首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The kinetic properties of type A and type B monoamine oxidase (MAO) were examined in guinea pig striatum, rat striatum, and autopsied human caudate nucleus using 3,4-dihydroxyphenylethylamine (dopamine, DA) as the substrate. MAO isozyme ratio in guinea pig striatum (28% type A/72% type B) was similar to that in human caudate nucleus (25% type A/75% type B) but different from that in rat striatum (76% type A/24% type B). Additional similarities between guinea pig striatum and human caudate nucleus were demonstrated for the affinity constants (Km) of each MAO) isozyme toward DA. Endogenous concentrations of DA, 3-methoxytyramine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid were also measured in guinea pig and rat striatum following selective type A (clorgyline-treated) and type B (deprenyl-treated) MAO inhibition. In guinea pig, DA metabolism was equally but only partially affected by clorgyline or deprenyl alone. Combined treatment with clorgyline and deprenyl was required for maximal alterations in DA metabolism. By contrast, DA metabolism in rat striatum was extensively altered by clorgyline but unaffected by deprenyl alone. Finally, the deamination of DA in synaptosomes from guinea pig striatum was examined following selective MAO isozyme inhibition. Neither clorgyline nor deprenyl alone reduced synaptosomal DA deamination. However, clorgyline and deprenyl together reduced DA deamination by 94%. These results suggest that the isozyme localization and/or isozyme affinity for DA, rather than the absolute isozyme content, determines the relative importance of type A and type B MAO in synaptic DA deamination. Moreover, based on the enzyme kinetic properties of each MAO isozyme, guinea pig striatum may serve as a suitable model of human DA deamination.  相似文献   

2.
104 cAMP analogs, most of them modified in the adenine moiety, were tested as activators of cAMP-dependent protein kinase I (from rabbit or rat skeletal muscle) and kinase II (from bovine heart or rat skeletal muscle). When tested singly, only 2-phenyl-1,N6-etheno-cAMP showed a considerably (sevenfold) higher potency as an activator of kinase II than of kinase I. Analogs containing an 8-amino modification preferentially activated kinase I, some being more than 10-fold more potent as activators of kinase I than kinase II. When two analogs were combined, the concentration of one (complementary) analog required to half-maximally activate each isozyme was determined in the presence of a fixed concentration of another (priming) analog. Analogs tested in combination had been analyzed for their affinity for the intrasubunit binding sites (A, B) of isozyme I and II. The degree to which complementary analogs preferentially activated one isozyme was plotted against the mean site selectivity, i.e. (affinity A/B isozyme I X affinity A/B isozyme II) 1/2. This plot produced a straight line, the slope of which reflected the ability of the priming analog to discriminate homologous sites on the isozymes. This means that the isozyme discriminating power of an analog pair can be quantitatively predicted from the affinity of the analogs for site A and B of the two enzymes. It also means that a systematic analysis of those features of analogs imparting a high mean site selectivity or the ability to discriminate between homologous isozyme sites will facilitate the synthesis of new even more isozyme-selective analogs.  相似文献   

3.
Light and electron microscopic localization of L-alpha-hydroxyacid oxidase (L-HOX) in rat kidney was studied by means of immunocytochemical techniques. Isozymes A and B of L-HOX were purified from rat liver and kidney, respectively. The apparent molecular weights of the subunits of the isozymes A and B were 35,800 and 33,500 daltons, respectively, by a slab gel electrophoresis. Antibodies to the isozymes were raised in rabbits. Anti(isozyme A) is not cross-reactive with the isozyme B and vice versa anti(isozyme B) not with the isozyme A. Using anti-isozyme B, semithin sections of Epon-embedded material and ultrathin sections of Lowicryl K4M-embedded material were stained by immunoenzyme and protein A-gold techniques, respectively. By light microscopy, fine discrete granular staining was noted in proximal tubules, but not in distal tubules including thick and thin limbs of Henle and collecting tubules. By electron microscopy, gold particles representing the antigen sites for L-HOX B were confined exclusively to peroxisomes, in which most of the gold particles were localized in electron dense peripheral matrix, but little in central matrix with low electron density. The results indicate that L-HOX B does not homogeneously distribute in peroxisomes of rat kidney but might be associated with some substructure within peroxisome matrix.  相似文献   

4.
L-alpha-Hydroxyacid oxidase isozymes from rat liver (A isozyme) and kidney (B isozyme) have been isolated in a high state of purity with specific activities of 61 and 14.7 microkatals per gram protein respectively. The subunit molecular weights determined by sodium dodecylsulphate polyacrylamide gel electrophoresis were 40000 +/- 3000; the mouse A and B isozymes were also partially purified and their subunit molecular weights shown to be 37000.  相似文献   

5.
Summary Light and electron microscopic localization of l-alpha-hydroxyacid oxidase (l-HOX) in rat kidney was studied by means of immunocytochemical · techniques. Isozymes A and B of l-HOX were purified from rat liver and kidney, respectively. The apparent molecular weights of the subunits of the isozymes A and B were 35,800 and 33,500 daltons, respectively, by a slab gel electrophoresis. Antibodies to the isozymes were raised in rabbits. Anti(isozyme A) is not cross-reactive with the isozyme B and vice versa anti(isozyme B) not with the isozyme A. Using anti-isozyme B, semithin sections of Epon-embedded material and ultrathin sections of Lowicryl K4M-embedded material were stained by immunoenzyme and protein A-gold techniques, respectively. By light microscopy, fine discrete granular staining was noted in proximal tubules, but not in distal tubules including thick and thin limbs of Henle and collecting tubules. By electron microscopy, gold particles representing the antigen sites for l-HOX B were confined exclusively to peroxisomes, in which most of the gold particles were localized in electron dense peripheral matrix, but little in central matrix with low electron density. The results indicate that l-HOX B does not homogeneously distribute in peroxisomes of rat kidney but might be associated with some substructure within peroxisome matrix.  相似文献   

6.
The complementary DNAs of rat glutathione S-transferase (GST, EC 2.5.1.18) Yc1 and of mouse Yc were expressed from a prokaryotic expression vector in E. coli. The purified proteins were analyzed for their activity toward aflatoxin B1-8,9-epoxide (AFBO), the reactive intermediate of the fungal mycotoxin aflatoxin B1 (AFB). The mouse Yc isozyme had about 50-fold higher conjugating activity toward AFBO than the rat Yc1 isozyme (144 nmol/mg/min versus 3.3 nmol/mg/min). The rat Yc1 isozyme had specific activities toward 1-chloro-2,4-dinitrobenzene, cumene hydroperoxide and ethacrynic acid of 10.7, 0.98 and 0.92 mumol/mg/min, respectively, whereas the mouse Yc isozyme had specific activities of 5.7, 2.1 and 0.1 mumol/mg/min for these substrates, respectively. These data provide further support for the hypothesis that the constitutive presence of the alpha class GST Yc isozyme in mouse liver protects mice from the hepatocarcinogenic effects of aflatoxin B1.  相似文献   

7.
Expression of aldolase isozyme mRNAs in fetal rat liver   总被引:3,自引:0,他引:3  
The regulation of aldolase isozyme expression during development was studied by measuring the concentrations of mRNAs coding for aldolase A and B subunits in fetal and adult rat liver. Poly(A)-containing RNAs were extracted from livers at various stages of development of fetal rats, and the aldolase A and B subunits in the in vitro translation products of these RNAs were analyzed immunologically. The content of aldolase B mRNA in 14-day fetal liver, measured quantitatively as translational activity, was somewhat smaller than that of aldolase A mRNA; immunologically precipitable aldolase B and A amounted to 0.06% and 0.25% respectively, of the total products. Similar experiments using RNAs from fetuses at later stages, however, showed that aldolase B mRNA increased during development, whereas aldolase A mRNA decreased. In newborn rat liver, aldolase B constituted 0.56% of the total translation products of mRNA, but there was little detectable aldolase A (0.03%). The changes of aldolase mRNA levels were analyzed further by northern blot and dot-blot hybridization experiments using cloned aldolase A and B cDNAs. The content of aldolase B mRNA increased in the fetal stage, and that in newborn rat liver was about 12 times that in 14-day fetal liver. In contrast, the aldolase A mRNA content decreased during gestation and that in newborn rat liver was about one-eighth of that in 14-day fetal liver. These observations suggest that the switch of aldolase isozyme expression in fetal liver is controlled by the levels of the respective mRNAs.  相似文献   

8.
A major isozyme of rat heart glutathione transferase was purified to homogeneity by Sephadex G-200 gel filtration, ammonium sulfate precipitation, CM-cellulose chromatography and affinity chromatography on S-hexylglutathione-linked Sepharose 6B. The purified isozyme was a dimer with an apparent relative molecular mass of 50 000 composed of two Yb-size subunits (Mr = 26 500). The isozyme is immunologically related to rat liver glutathione transferase X and 3-3, especially closely to transferase X, and no immunological cross-reactivity with subunits 1 and 2 of hepatic glutathione transferases was observed. The isoelectric point (pI = 6.9) of the isozyme was identical with and the substrate specificity was very similar to transferase X. Thus, the cardiac near-neutral isozyme is considered to be identical to glutathione transferase X recognized in rat liver. The amount of this near-neutral isozyme estimated to be present in heart tissue is 70 micrograms/g. The isozyme has relatively high activities towards alpha, beta-unsaturated carbonyl compounds such as trans-4-phenyl-3-buten-2-one and trans-4-hydroxynon-2-enal. The latter is a cytotoxic product resulting from lipid peroxidation of polyunsaturated fatty acids, and the cardiac isozyme may play a physiologically significant role with glutathione conjugation of this compound. In addition to the near-neutral isozyme, acidic forms with isoelectric points of 4.9, 5.2 and 5.5 were partially purified; some of them are considered to consist of subunits immunologically related to transferase X.  相似文献   

9.
10.
Distribution of AMP-deaminase isozymes in rat tissues   总被引:8,自引:0,他引:8  
1. The distribution of AMP deaminase isozymes in rat tissues was analyzed by electrophoresis on cellulose acetate membrane, by chromatography on phosphocellulose column, and by the application of immunological technique employing specific antisera against three parental AMP deaminases (isozymes A, B and C). Skeletal muscle extracts and diaphragm extracts contain a single identical isozyme, isozyme A. The major isozyme species of liver, kidney and testes are also identical and they are isozyme B. Heart extracts contains isozyme C exclusively. Extracts of brain, lung and spleen contain five isozymes, presumably a complete set of five B-C hybrids. 2. Developmental patterns of AMP deaminase isozyme were studied. In early postnatal life, extracts of heart, liver, kidney and lung contain five isozymes similar to those observed in adult brain. During postnatal development, a shift to isozyme C occurs in heart, whereas a shift to isozyme B occurs in liver and kidney. Five isozymes in lung remain throughout development. In brain a shift of B to five isozymes is observed during development. Isozyme A is the predominant form in muscle throughout postnatal development. 3. AMP deaminase in the regenerating liver was analyzed, but the data indicated that there was no change of isozyme distribution during hepatic regeneration.  相似文献   

11.
Suckling rat liver N-acetyl-β-glucosaminidase (hexosaminidase) activity undergoes considerable fluctuation during the first two weeks of life. As two major forms of hexosaminidase (A, heat-labile, and B, heat-stable) are known to exist in both human and adult rat liver, we choose to examine the effect of the maturative hormones, thyroxine and cortisone, upon these isozymes during the suckling period. Between days 7 and 15, the observed developmental change is attributable solely to an increase in the ‘A-like’ (heat-labile) form of the enzyme; an enhanced response is seen in thyroxine-injected 11–15-day old animals. The response may be considered ‘age-independent’, as adult animals react in the same manner. In contrast, cortisone-injected sucklings show a decrease in both A and B isozymes, while in adults no changes in total activity or isozyme distribution are evoked. The ratio of hexosaminidase A to hexosaminidase B in suckling rat liver appears to shift in favor of the labile (A) isozyme early in development.  相似文献   

12.
BACKGROUND: We previously showed that triiodothyronine (T3) stimulates muscle phosphoglycerate mutase (PGAM) activity and isozyme transition in rat skeletal and cardiac muscles. METHODS: The effects of T3 on PGAM types B and M subunit expression in rat muscle during development are reported. RESULTS: T3 administration during the first 21 days of rat life more than doubles type M PGAM mRNA levels, but produces minor effects on type B PGAM mRNA levels. The antihormone propylthiouracil (PTU) slightly decreases both type B and M mRNA levels, but this decrease is not statistically significant. CONCLUSION: Thyroid hormone influences PGAM mRNA isozyme levels differently and increases type M mRNA.  相似文献   

13.
Rabbit liver phosphofructo-1-kinase, designated isozyme B, and rabbit brain phosphofructokinase, which contains all three isozymes as heteropolymers, have been modified by [14C]fluorosulfonylbenzoyladenosine (FSBAdo). Several lines of evidence supported modification at the binding site for AMP. The modification proceeded to the extent of 2 to 4 mol of reagent incorporated per mol of tetramer, and AMP protected against the reaction. The kinetic properties of modified isozymes A and B and of modified brain phosphofructokinase were examined and compared to their unmodified forms. It was observed that modification greatly diminished ATP inhibition of all of the isozymes. Furthermore, equilibrium binding studies of modified phosphofructokinase B showed a greatly diminished capacity and affinity for cyclic AMP. Cyclic AMP had little or no influence on the properties of modified A isozyme or brain phosphofructokinase, but was capable of further deinhibiting modified B isozyme, apparently at sites remaining unmodified by FSBAdo. Phosphofructokinase B, modified by radiolabeled FSBAdo, was digested by trypsin, and the digest separated by high-pressure liquid chromatography. The labeled peptide was isolated and sequenced to provide the sequence: Asn-Tyr-Gly-Thr-Lys-Leu-Gly-Val-Lys, with the lysine in the fifth position being the site of modification. To isolate isozyme C, a monoclonal antibody to this isozyme was produced by injecting purified rabbit brain phosphofructokinase into mice, and subsequently selecting for those clones that recognized brain phosphofructokinase but not purified phosphofructokinases A and B. The selected monoclonal was specific for native rabbit isozyme C and would not recognize mouse or rat brain phosphofructokinases. Linking the antibody to an inert phase provided an efficient means of purifying rabbit isozyme C from rabbit brain. The enzyme so recovered retained little of its original activity, but the method provided a simple technique for the preparation of enzyme for protein chemistry studies. The modified C isozyme was isolated on the immuno-affinity column and digested with trypsin. A tryptic peptide bearing the label was isolated and sequenced to provide the structure: Asn-Phe-Gly-Thr-Lys-Ile-Ser-Ala-Arg, with position 5 being the site of modification. The sequences of isozymes B and C are homologous to the site of modification of the A isozyme by FSBAdo.  相似文献   

14.
Isolation and characterization of phosphofructokinase C from rabbit brain   总被引:4,自引:0,他引:4  
Phosphofructokinase from rabbit brain consists of hybrids of the A, B, and C isozymes. Phosphofructokinase C was isolated from a purified mixture of such hybrids in a 2-step procedure. In the first step, phosphofructokinase B was removed by chromatography on DEAE-Sephadex. In the second step, subunits of phosphofructokinases A and C were separated by dissociation at pH 5.0 followed by chromatography on carboxymethylcellulose. The separated isozymes were then reassociated by neutralization. Phosphofructokinase C was structurally distinct from phosphofructokinases A (obtained from muscle or brain) and B (obtained from liver) as shown by one-dimensional chymotryptic and staphylococcal V8 protease fingerprints of all three isozymes. In addition, phosphofructokinase C cross-reacted weakly or not at all with antisera raised against phosphofructokinase B or phosphofructokinase A. Phosphofructokinase C was also kinetically distinct from the A and B isozymes. The C isozyme was more sensitive than the A isozyme but less sensitive than the B isozyme to inhibition by ATP, was less sensitive than the A isozyme but more sensitive than the B isozyme to inhibition by citrate, and was less sensitive than either of the other two isozymes to activation by inorganic phosphate, AMP, and fructose 2,6-bisphosphate. The self-association properties of phosphofructokinase C differed from those of the A and B isozymes in that at pH 8.0, the C isozyme did not form oligomers larger than a tetramer under conditions where the other two isozymes did. Thus the properties of phosphofructokinase C are in general quite distinct from those of the other two phosphofructokinase isozymes.  相似文献   

15.
Isozymes of adenylate kinase (ATP:AMP phosphotransferase, EC 2.7.4.3) were purified from skeletal muscle and liver of rats to essentially homogeneous states by acrylamide gel electrophoresis and sodium dodecyl sulfate gel electrophoresis. The isozyme from muscle was purified by acidification to pH 5.0, and column chromatography on phosphocellulose, Sephadex G-75 and Blue Sepharose CL-6B, while that from liver was purified by column chromatography on Blue Sepharose CL-6B, Sephadex G-75 and carboxymethyl cellulose. By these procedures the muscle isozyme was purified about 530-fold in 29% yield, and the liver isozyme about 3600-fold in 27% yield from the respective tissue extracts. The molecular weights of the muscle and liver isozymes were estimated as about 23 500 and 30 500, respectively, by both sodium dodecyl sulfate gel electrophoresis and molecular sieve chromatography, and no subunit of either isozyme was detected. The isoelectric points of the muscle and liver isozymes were 7.0 and 8.1, respectively. The Km values of the respective enzymes for ATP and ADP were similar, but the Km(AMP) of the liver isozyme was about one-fifth of that of the muscle isozyme. Immunological studies with rabbit antiserum against the rat muscle isozyme showed that the muscle isozyme was abundant in muscle, heart and brain, while the liver isozyme was abundant in liver and kidney.  相似文献   

16.
A set of cAMP analogs were synthesized that combined exocyclic sulfur substitutions in the equatorial (Rp) or the axial (Sp) position of the cyclophosphate ring with modifications in the adenine base of cAMP. The potency of these compounds to inhibit the binding of [3H]cAMP to sites A and B from type I (rabbit skeletal muscle) and type II (bovine myocardium) cAMP-dependent protein kinase was determined quantitatively. On the average, the Sp isomers had a 5-fold lower affinity for site A and a 30-fold lower affinity for site B of isozyme I than their cyclophosphate homolog. The mean reduction in affinities for the equivalent sites of isozyme II were 20- and 4-fold, respectively. The Rp isomers showed a decrease in affinity of approximately 400-fold and 200-fold for site A and B, respectively, of isozyme I, against 200-fold and 45-fold for site A and B of isozyme II. The Sp substitutions therefore increased the relative preference for site A of isozyme I and site B of isozyme II. The Rp substitution, on the other hand, increased the relative preference for site B of both isozymes. These data show that the Rp and Sp substitutions are tolerated differently by the two intrachain sites of isozymes I and II. They also support the hypothesis that it is the axial, and not the previously proposed equatorial oxygen that contributes the negative charge for the ionic interaction with an invariant arginine in all four binding sites. In addition, they demonstrate that combined modifications in the adenine ring and the cyclic phosphate ring of cAMP can enhance the ability to discriminate between site A and B of one isozyme as well as to discriminate between isozyme I and II. Since Rp analogs of cAMP are known to inhibit activation of cAMP-dependent protein kinases, the findings of the present study have implications for the synthesis of analogs having a very high selectivity for isozyme I or II.  相似文献   

17.
18.
Immunological properties of rat phosphoglycerate mutase isozymes   总被引:1,自引:0,他引:1  
In mammalian tissues three phosphoglycerate mutase (D-phosphoglycerate 2,3-phosphomutase, EC 5.4.2.1) isozymes result from the homo-dimeric and hetero-dimeric combinations of two subunits (types M and B). Whereas rabbit antisera against type M subunit (purified from rat muscle) and against type BB isozyme (purified from rat brain) possessed a high degree of specificity, both antisera reacted with type BB and MM isozymes, as demonstrated by immunoneutralization and ELISA. Both the M subunit and B subunit were more immunoreactive than their respective dimeric isozymes. Subunits type M and B may possess common antigenic determinants, and some of these determinants may be sterically hindered in their dimeric structures.  相似文献   

19.
Four isoamylases have been isolated from human submandibular secretions by gel filtration and isoelectric focusing. The isozymes (1A, 1B, 2A, 2B) were each purified about 8-fold and each yielded one major band on disc gel electrophoresis. In all cases the major protein band contained more than 95% of the protein and amylase activity recovered. The isoenzymes, in order of their relative positions on the polyacrylamide gels (from the anodal end), their isoelectric points, and percentage distribution in the submandibular secretion are as follows: isozyme 2A, pH 5.9, 9%; isozyme 1A, pH 5.9, 18%; isozyme 2B, pH 6.4, 63%; isozyme 1B, pH 6.4, 10%. Amino acid analyses showed that the protein compositions of the four isoamylases were essentially the same. Possible differences were noted in aspartic acid, serine, glutamic acid, and proline contents. Molecular weights, determined by SDS disc gel electrophoresis, were 57,000 for 1A and 1B, and 54,000 for 2A and 2B. This molecular weight difference is attributed mainly to the presence of bound carbohydrate on isozymes 1A and 1B. Gas Chromatographic analysis was used for determining the carbohydrate compositions. Molar ratios of sugars were similar for both glycoprotein amylases (moles sugar/mole enzyme): glucosamine, 3; mannose, 3; galactose, 2; fucose, 3. Isoamylase 1A, which had more carbohydrate than 1B, also contained about 2 moles of N-acetylneuraminic acid. Sialic acid was not detected in isozyme 1B.  相似文献   

20.
A study of aldolases in rat hepatoma clones and subclones has revealed that they synthesize all three forms of aldolase monomers: A (the ubiquitous glycolytic isozyme), B (the form characteristic of the liver) and C, and that in vitro–in vivo passage results in a reversible modulation in aldolase A activity. Three kinds of somatic hybrids, between rat hepatoma cells and either mouse fibroblasts or rat epithelial cells, have been studied. In each case, aldolase B, found only in the hepatoma parent, was absent in the hybrid cells. The absence of aldolase B in the somatic hybrids seems not to be due to trivial factors (species differences, inactivation of all hepatoma aldolase genes, increase in ploidy or loss of chromosomes); it is concluded that extinction of this differentiated function of the hepatoma parent reflects a genetic regulatory phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号