首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
N-Substituted-2-amino-4(3H)-7H-oxopyrrolo[2,3-d]pyrimidine-5-carbo xamides and their ribofuranosyl and 2',3'-dideoxyribofuranosyl derivatives were prepared as membrane permeable echiguanine analogs and tested for their ability to inhibit phosphatidylinositol (PI) 4-kinase. The ethylamide 5 and the corresponding ribofuranosyl compound 11 inhibited PI 4-kinase with IC50 values of 0.02 and 2.4 micrograms/ml, respectively.  相似文献   

2.
Abstract

D-myo-Inositol 4-(hexadecyloxy)-3(S)-methoxybutanephosphonate (C4-PI), a water soluble isosteric phosphonate analog of phosphatidylinositol (PI) that is not a substrate of phosphatidylinositol-specific phospholipase C isozymes, was synthesized and was found to be phosphorylated by phosphatidyl-inositol 3-kinase (PI 3-kinase) activity immunoprecipitated from insulin-stimulated cells. The extent of phosphorylation of C4-PI was similar to or greater than that of phosphatidylinositol, especially at higher concentrations. Since C4-PI is very water soluble, it is an attractive tool for assaying PI kinases in vitro as no detergent or sonication is required in contrast to assays with the long-chain PI which forms micelles. The extent of phosphorylation of C4-PI was similar or greater than that of PI, especially at higher concentrations. C4-PI was, at best, a poor inhibitor of of PI 3-kinase activity (IC50 > 150 µM). C4-PI exhibited antiproliferative properties against the neuroblastoma cell lines SK-N-SH and SK-N-MC and the kidney carcinoma A498 cell line (IC50 20–40 µM) but had minimal effect on the proliferation of the drug-resistant ovarian adenocarcinoma Ovcar-3 line. These results indicate that the antiproliferative effect of C4-PI is unlikely to arise via inhibition of the PI 3-kinase signaling pathways in cells, however, the possibility that phosphorylated C4-PI products interfere in PI 3-kinase cell signaling pathways cannot be ruled out.  相似文献   

3.
4.
《Free radical research》2013,47(9):1147-1155
Abstract

Background. Insulin protects cardiomyocytes from reactive oxygen species (ROS)-induced apoptosis after ischemic/reperfusion injury, but the mechanism is not clear. This study investigated the protective mechanism of insulin in preventing cardiomyocyte apoptosis from ROS injury. Methods. Rat cardiomyoblast H9c2 cells were treated with hydrogen peroxide (H2O2) or insulin at various concentrations for various periods of time, or with insulin and H2O2 for various periods of time. Cell viability was measured by the methylthiazolydiphenyl-tetrazolium bromide method. Cellular miR-210 levels were quantified using real-time RT-PCR. MiR-210 expression was also manipulated through lentivirus-mediated transfection. LY294002 was used to investigate involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Results. The percentage of viable cells was significantly and inversely associated with H2O2 concentration, an effect that was seemingly attenuated by insulin pretreatment. Treatments with H2O2 or insulin were associated with a significant increase in miR-210 levels. Manipulation of miR-210 expression by gene transfection showed that miR-210 could attenuate H2O2-induced cellular injury. Inhibition of the PI3K/Akt pathway by the Akt inhibitor LY294002 was associated with a decrease in miR-210 expression. Conclusion. Insulin stimulated the expression of miR-210 through the PI3K/Akt pathway, resulting in a protective effect against cardiomyocyte injury that had been induced by H2O2/oxygen species. Our results provide novel evidence regarding the mechanism underlying the protective effect of insulin.  相似文献   

5.
《Life sciences》1995,57(7):685-694
The metabolism of phosphoinositides plays an important role in the signal transduction pathways. We report here that naturally occuring polyamines affect the activities of phosphatidylinositol (PI) 3-kinase and PI 4-phosphate (PIP) 5-kinase differently. While polyamines inhibited the PI 3-kinase activity, they stimulated the activity of PIP 5-kinase in the order of spermine > spermidine > putrescine. Spermine inhibited the PI 3-kinase activity in a concentration-dependent manner with an IC50 of 100 μM. On the other hand, spermine (5 mH) stimulated the activity of PIP 5-kinase 2–3 fold. Kinetic studies of spermine-mediated inhibition of PI 3-kinase revealed that it was noncompetitive with respect to ATP. The effect of Mg2+ and PIP, concentration on kinase activity was sigmoidal, with spermine inhibiting PI 3-kinase activity at all PIP2 concentrations. While 1 mH calcium stimulated PI 3-kinase activity at submaximal concentrations of Mg2+ (1.25 mH), inhibition was observed at optimal concentration of Mg2+(2 mM). We propose that spermine may modulate the cellular signal by virtue of its differential effects on phosphoinositide kinases.  相似文献   

6.
The synthesis of a novel series of 4-arylhydrazono-5-methyl-1,2-dihydropyrazol-3-ones 4a–h, and their N 2-alkyl and acyclo, glucopyranosyl, and ribofuranosyl derivatives is described. K2CO3 catalyzed alkylation of 4a–h with allyl bromide, propargyl bromide, 4-bromobutyl acetate, 2-acetoxyethoxymethyl bromide, and 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide proceeded selectively at the N 2-position of the pyrazolinone ring. Glycosylation of 4a with 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose under Vorbruggen glycosylation conditions gave the corresponding N 2-4-arylhydrazonopyrazolone ribofuranoside 9a in good yield. Conventional deprotection of the acetyl protected nucleosides furnished the corresponding 4-arylhydrazonopyrazolone nucleosides in good yields. Selected numbers of the newly synthesized compounds were screened for antimicrobial activity. Compounds 4b, 12a, and 14d showed moderate activities against Aspergillus flavus, Penicillium sp., and Escherichia coli.  相似文献   

7.
8.
Abstract

A series of novel (5-amino-3-substituted-1, 2, 4-triazin-6-yl) (2-(6-halo-substituted benzo[d]isoxazol-3-yl) pyrrolidin-1-yl) methanone 5a5r was synthesized. Their anticonvulsant activities were evaluated by the maximal electroshock (MES) test and neurotoxicity was evaluated by the rotorod test. The MES test showed that (5-amino-3-phenyl-1, 2, 4-triazin-6-yl)(2-(6-fluorobenzo[d]isoxazol-3-yl) pyrrolidin-1-yl) methanone 5c was found to be the most potent compound with ED50 value of 6.20?mg/kg (oral/rat) and a protective index (PI?=?ED50/TD50) value of >48.38, which was much higher than the PI of the reference drug phenytoin. To explain the possible mechanism of action of selected derivatives 5b, 5c, 5i and 5o, their influence on sodium channel was evaluated in vitro.  相似文献   

9.
Platelet derived growth factor (PDGF) orchestrates wound healing and tissue regeneration by regulating recruitment of the precursor mesenchymal stromal cells (MSC) and fibroblasts. PDGF stimulates generation of hydrogen peroxide that is required for cell migration, but the sources and intracellular targets of H2O2 remain obscure. Here we demonstrate sustained live responses of H2O2 to PDGF and identify PKB/Akt, but not Erk1/2, as the target for redox regulation in cultured 3T3 fibroblasts and MSC. Apocynin, cell-permeable catalase and LY294002 inhibited PDGF-induced migration and mitotic activity of these cells indicating involvement of PI3-kinase pathway and H2O2. Real-time PCR revealed Nox4 and Duox1/2 as the potential sources of H2O2. Silencing of Duox1/2 in fibroblasts or Nox4 in MSC reduced PDGF-stimulated intracellular H2O2, PKB/Akt phosphorylation and migration, but had no such effect on Erk1/2. In contrast to PDGF, EGF failed to increase cytoplasmic H2O2, phosphorylation of PKB/Akt and migration of fibroblasts and MSC, confirming the critical impact of redox signaling. We conclude that PDGF-induced migration of mesenchymal cells requires Nox4 and Duox1/2 enzymes, which mediate redox-sensitive activation of PI3-kinase pathway and PKB/Akt.  相似文献   

10.
《Free radical research》2013,47(8):635-642
Abstract

Oxidative stress plays a significant role in pathophysiology of cataracts and also known to affect the phosphatidylinositol-3-kinase/ protein kinase B (PI3K/Akt) signaling pathway. This well-documented pathway is involved in protecting against apoptosis-inducing insults, including oxidative stress. Melatonin (N-acetyl-5-methoxy-tryptamine), the major secretory product of the pineal gland, was identified as a powerful free radical scavenger and a broad-spectrum antioxidant that defends against various oxidative stress-associated diseases. This study was conducted to determine whether melatonin could prevent hydrogen peroxide (H2O2)-induced oxidative stress in human lens epithelial cells (HLECs) and to elucidate the molecular pathways involved in this protection. HLECs were subjected to various concentrations of H2O2 in the presence or absence of melatonin at different concentrations. Cell viability was monitored by a 3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyl-tetrazoliumbromide (MTT) assay, and the apoptosis rate and intracellular reactive oxygen species (ROS) levels were measured by flow cytometry using annexin V-FITC and propidium iodide (PI) staining. The expression levels of HO-1, Nrf-2, CAT, and MDA were measured using Western blot analysis. Akt activation was also evaluated by Western blot analysis. The data from our study showed that cells pretreated with melatonin can reduce H2O2-induced intracellular ROS generation and thus protect HLECs from cell apoptosis. Furthermore, we found that melatonin is a potent activator of Akt in HLECs. Our findings suggest that in addition to functioning as a direct free radical scavenger, melatonin can elicit cellular signaling pathways that are protective against oxidative stress-induced cataracts.  相似文献   

11.
Two series of novel 4-(2-(2-(2-(substituted) hydrazinyl)-2-oxoethylthio)-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 5–17 and 4-(2-(2-(substituted-1H-pyrazol-1-yl)-2-oxoethylthio)-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 18–24 were synthesised from the starting material 4-(2-(2-hydrazinyl-2-oxoethylthio)-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 5, to be evaluated for their inhibitory activity towards VEGFR-2. The target compounds 5–24, were screened for their cytotoxic activity against MCF-7 breast cancer cell line and the percentage inhibition against VEGFR-2. Compounds 9, 20, 22 and 23, showed excellent VEGFR-2 inhibitory activity with IC50 ranging from 0.64 to 1.04?µm. Being the most potent, compound 9 was evaluated for its apoptotic inducer effect by studying the effect on caspase-3, it was found to increase its level. Compound 9 boosted the level of Bax and reduced the level of BCl2, compared to the control. Cell cycle analysis was conducted, compound 9 showed cell cycle arrest at G2/M phase. Moreover, mild cytotoxic effect (IC50?=?29.41?µm, respectively) in normal breast cells MCF-12?A, was observed when treated with the same compound. Finally, a molecular docking study was performed to investigate the possible binding interaction inside the active site of the VEGFR-2 enzyme.  相似文献   

12.
We have investigated the role of phosphatidylinositol 3-kinase (PI3-kinase) in cellular interactions with collagenous matrices. Platelet-derived growth factor-BB (PDGF-BB) elicited a mobilization of intracellular Ca2+ in pig aortic endothelial (PAE) cells transfected with wild type PDGF β-receptor. This response was greatly reduced in PAE cells transfected with PDGF β-receptors mutated at positions Y740 and Y751 to prevent PI3-kinase binding. The experimental drug 1D-myo-inositol 1,2,6-trisphosphate (α-trinositol) induced a rapid increase and subsequent oscillations of the cytoplasmic Ca2+ concentration in cultured fibroblasts. This response was not due to an effect of α-trinositol on inositol 1,4,5-trisphosphate (IP3) receptors. α-Trinositol did not influence PDGF-BB elicited chemotaxis through collagen-coated membranes of PAE cells transfected with the wild-type PDGF β-receptor, but restored PDGF-BB elicited chemotaxis of PAE cells transfected with the PI3-kinase binding-site mutated PDGF β-receptor. Collagen gel contraction has been suggested to serve as a model for cellular control of interstitial fluid pressure (PIF) in dermis. The PI3-kinase inhibitors wortmannin (50 nM) and LY294002 (5μmlM) inhibited the stimulation of fibroblast-mediated collagen gel contraction by 0.4 nM PDGF-BB. Injection of wortmannin in rat paw skin induced a lowering of PIF, and this effect was abolished in animals pre-treated with α-trinositol. Pretreatment of rats with α-trinositol abolished the decrease in PIF induced by injecting monoclonal anti-rat α2β1 integrin IgG in rat paw skin. Taken together our data indicate that cell-collagen interactions in vivo and in vitro depend on PI3-kinase, and that this dependence can be bypassed by a drug eliciting intracellular Ca2+ mobilization.  相似文献   

13.
Abstract

A series of 2-(arylidene)-1-(4-chlorophenyl)-4,4,4-trifluorobutane-1,3-diones (24), 4-(arylidene)-3-(4-chlorophenyl)-5-(trifluoromethyl)-4H-pyrazoles (57), 1-(4-chlorophenyl)-4,4,4-trifluoro-2-(2-(aryl)hydrazono)butane-1,3-diones (8, 9), 3-(4-chlorophenyl)-4-(2-(aryl)hydrazono)-5-(trifluoromethyl)-4H-pyrazoles (10, 11), 2-((3-(4-chlorophenyl)-1-phenyl-5-(trifluoromethyl)-1H-pyrazol-4-yl)methylene)malononitrile (13), 2-((5-(4-chlorophenyl)-1-phenyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)methylene)cycloalkan-1-ones (14, 15) and 1-(aryl)-3-(5-(4-chlorophenyl)-1-phenyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)prop-2-en-1-ones (16, 17) were designed, synthesized and evaluated for their in vitro antitumor activity. 1-(4-Chlorophenyl)-4,4,4-trifluoro-2-(2-(4-methoxyphenyl)hydrazono)butane-1,3-dione (8) showed potential and broad spectrum antitumor activity compared to the known drug 5-FU with GI50, (6.61 and 22.60 µM), TGI (42.66 and <100?µM) and LC50 (93.33 and <100?µM) values, respectively. On the other hand, compound 8 yielded selective activities toward melanoma, colon, non-small lung and breast cancer cell lines compared with erlotinib and gefitinib. Molecular docking methodology was performed for compound 8 into binding site of B-RAFV600E and EGFR kinases which showed similar binding mode to vemurafenib (PLX4032) and erlotinib, respectively.  相似文献   

14.
Receptor FcγIIA (FcγRIIA) associates with plasma membrane rafts upon activation to trigger signaling cascades leading to actin polymerization. We examined whether compartmentalization of PI(4,5)P2 and PI(4,5)P2-synthesizing PIP5-kinase Iα to rafts contributes to FcγRIIA signaling. A fraction of PIP5-kinase Iα was detected in raft-originating detergent-resistant membranes (DRM) isolated from U937 monocytes and other cells. The DRM of U937 monocytes contained also a major fraction of PI(4,5)P2. PIP5-kinase Iα bound PI(4,5)P2, and depletion of the lipid displaced PIP5-kinase Iα from the DRM. Activation of FcγRIIA in BHK transfectants led to recruitment of the kinase to the plasma membrane and enrichment of DRM in PI(4,5)P2. Immunofluorescence studies revealed that in resting cells the kinase was associated with the plasma membrane, cytoplasmic vesicles and the nucleus. After FcγRIIA activation, PIP5-kinase Iα and PI(4,5)P2 co-localized transiently with the activated receptor at distinct cellular locations. Immunoelectron microscopy studies revealed that PIP5-kinase Iα and PI(4,5)P2 were present at the edges of electron-dense assemblies containing activated FcγRIIA in their core. The data suggest that activation of FcγRIIA leads to membrane rafts coalescing into signaling platforms containing PIP5-kinase Iα and PI(4,5)P2.  相似文献   

15.
Abstract

A summary delineating the large scale synthetic studies to prepare labeled precursors of ribonucleosides-3′,4′,5′,5″- 2H 4 and -2′,3′,4′,5′,5″- 2H 5 from D-glucose is presented. The recycling of deuterium-labeled by-products has been devised to give a high overall yield of the intermediates and an expedient protocol has been elaborated for the conversion of 3-O-benzyl-α,β-D-allofuranose-3,4-d 2 6 to 1-O-methyl-3-O-benzyl-2-O-t-butyldimethylsilyl-α,β-D-ribofuranose-3,4,5,5′-d 4 16 (precursor of ribonucleosides-3′,4′,5′,5″- 2H 4 ) or to 1-O-methyl-3,5-di-O-benzyl-α,β-D-ribofuranose-3,4,5,5′-d 4 18 (precursor of ribonucleosides-3′,4′,5′,5″- 2H 4 ).  相似文献   

16.
Coxsackieviruses require phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) for replication but can bypass this need by an H57Y mutation in protein 3A (3A-H57Y). We show that mutant coxsackievirus is not outcompeted by wild-type virus during 10 passages in vitro. In mice, the mutant virus proved as virulent as wild-type virus, even when mice were treated with a PI4KIIIβ inhibitor. Our data suggest that upon emergence, the 3A-H57Y mutant has the fitness to establish a resistant population with a virulence similar to that of wild-type virus.  相似文献   

17.
Oxidative stress-induced neuronal apoptosis plays an important role in many neurodegenerative disorders. In this study, we have shown that indirubin-3-oxime, a derivative of indirubin originally designed for leukemia therapy, could prevent hydrogen peroxide (H2O2)-induced apoptosis in both SH-SY5Y cells and primary cerebellar granule neurons. H2O2 exposure led to the increased activities of glycogen synthase kinase 3β (GSK3β) and extracellular signal-regulated kinase (ERK) in SH-SY5Y cells. Indirubin-3-oxime treatment significantly reversed the altered activity of both the PI3-K/Akt/GSK3β cascade and the ERK pathway induced by H2O2. In addition, both GSK3β and mitogen-activated protein kinase inhibitors significantly prevented H2O2-induced neuronal apoptosis. Moreover, specific inhibitors of the phosphoinositide 3-kinase (PI3-K) abolished the neuroprotective effects of indirubin-3-oxime against H2O2-induced neuronal apoptosis. These results strongly suggest that indirubin-3-oxime prevents H2O2-induced apoptosis via concurrent inhibiting GSK3β and the ERK pathway in SH-SY5Y cells, providing support for the use of indirubin-3-oxime to treat neurodegenerative disorders caused or exacerbated by oxidative stress.  相似文献   

18.
Eight newly synthesized carbacylamidophosphates with the general formula RC(O)NHP(O)Cl2 with R = pCl–C6H4 1a, pBr–C6H4 2a, C6H5 3a, and pMe–C6H4 4a and RC(O)NHP(O)(NC4H8O)2 R = pCl–C6H4 1b, pBr–C6H4 2b, C6H5 3b, pMe–C6H4 4b, were selected to compare the inhibition kinetic parameters, IC50, Ki, kp and KD, on human erythrocyte acetylcholinesterase (hAChE) and bovine serum butyrylcholinesterase (BuChE), Also, the in vivo inhibition potency of compound 2a, 2b and 3a, were studied. The data demonstrates that compound 2a and compound 2b are the potent sensitive as AChE and BuChE inhibitors respectively, and the inhibition of hAChE is about 10-fold greater than that of BuChE.  相似文献   

19.
The activity of the heat stable, glycosylated high molecular weight bovine brain neutral protease (HMW protease) is differentially regulated by phospholipids. While phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidic acid (PA) had only marginal stimulatory effect (40–75%) on the activity of HMW protease, lysophoshatidylcholine (lysoPC) and lysophosphatidic acid (lysoPA) activated the enzyme by more than two-fold. Both lysoPC and lysoPA exhibited concentration-dependent saturation kinetics for the activation of HMW protease. Surprisingly, phosphoinositides (phosphatidylinositol, PI; phosphatidylinositol 4-phosphate, PIP; and phosphatidylinositol 4,5-bisphosphate, PIP2) modulated the activity of protease differently: activation of the enzyme was higher with PIP (90%) as compared to PI (21%), whereas PIP2 inhibited the enzyme (16%). The inhibition of the protease by PIP2 was concentration-dependent. During receptor-coupled cell activation, phospholipase A2 (PLA2) converts PC and PA to lysoPC and lysoPA, respectively; PI is converted to PIP2 by successive enzymatic phosphorylation by PI 4-kinase and PIP 5-kinase; and phospholipase C (PLC) degrades PIP2 to diacylglycerol and inositol 1,4,5-trisphosphate. Therefore, the data suggest that HMW protease may be coupled to cell signal transduction where PLA2, PI 4-kinase, PIP 5-kinase and PLC are involved.  相似文献   

20.
The thymidine mimics isocarbostyril nucleosides and difluorophenyl nucleosides were tested as deoxynucleoside kinase substrates using recombinant human cytosolic thymidine kinase (TK1) and deoxycytidine kinase (dCK), and mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK). The isocarbostyril nucleoside compound 1‐(2‐deoxy‐β‐D‐ribofuranosyl)‐isocarbostyril (EN1) was a poor substrate with all the enzymes. The phosphorylation rates of EN1 with TK1 and TK2 were < 1% relative to Thd, where as the phosphorylation rates for EN1 were 1.4% and 1.1% with dCK and dGK relative to dCyd and dGuo, respectively. The analogue 1‐(2‐deoxy‐β‐D‐ribofuranosyl)‐7‐iodoisocarbostyril (EN2) showed poor relative‐phosphorylation efficiencies (k cat /K m ) with both TK1 and dGK, but not with TK2. The k cat /K m value for EN2 with TK2 was 12.6% relative to that for Thd. Of the difluorophenyl nucleosides, 5‐(1′‐(2′‐deoxy‐β‐D‐ribofuranosyl))‐2,4‐difluorotoluene (JW1) and 1‐(1′‐(2′‐deoxy‐β‐D‐ribofuranosyl))‐2,4‐difluoro‐5‐iodobenzene (JW2) were substrates for TK1 with phosphorylation efficiencies of about 5% relative to that for Thd. Both analogues were considerably more efficient substrates for TK2, with k cat /K m values of 45% relative to that for Thd. 2,5‐Difluoro‐4‐[1‐(2‐deoxy‐β‐L‐ribofuranosyl)]‐aniline (JW5), a L‐nucleoside mimic, was phosphorylated up to 15% as efficiently as deoxycytidine by dCK. These data provide a possible explanation for the previously reported lack of cytotoxicity of the isocarbostyril‐ and difluorophenyl nucleosides, but potential mitochondrial effects of EN2, JW1 and JW2 should be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号