weeks of age by dual-energy X-ray absorptiometry. Micro-CT analysis revealed a 25% increase in trabecular bone mass at 10 weeks of age caused by corresponding changes in trabecular number and thickness compared to wild type mice. Based on our findings, we conclude that disruption of CCR3 function favors bone mass accumulation, in part via enhancement of bone metabolism. Understanding the molecular pathways through which CCR3 acts to regulate osteoclast and osteoblast functions could lead to new therapeutic approaches to prevent inflammation-induced bone loss.  相似文献   

6.
Mechanical loading of bone induces interstitial fluid flow, leading to fluid shear stress (FSS) of osteoblasts. FSS rapidly increases the intracellular calcium concentration ([Ca(2+)]) and nitric oxide (NO) synthesis in osteoblasts and activates the protein kinase Akt. Activated Akt stimulates osteoblast proliferation and survival, but the mechanism(s) leading to Akt activation is not well defined. Using pharmacological and genetic approaches in primary human and mouse osteoblasts and mouse MC3T3 osteoblast-like cells, we found that Akt activation by FSS occurred through two parallel pathways; one required calcium stimulation of NO synthase and NO/cGMP/protein kinase G II-dependent activation of Src, and the other required calcium activation of FAK and Src, independent of NO. Both pathways cooperated to increase PI3K-dependent Akt phosphorylation and were necessary for FSS to induce nuclear translocation of β-catenin, c-fos, and cox-2 gene expression and osteoblast proliferation. These data explain how mechanical stimulation of osteoblasts leads to increased signaling through a growth regulatory pathway essential for maintaining skeletal integrity.  相似文献   

7.
Human skeletal growth factor (hSGF), an 11-kD polypeptide purified from human bone, has been proposed to be a local regulator of bone formation. To investigate the underlying cellular mechanisms in an in vitro model system, we examined the effects of hSGF on proliferation and collagen synthesis in cells of the clonal osteoblast cell line MC3T3-E1. This line was isolated from newborn mouse calvarial cells and retains many characteristics of mature osteoblasts (Sudo, H., et al., (1984) J. Cell Biol. 96:191). A 14-hr treatment with hSGF increased noncollagenous protein synthesis to 215% of unstimulated controls and increased collagen synthesis to 630% of controls as determined by [3H]proline incorporation and high-pressure liquid chromatographic separation of [3H]proline and [3H]hydroxyproline in acid hydrolysates of trichloroacetic acid-insoluble protein. HSGF did not increase cell number over a 48-hr period and caused a reversible inhibition of DNA synthesis. Half-maximal hSGF concentration for stimulation of [3H]proline incorporation and inhibition of [3H]thymidine incorporation was 100 ng/ml. HSGF also inhibited DNA synthesis in cells stimulated by serum. In contrast, hSGF stimulated both collagen synthesis and DNA synthesis in primary cultures of chick embryo bone cells, which may be developmentally less mature than MC3T3-E1 cells. The results suggest that hSGF directly stimulated mature osteoblast matrix synthetic activity and that hSGF has differential effects on proliferation of osteoblast progenitor cells and mature osteoblasts.  相似文献   

8.
While the roles of the mammalian target of rapamycin (mTOR) signaling in regulation of cell growth, proliferation, and survival have been well documented in various cell types, its actions in osteoblasts are poorly understood. In this study, we determined the effects of rapamycin, a specific inhibitor of mTOR, on osteoblast proliferation and differentiation using MC3T3-E1 preosteoblastic cells (MC-4) and primary mouse bone marrow stromal cells (BMSCs). Rapamycin significantly inhibited proliferation in both MC-4 cells and BMSCs at a concentration as low as 0.1 nM. Western blot analysis shows that rapamycin treatment markedly reduced levels of cyclin A and D1 protein in both cell types. In differentiating osteoblasts, rapamycin dramatically reduced osteoblast-specific osteocalcin (Ocn), bone sialoprotein (Bsp), and osterix (Osx) mRNA expression, ALP activity, and mineralization capacity. However, the drug treatment had no effect on osteoblast differentiation parameters when the cells were completely differentiated. Importantly, rapamycin markedly reduced levels of Runx2 protein in both proliferating and differentiating but not differentiated osteoblasts. Finally, overexpression of S6K in COS-7 cells significantly increased levels of Runx2 protein and Runx2 activity. Taken together, our studies demonstrate that mTOR signaling affects osteoblast functions by targeting osteoblast proliferation and the early stage of osteoblast differentiation.  相似文献   

9.
Our recent animal and human studies revealed that chronic hyponatremia is a previously unrecognized cause of osteoporosis that is associated with increased osteoclast numbers in a rat model of the human disease of the syndrome of inappropriate antidiuretic hormone secretion (SIADH). We used cellular and molecular approaches to demonstrate that sustained low extracellular sodium ion concentrations ([Na(+)]) directly stimulate osteoclastogenesis and resorptive activity and to explore the mechanisms underlying this effect. Assays on murine preosteoclastic RAW 264.7 cells and on primary bone marrow monocytes both indicated that lowering the medium [Na(+)] dose-dependently increased osteoclast formation and resorptive activity. Low [Na(+)], rather than low osmolality, triggered these effects. Chronic reduction of [Na(+)] dose-dependently decreased intracellular calcium without depleting endoplasmic reticulum calcium stores. Moreover, we found that reduction of [Na(+)] dose-dependently decreased cellular uptake of radiolabeled ascorbic acid, and reduction of ascorbic acid in the culture medium mimicked the osteoclastogenic effect of low [Na(+)]. We also detected downstream effects of reduced ascorbic acid uptake, namely evidence of hyponatremia-induced oxidative stress. This was manifested by increased intracellular free oxygen radical accumulation and proportional changes in protein expression and phosphorylation, as indicated by Western blot analysis from cellular extracts and by increased serum 8-hydroxy-2'-deoxyguanosine levels in vivo in rats. Our results therefore reveal novel sodium signaling mechanisms in osteoclasts that may serve to mobilize sodium from bone stores during prolonged hyponatremia, thereby leading to a resorptive osteoporosis in patients with SIADH.  相似文献   

10.
Calcium regulates the PI3K-Akt pathway in stretched osteoblasts   总被引:6,自引:0,他引:6  
Mechanical loading plays a vital role in maintaining bone architecture. The process by which osteoblasts convert mechanical signals into biochemical responses leading to bone remodeling is not fully understood. The earliest cellular response detected in mechanically stimulated osteoblasts is an increase in intracellular calcium concentration ([Ca(2+)](i)). In this study, we used the clonal mouse osteoblast cell line MC3T3-E1 to show that uniaxial cyclic stretch induces: (1) an immediate increase in [Ca(2+)](i), and (2) the phosphorylation of critical osteoblast proteins that are implicated in cell proliferation, gene regulation, and cell survival. Our data suggest that cyclic stretch activates the phosphoinositide 3-kinase (PI3K) pathway including: PI3K, Akt, FKHR, and AFX. Moreover, cyclic stretch also causes the phosphorylation of stress-activated protein kinase/c-Jun N-terminal kinase. Attenuation in the level of phosphorylation of these proteins was observed by stretching cells in Ca(2+)-free medium, using intra- (BAPTA-AM) and extracellular (BAPTA) calcium chelators, or gadolinium, suggesting that influx of extracellular calcium plays a significant role in the early response of osteoblasts to mechanical stimuli.  相似文献   

11.
The ubiquitously expressed Calpains 1 and 2 belong to a family of calcium-dependent intracellular cysteine proteases. Both calpains are heterodimers consisting of a large subunit and a small regulatory subunit encoded by the gene Capns1. To investigate a role for the calpain small subunit in cells of the osteoblast lineage in vivo, we previously generated osteoblast-specific Capns1 knockout mice and characterized their bone phenotype. In this study, we further examined effects of low calcium and high fat diets on their bone, fat, and glucose homeostasis.Osteoblast-specific Capns1 knockout mice showed significantly reduced serum levels of total and uncarboxylated osteocalcin, and this was presumably due to their impaired bone formation and bone resorption. The reduced bone resorptive function of the mutant mice was also significant under a low calcium diet. Thus, these results suggest that reduced uncarboxylated osteocalcin levels of mutant mice were, at least in part, due to their osteoporotic bone with impaired bone resorptive function. Interestingly, unlike osteocalcin knockout mice, mutant mice on a normal chow diet were leaner than control littermates; this was likely due to their reduced food intake and overall lower energy homeostasis. To test this hypothesis, we next provided mutant mice with a high fat diet and further examined an effect of their reduced uncarboxylated osteocalcin levels on body composition and glucose metabolism. The average mean body weight of mutant mice became indistinguishable with that of controls after 2 weeks on a high fat diet, and continued to show an upward trend, at least, up to 6 weeks. Moreover, mutant mice on a high fat diet exhibited a significant increase in serum levels of leptin and resistin, adipocyte-specific adipokines, and developed impaired glucose tolerance. Collectively, mice with osteoporosis and reduced bone resorptive function showed reduced serum uncarboxylated osteocalcin levels and were susceptible to increase body adiposity and develop impaired glucose tolerance under a high fat diet.  相似文献   

12.
13.
Osteoclasts are large multinucleate cells unique in their capacity to resorb bone. These cells are exposed locally to high levels of ionised calcium during the process of resorption. We have therefore examined the effect of elevated extracellular calcium on the morphology and function of freshly disaggregated rat osteoclasts. Cell size and motility were quantitated by time-lapse video recording together with digitisation and computer-centred image analysis. In order to assess the resorptive capacity of isolated osteoclasts, we measured the total area of resorption of devitalised cortical bone by means of scanning electron microscopy and computer-based morphometry. The results show that elevation of the extracellular calcium concentration causes a dramatic reduction of cell size, accompanied by a marked diminution of enzyme release and abolition of bone resorption. We propose that ionised calcium might play an important role in the local regulation of osteoclastic bone resorption.  相似文献   

14.
Beyond a pivotal role in neoplastic transformation and malignant progression, NFkappaB is intricately involved in bone biology, pointed up by the osteopetrotic phenotype of NFkappaB (p50-p52) double knock-out mice. Osteopetrosis results from intrinsic defects in osteoclastogenesis, loss of osteoclast bone resorptive activity and, questionably, increased osteoblast activity (bone matrix apposition and mineralization). We here report that inhibition of NFkappaB signaling activity in Saos-2 cells results in a marked decrease in cellular proliferation, assessed by the incorporation of radioactive thymidine into cellular DNA. Decreased cellular proliferation was accompanied by the induction of bone morphogenic proteins (BMP) 4, 7, and the osteoblast specific transciption factor, Cbfa1, heralding osteoblast differentiation, given the induction of alkaline phosphatase, osteopontin, and osteocalcin message levels and the attendant increase in matrix deposition and mineralization in vitro. These results point to the negative regulation of osteoblast differentiation by NFkappaB, with implications in the pathogenesis and progression of osteosarcomas.  相似文献   

15.
16.
The effects of granulocyte-macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), and interleukin 3 (IL3) on osteoclast formation were tested by incubation of murine hemopoietic cells on plastic coverslips and bone slices with GM-CSF, M-CSF, or IL3, with or without 1,25(OH)2 vitamin D3 (1,25(OH)2D3). Osteoclastic differentiation was detected after incubation by scanning electron microscopical examination of bone slices for evidence of osteoclastic excavations, and by autoradiographic assessment of cells for 1,25(OH)2D3-calcitonin (CT) binding. The differentiation of CT-receptor-positive cells preceded bone resorption, but the number that developed correlated with the extent of bone resorption (r = 0.88). M-CSF and GM-CSF substantially reduced bone resorption and CT-receptor-positive cell formation. The degree of inhibition of bone resorption could not be attributed to effects on the function of mature cells, since M-CSF inhibits resorption by such cells only by 50%, and GM-CSF has no effect. GM-CSF inhibited the development of mature function (bone resorption) to a greater extent than it inhibited CT-receptor-positive cell formation. Since CT-receptor expression antedated resorptive function, this suggests that GM-CSF resulted in the formation of reduced numbers of relatively immature osteoclasts. This suggests that it may exert a restraining effect on the maturation of cells undergoing osteoclastic differentiation in response to 1,25(OH)2D3. Conversely, IL3, which also has no effect on mature osteoclasts, by itself induced CT-receptor expression but not bone resorption; in combination with 1,25(OH)2D3 it induced a threefold increase in bone resorption and CT-receptor-positive cells compared with cultures incubated with 1,25(OH)2D3 alone. IL3 did not induce CT-receptors in peritoneal macrophages, blood monocytes, or J 774 cells. The results suggest that IL3 induces only partial maturation of osteoclasts, which is augmented or completed by additional factors such as 1,25(OH)2D3.  相似文献   

17.
Elevated levels of [Ca(2+)](o) in bone milieu as a result of the resorptive action of osteoclasts are implicated in promoting proliferation and migration of osteoblasts during bone remodeling. However, mitogenic effects of [Ca(2+)](o) have only been shown in some, but not all, clonal osteoblast-like cells, and the molecular mechanisms underlying [Ca(2+)](o)-induced mitogenic signaling are largely unknown. In this study we demonstrated for the first time that [Ca(2+)](o) stimulated proliferation of primary human osteoblasts and selectively activated extracellular signal-regulated kinases (ERKs). Neither p38 mitogen-activated protein (MAP) kinase nor stress-activated protein kinase was activated by [Ca(2+)](o). Treatment of human osteoblasts with a MAP kinase kinase inhibitor, PD98059, impaired both basal and [Ca(2+)](o)-stimulated phosphorylation of ERKs and also reduced both basal and [Ca(2+)](o)-stimulated proliferation. [Ca(2+)](o) treatment resulted in two distinctive phases of ERK activation: an acute phase and a sustained phase. An inhibition time course revealed that it was the sustained phase, not the acute phase, that was critical for [Ca(2+)](o)-stimulated osteoblast proliferation. Our results demonstrate that mitogenic responsiveness to [Ca(2+)](o) is present in primary human osteoblasts and is mediated via prolonged activation of the MAP kinase kinase/ERK signal pathway.  相似文献   

18.
Fluctuation in extracellular calcium (Ca(2+)) concentration occurs during bone remodeling. Free ionized Ca(2+) plays a critical role in regulating osteoblast functions. We analyzed the effects of different concentrations of free ionized Ca(2+) (0.5, 1.3, and 2.6 mM) on human osteoblasts and we evaluated osteoblastic phenotype (marker expression and cell morphology) and functions (osteogenic differentiation, cell proliferation, and cell signaling). Our data show human osteoblasts that chronically stimulated with 0.5, 1.3, or 2.6 mM Ca(2+) significantly increase intracellular content of alkaline phosphatase, collagen type I, osteocalcin, and bone sialoprotein, whereas collagen type XV was down-modulated and RUNX2 expression was not affected. We also found a Ca(2+) concentration-dependent increase in osteogenic differentiation and cell proliferation, associated to an increase of signaling protein PLCβ1 and p-ERK. Human osteoblast morphology was affected by Ca(2+) as seen by the presence of numerous nucleoli, cells in mitosis, cell junctions, and an increased number of vacuoles. In conclusion, our data show a clear phenotypical and functional effect of extracellular Ca(2+) on human osteoblasts and support the hypothesis of a direct role of this cation in the bone remodeling processes.  相似文献   

19.
1alpha,25(OH)(2)-vitamin D(3) (1,25D) is considered a bone anabolic hormone. 1,25D actions leading to bone formation involve gene transactivation, on one hand, and modulation of cytoplasmic signaling, on the other. In both cases, a functional vitamin D receptor (VDR) appears to be required. Here we study 1,25D-stimulated calcium signaling that initiates at the cell membrane and leads to exocytosis of bone materials and increased osteoblast survival. We found that rapid 1,25D-induction of exocytosis couples to cytoplasmic calcium increase in osteoblastic ROS 17/2.8 cells. In addition, we found that elevation of cytoplasmic calcium concentration is involved in 1,25D anti-apoptotic effects via Akt activation in ROS 17/2.8 cells and non-osteoblastic CV-1 cells. In both cases, 1,25D-stimulated elevation of intracellular calcium is due in part to activation of L-type Ca(2+) channels. We conclude that 1,25D bone anabolic effects that involve increased intracellular Ca(2+) concentration in osteoblasts can be explained at two levels. At the single-cell level, 1,25D promotes Ca(2+)-dependent exocytotic activities. At the tissue level, 1,25D protects osteoblasts from apoptosis via a Ca(2+)-dependent Akt pathway. Our studies contribute to the understanding of the molecular basis of bone diseases characterized by decreased bone formation and mineralization.  相似文献   

20.
Surface reactivity of bioactive ceramics contributes in accelerating bone healing by anchoring osteoblast cells and the connection of the surrounding bone tissues. The presence of silicon (Si) in many biocompatible and bioactive materials has been shown to improve osteoblast cell adhesion, proliferation and bone regeneration due to its role in the mineralisation process around implants. In this study, the effects of Si-biphasic calcium phosphate (Si-BCP) on bioactivity and adhesion of human osteoblast (hFOB) as an in vitro model have been investigated. Si-BCP was synthesised using calcium hydroxide (Ca(OH)2) and phosphoric acid (H3PO4) via wet synthesis technique at Ca/P ratio 1.60 of material precursors. SiO2 at 3 wt% based on total precursors was added into apatite slurry before proceeding with the spray drying process. Apatite powder derived from the spray drying process was pressed into discs with Ø 10 mm. Finally, the discs were sintered at atmospheric condition to obtain biphasic hydroxyapatite (HA) and tricalcium phosphate (TCP) peaks simultaneously and examined by XRD, AFM and SEM for its bioactivity evaluation. In vitro cell viability of L929 fibroblast and adhesion of hFOB cell were investigated via AlamarBlue® (AB) assay and SEM respectively. All results were compared with BCP without Si substitution. Results showed that the presence of Si affected the material’s surface and morphology, cell proliferation and cell adhesion. AFM and SEM of Si-BCP revealed a rougher surface compared to BCP. Bioactivity in simulated body fluid (SBF) was characterised by pH, weight gain and apatite mineralisation on the sample surface whereby the changes in surface morphology were evaluated using SEM. Immersion in SBF up to 21 days indicated significant changes in pH, weight gain and apatite formation. Cell viability has demonstrated no cytotoxic effect and denoted that Si-BCP promoted good initial cell adhesion and proliferation. These results suggest that Si-BCP’s surface roughness (164 nm) was significantly higher than BCP (88 nm), thus enhancing the adhesion and proliferation of the osteoblast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号