首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of 24 Trichoderma isolates, T harzianum Rifai (T24) showed a potential for control of the phytopathogenic basidiomycete Sclerotium rolfsii. When T24 was grown on different carbon sources, growth inhibition of S. rolfsii by the T24 culture filtrate correlated with the activity of extracellular chitinase and beta-1,3-glucanase. The 43-kilodalton (kDa) chitinase and the 74-kDa beta-1,3-glucanase were purified from the T24 culture filtrate in two and three steps, respectively, using ammonium sulphate precipitation followed by hydrophobic interaction chromatography (phenyl-Sepharose) and gel filtration (beta-1,3-glucanase). Km and Kcat were 3.8 g l(-1) and 0.71 s(-1) for the chitinase (chitin) and 1.1 g(-1) and 52 s(-1) for the beta-1,3-glucanase (laminarin). The chitinase showed higher activity on chitin than on less-acetylated substrate analogues (chitosan), while the beta-1,3-glucanase was specific for beta-1,3-linkages in polysaccharides. Both enzymes were stable at 30 degrees C, while at 60 degrees C the chitinase and the beta-1,3-glucanase were rapidly inactivated, showing half-lives of 15 and 20 min, respectively. The enzymes inhibited growth of S. rolfsii in an additive manner showing a promising ED50 (50% effective dose) value of 2.7 microg/ml.  相似文献   

2.
The enzymes from Trichoderma species that degrade fungal cell walls have been suggested to play an important role in mycoparasitic action against fungal plant pathogens. The mycoparasite Trichoderma harzianum produces at least two extracellular beta-1,6-glucanases, among other hydrolases, when it is grown on chitin as the sole carbon source. One of these extracellular enzymes was purified to homogeneity after adsorption to its substrate, pustulan, chromatofocusing, and, finally, gel filtration. The apparent molecular mass was 43,000, and the isoelectric point was 5.8. The first 15 amino acids from the N terminus of the purified protein have been sequenced. The enzyme was specific for beta-1,6 linkages and showed an endolytic mode of action on pustulan. Further characterization indicated that the enzyme by itself releases soluble sugars and produces hydrolytic halli on yeast cell walls. When combined with other T. harzianum cell wall-degrading enzymes such as beta-1,3-glucanases and chitinases, it hydrolyzes filamentous fungal cell walls. The enzyme acts cooperatively with the latter enzymes, inhibiting the growth of the fungi tested. Antibodies against the purified protein also indicated that the two identified beta-1,6-glucanases are not immunologically related and are probably encoded by two different genes.  相似文献   

3.
The biocontrol agent Trichoderma harzianum IMI206040 secretes beta-1,3-glucanases in the presence of different glucose polymers and fungal cell walls. The level of beta-1,3-glucanase activity secreted was found to be proportional to the amount of glucan present in the inducer. The fungus produces at least seven extracellular beta-1,3-glucanases upon induction with laminarin, a soluble beta-1,3-glucan. The molecular weights of five of these enzymes fall in the range from 60,000 to 80,000, and their pIs are 5.0 to 6.8. In addition, a 35-kDa protein with a pI of 5.5 and a 39-kDa protein are also secreted. Glucose appears to inhibit the formation of all of the inducible beta-1,3-glucanases detected. A 77-kDa glucanase was partially purified from the laminarin culture filtrate. This enzyme is glycosylated and belongs to the exo-beta-1,3-glucanase group. The properties of this complex group of enzymes suggest that the enzymes might play different roles in host cell wall lysis during mycoparasitism.  相似文献   

4.
Fungal cell wall degrading enzymes produced by the biocontrol fungiTrichoderma harzianum andGliocladium virens are strong inhibitors of spore germination and hyphal elongation of a number of phytopathogenic fungi. The purified enzymes include chitinolytic enzymes with different modes of action or different substrate specificity and glucanolytic enzymes with exo-activity. A variety of synergistic interactions were found when different enzymes were combined or associated with biotic or abiotic antifungal agents. The levels of inhibition obtained by using enzyme combinations were, in some cases, comparable with commercial fungicides. Moreover, the antifungal interaction between enzymes and common fungicides allowed the reduction of the chemical doses up to 200-fold. Chitinolytic and glucanolytic enzymes fromT. harzianum were able to improve substantially the antifungal ability of a biocontrol strain ofEnterobacter cloacae. DNA fragments containing genes encoding for different chitinolytic enzymes were isolated from a cDNA library ofT. harzianum and cloned for mechanistic studies and biocontrol purposes. Our results provide additional information on the role of lytic enzymes in processes of biocontrol and strongly suggest the use of lytic enzymes and their genes for biological control of plant diseases.  相似文献   

5.
Protoplasts were isolated from Trichoderma harzianum strain PTh18 using lysing enzymes and self-fusion of T. harzianum protoplasts was carried out using polyethylene glycol in STC buffer. The fused protoplasts of T. harzianum were regenerated and 15 self-fusants were selected to study the chitinase production and biocontrol activity. High chitinase activity was measured in the culture filtrates of most of the self-fusants (87%) than the parent. Among the fusants, the strain SFTh8 produced maximum chitinase with a two-fold increase as compared to the parent strain. All the self-fusants exhibited increased antagonistic activity against Rhizoctonia solani than the parent. The crude chitinase preparation of SFTh8 lysed the mycelia of T. harzianum, Trichoderma viride and Trichoderma reesei and released the protoplasts in higher number than the crude chitinase preparation of parent strain PTh18.  相似文献   

6.
For monitoring chitinase expression during mycoparasitism of Trichoderma harzianum in situ, we constructed strains containing fusions of green fluorescent protein (GFP) to the 5'-regulatory sequences of the T. harzianum nag1 (N-acetyl-beta-d-glucosaminidase-encoding) and ech42 (42-kDa endochitinase-encoding) genes. Confronting these strains with Rhizoctonia solani led to induction of gene expression before (ech42) or after (nag1) physical contact. A 12-kDa cut-off membrane separating the two fungi abolished ech42 expression, indicating that macromolecules are involved in its precontact activation. No ech42 expression was triggered by culture filtrates of R. solani or by placing T. harzianum onto plates previously colonized by R. solani. Instead, high expression occurred upon incubation of T. harzianum with the supernatant of R. solani cell walls digested with culture filtrates or purified endochitinase 42 (CHIT42, encoded by ech42) from T. harzianum. The chitinase inhibitor allosamidin blocked ech42 expression and reduced inhibition of R. solani growth during confrontation. The results indicate that ech42 is expressed before contact of T. harzianum with R. solani and its induction is triggered by soluble chitooligosaccharides produced by constitutive activity of CHIT42 and/or other chitinolytic enzymes.  相似文献   

7.
We have investigated the molecular basis for the reported synergism between peptaibols and cell wall hydrolytic enzymes in the antagonism of phytopathogenic fungi by Trichoderma harzianum. beta-Glucan synthase activity on isolated plasma membranes of Botrytis cinerea was inhibited in vitro by the peptaibols trichorzianin TA and TB, and this inhibition was reversed by the addition of phosphatidylcholine. beta-Glucan synthesis in vivo, assayed by the incorporation of [2-(3)H]glucose into cell wall material, was inhibited by the presence of peptaibols, and this inhibition was synergistic with exogenously added T. harzianum beta-1,3-glucanase. This synergism is therefore explained by an inhibition of the membrane-bound beta-1,3-glucan synthase of the host by the peptaibols, which inhibit the resynthesis of cell wall beta-glucans, sustain the disruptive action of beta-glucanases, and all together enhance the fungicidal activity. Therefore, we have identified cell wall turnover as a major target of mycoparasitic antagonism.  相似文献   

8.
Regulation of chitinase synthesis in Trichoderma harzianum.   总被引:8,自引:0,他引:8  
The production of chitinase by Trichoderma species is of interest in relation to their use in biocontrol and as a source of mycolytic enzymes. Fourteen isolates of the genus were screened to identify the most effective producer of chitinase. The best strain for chitinase was Trichoderma harzianum 39.1, and this was selected for study of the regulation of enzyme synthesis. Washed mycelium of T. harzianum 39.1 was incubated with a range of carbon sources. Chitinase synthesis was induced on chitin-containing medium, but repressed by glucose and N-acetylglucosamine. Production of the enzyme was optimal at a chitin concentration of 0.5%, at 28 degrees C, pH 6.0 and was independent of the age of the mycelium. The synthesis of chitinase was blocked by both 8-hydroxyquinoline and cycloheximide, inhibitors of RNA and protein synthesis, respectively. The mode of chitinase synthesis in this fungus is discussed.  相似文献   

9.
Chronological events associated with the degradation of Botrytis cinerea by a strain of Trichoderma harzianum selected for superior biocontrol ability were studied using ultrastructure and cytochemical investigations in an attempt to define the relative roles of antibiosis and parasitism in the antagonistic process. The first ultrastructural changes were observed 12 h before contact between the organisms, and were characterized by punctuated invaginations of the Botrytis plasmalemma. These reactions were followed by a gradual retraction of the plasmalemma, disorganization of the cytoplasm, loss of turgor pressure and cell death within 48 h of contact between hyphae of the interacting fungi. The first evidence of penetration of B. cinerea by T. harzianum was recorded 72 h after contact. This penetration was apparently mediated by either mechanical pressure or localized wall digestion at points of entry, as there was no clear evidence of chitinolytic degradation of the B. cinerea cell wall, as determined by cytochemical labelling of chitin with a lectin-gold conjugate. However, after 10 days there was clear indication of chitin degradation, based on the random and reduced presence of gold particles over the cell wall of B. cinerea. These results suggest that the strain of T. harzianum antagonized first and foremost by antibiosis, leading to cell death, followed by degradation of the cell by means of chitinolytic enzymes. The production of antibiotics may, therefore, be more important than that of chitinolytic enzymes in conferring superior biocontrol properties to T. harzianum.  相似文献   

10.
The mycoparasitic fungus Trichoderma harzianum CECT 2413 produces at least three extracellular beta-1,3-glucanases. The most basic of these extracellular enzymes, named BGN13.1, was expressed when either fungal cell wall polymers or autoclaved mycelia from different fungi were used as the carbon source. BGN13.1 was purified to electrophoretic homogeneity and was biochemically characterized. The enzyme was specific for beta-1,3 linkages and has an endolytic mode of action. A synthetic oligonucleotide primer based on the sequence of an internal peptide was designed to clone the cDNA corresponding to BGN13.1. The deduced amino acid sequence predicted a molecular mass of 78 kDa for the mature protein. Analysis of the amino acid sequence indicates that the enzyme contains three regions, one N-terminal leader sequence; another, nondefined sequence; and one cysteine-rich C-terminal sequence. Sequence comparison shows that this beta-1,3-glucanase, first described for filamentous fungi, belongs to a family different from that of its previously described bacterial, yeast, and plant counterparts. Enzymatic-activity, protein, and mRNA data indicated that bgn13.1 is repressed by glucose and induced by either fungal cell wall polymers or autoclaved yeast cells and mycelia. Finally, experimental evidence showed that the enzyme hydrolyzes yeast and fungal cell walls.  相似文献   

11.
A total of 36 UV-induced mutants with altered colony morphology were isolated from strain Trichoderma harzianum T334, a potential biocontrol agent against plant pathogenic fungi with the ability to produce constitutively low levels of chitinases. The level of constitutive beta-1,4-N-acetyl-glucosaminidase production in standing and shaken cultures under non-inductive conditions was tested in mutants and compared to that of the parental strain. About 30% of the mutants showed significantly increased levels of enzyme production, with strain T334 col26a being the best producer. This mutant and the parental strain were subjected to in vitro confrontation assays with plant pathogenic Fusarium culmorum, Pythium debaryanum and Rhizoctonia solani strains. The mutant derivative could be characterized by significantly higher biocontrol index values than the parental strain in each experiment, suggesting, that mutants with improved constitutive extracellular chitinase secretion could be applied for biocontrol purposes against fungal plant pathogens.  相似文献   

12.
Trichoderma harzianum is a well-known biological control agent against fungal plant diseases. In order to select improved biocontrol strains from Trichoderma harzianum CECT 2413, a mutant has been isolated for its ability to produce wider haloes than the wild type, when hydrolysing pustulan, a polymer of beta-1,6-glucan. The mutant possesses between two and four times more chitinase, beta-1,3- and beta-1,6-glucanase activities than the wild type, produces about three times more extracellular proteins and secretes higher amounts of a yellow pigment (alpha-pyrone). This mutant performed better than the wild type during in vitro experiments, overgrowing and sporulating on Rhizoctonia solani earlier, killing this pathogen faster and exerting better protection on grapes against Botrytis cinerea.  相似文献   

13.
AIMS: To clone and characterize the gene coding for BGN16.3, a beta-1,6-glucanase putatively implicated in mycoparasitism by Trichoderma harzianum, a biocontrol agent used against plant pathogenic fungi. METHODS AND RESULTS: Using degenerate primed PCR and cDNA library screening, we have cloned the cDNA coding BGN16.3. bgn16.3 showed a significant sequence identity (50%) to bgn16.1; however, they both have low identity to the previously cloned bgn16.2, allowing the identification of amino acid sequences putatively involved in the common catalytic activity of the three proteins. bgn16.3 is a single-copy gene and highly homologous sequences are present in all tested Trichoderma species. bgn16.3 expression pattern is analysed by Northern blot, finding that it is expressed during the interaction of T. harzianum CECT 2413 with Botrytis cinerea, supporting the implication of the enzyme in the mycoparasitic process. CONCLUSIONS: The cloned bgn16.3 completes the knowledge on the beta-1,6-glucanase isozyme system from T. harzianum CECT 2413. A highly homologous gene is present in all analysed Trichoderma strains. bgn16.3 is expressed under few specific conditions, including the mycoparasitic process. SIGNIFICANCE AND IMPACT OF THE STUDY: This study contributes to the knowledge of beta-1,6-glucanases. It implicates this group of enzymes in the mycoparasitism by some biocontrol agents such as T. harzianum.  相似文献   

14.
Lytic enzymes of mycoparasitic fungi of the genus Trichoderma, capable of suppressing several fungal phytopathogens that originate in air or soil, are reviewed. The topics analyzed include (1) regulation of production of chitinases, beta-1,3-glucanases, and proteases; (2) molecular and catalytic properties of purified enzymes; and (3) their in vitro ability to degrade cell walls and inhibit sporulation or germ-tube elongation in various phytopathogenic fungi. Among the results summarized are reports of cloning the expression of genes coding for certain lytic enzymes of Trichoderma spp. These genes are used for obtaining plant transgenes with increased resistance to fungal diseases and Trichoderma transformants that produce higher levels of one lytic enzyme (a chitinase or protease) and thereby exhibit a more pronounced ability to suppress phytopathogenic fungi.  相似文献   

15.
Four isolates of Trichoderma harzianum (ThN3, Th11, Th12 and Th16) were selected for their ability to control the in vitro development of the tomato root pathogen Pyrenochaeta lycopersici. Analysis of the mechanisms involved in biocontrol showed that the formation of non-volatile metabolites appears to be one of those involved in biocontrol of P. lycopersici by all T. harzianum isolates tested. Nevertheless, the higher secretion of chitinases, both in number of isoenzymes and activity by the Th11 strain, correlated well with its higher ability to control this agent in laboratory and greenhouse experiments as compared to the other T. harzianum isolates tested. The secretion of beta-1,3-endoglucanases and/or proteases appeared to have less significance than endochitinases in the biological control of P. lycopersici.  相似文献   

16.
The effect of carbon sources on the level of beta-1,3-glucanases in the culture filtrates of Trichoderma harzianum (Tc) was investigated. Enzyme activity was detected in all carbon sources, but highest levels were found when laminarin and purified cell walls were used. Three isoforms of beta-1,3-glucanase were produced during growth of the fungus on purified cell walls. Two isoforms were produced on chitin, chitosan, N-acetylglucosamine and laminarin, while only one was detected when the fungus was grown on cellulose and glucose. A 36-kDa beta-1,3-glucanase (GLU36) was secreted from T. harzianum (Tc) grown on all carbon sources tested as demonstrated by Western blot analysis. We found that a significant increase in the level of GLU36 in the culture filtrate follows glucose exhaustion, suggesting that this enzyme is controlled by carbon catabolite repression.  相似文献   

17.
木霉菌防治植物真菌病害研究进展   总被引:9,自引:0,他引:9  
木霉菌是一种重要的植物病害生防因子,尤其在防治植物病原真菌病害中一直受到极大的关注。木霉菌依靠其菌株在包括趋向生长、识别、接触、缠绕与穿透等步骤的真菌寄生过程中分泌产生的几丁质酶、葡聚糖酶、纤维素酶、蛋白酶等一系列细胞壁降解酶,进行重寄生作用,拮抗其他植物病原菌,行使其生防功能。我们简要概述了木霉菌的种类、拮抗对象、抑菌机制、诱导抗性、促生作用、基于分子生物学的转基因工程研究,以及木霉菌在植物病原真菌生物防治中的应用。  相似文献   

18.
A beta-1,3-glucanase, from culture filtrates of Trichoderma harzianum, was purified in sequential steps by gel filtration, hydrophobic interaction and ion exchange chromatography. A typical procedure provided 69-fold purification with 0.32% yield. The molecular mass of the protein was found to be approximately 29 kDa, as estimated by SDS-PAGE on a 10% slab gel. The K(M) and V(max) values for beta-1,3-glucanase, using laminarin as substrate, were 1. 72 mg ml(-1) and 3.10 U ml(-1), respectively. The pH optimum for the enzyme was pH 4.4 and maximum activity was obtained at 50 degrees C. The enzyme was strongly inhibited by HgCl(2) and SDS. These results suggest that each beta-1,3-glucanase produced by T. harzianum is different and is probably encoded by different genes.  相似文献   

19.
Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed.  相似文献   

20.
Previously, we isolated a strain of Bacillus that had antifungal activity and produced lytic enzymes with fungicidal potential. In the present study, we identified the bacterium as Paenibacillus ehimensis and further explored its antifungal properties. In liquid co-cultivation assays, P. ehimensis IB-X-b decreased biomass production of several pathogenic fungi by 45%-75%. The inhibition was accompanied by degradation of fungal cell walls and alterations in hyphal morphology. Residual medium from cultures of P. ehimensis IB-X-b inhibited fungal growth, indicating the inhibitors were secreted into the medium. Of the 2 major lytic enzymes, chitinases were only induced by chitin-containing substrates, whereas beta-1,3-glucanase showed steady levels in all carbon sources. Both purified chitinase and beta-1,3-glucanase degraded cell walls of macerated fungal mycelia, whereas only the latter also degraded cell walls of intact mycelia. The results indicate synergism between the antifungal action mechanisms of these enzymes in which beta-1,3-glucanase is the initiator of the cell wall hydrolysis, whereas the degradation process is reinforced by chitinases. Paenibacillus ehimensis IB-X-b has pronounced antifungal activity with a wide range of fungi and has potential as a biological control agent against plant pathogenic fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号