首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several Trichoderma strains have been reported to be effective in controlling plant diseases, and the action of fungal hydrolytic enzymes is considered as the main mechanism involved in the antagonistic process. Strain Trichoderma harzianum T334 is a potential biocontrol agent against plant pathogenic fungi with the ability to produce low levels of proteases constitutively. To improve its fungal antagonistic capacity, mutagenetic program was undertaken for the construction of protease overproducing derivates. The mutant strains were obtained by means of UV-irradiation and were selected for p-fluorophenyl-alanine resistance or altered colony morphology. It was revealed by means of specific chromogenic protease substrates that both trypsin-like and chymotrypsin-like protease secretion was elevated in most of the mutant strains. The profiles of isoenzymes were different between the mutants and the wild-type strain, when examined by gel filtration chromatography. Certain mutants proved to be better antagonists against plant pathogens in in vitro antagonism experiments. This study suggests the possibility of using mutants with improved constitutive extracellular protease secretion against plant pathogenic fungi.  相似文献   

2.
Pseudomonas fluorescens CHA0 protects various crop plants against root diseases caused by pathogenic fungi. Among a range of exoproducts excreted by strain CHA0, the antifungal compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) are particularly relevant to the strain's biocontrol potential. Here, we report on the characterization of MvaT and MvaV as novel regulators of biocontrol activity in strain CHA0. We establish the two proteins as further members of an emerging family of MvaT-like regulators in pseudomonads that are structurally and functionally related to the DNA-binding protein H-NS. In mvaT and mvaV in frame-deletion mutants of strain CHA0, PLT production was enhanced about four- and 1.5-fold, respectively, whereas DAPG production remained at wild-type levels. Remarkably, PLT production was increased up to 20-fold in an mvaT mvaV double mutant. DAPG biosynthesis was almost completely repressed in this mutant. The effects on antibiotic production could be confirmed by following expression of gfp-based reporter fusions to the corresponding biosynthetic genes. MvaT and MvaV also influenced levels of other exoproducts, motility, and physicochemical cell-surface properties to various extents. Compared with the wild type, mvaT and mvaV mutants had an about 20% reduced capacity (in terms of plant fresh weight) to protect cucumber from a root rot caused by Pythium ultimum. Biocontrol activity was nearly completely abolished in the double mutant Our findings indicate that MvaT and MvaV act together as further global regulatory elements in the complex network controlling expression of biocontrol traits in plant-beneficial pseudomonads.  相似文献   

3.
4.
Transgenic Pseudomonas fluorescens 5-2/4 with reinforced 2,4-diacetyl phloroglucinol (phl) production had shown increased biocontrol ability towards Pythium ultimum (Pu), but inferior root colonization ability compared to its wild type 5.014. Therefore, enhanced root colonization ability of the transgenic strain by repeated inoculation and reisolation on tomato plants was suggested. As a preparation for repeated inoculation and reisolation cycles, the construction of a negative control of the transgenic strain 5-2/4 by marking with lacZY and screening for a mutant possessing qualities comparable to 5-2/4 was performed. Morphologically, colonies of all of the 11 selected mutants were similar on MLXgal medium. The root colonization ability of two of the lacZY-marked strains (mutants 1 and 10) was comparable to the parental strain. These were also able to compete with the resident microflora of tomato seedlings to the same extent as the parental strain. Five mutants were excluded due to lower growth rates on Yeast Malt, King's B Medium (KB) and 0.1 Tryptic Soy Agar (mutant 4, 5 and 8), excessive growth and higher siderophore production on KB (mutant 10) and increased protease production (mutant 2). With respect to in vitro-antagonism of Pu, no differences could be found between the target strain and mutants 1, 3, 6, 7 and 9. Examination of sole carbon source utilization of these five lacZY-marked strains revealed a significantly higher utilization of alpha-D-lactose and lactulose compared to 5-2/4. However, significant differences could be found for 51% of the utilized carbon sources. Cluster analysis showed a high degree of similarity between 5-2/4 and mutant 1 both when analyzed with and without alpha-D-lactose. As mutant 1 also represented the colonization pattern most similar to the parental strain 5-2/4, it presents a presumptive subject for a negative control in the following inoculation and reisolation studies on tomato.  相似文献   

5.
Bacillus subtilis XF-1 has been used as a biocontrol agent of clubroot disease of crucifers infected by Plasmodiophora brassicae, an obligate pathogen. In order to maximize the growth inhibition of the pathogen, random mutagenesis using N-methyl-N′-nitro-N-nitrosoguanidine was applied to strain XF-1. The efficacy of 226 selected mutants was assessed against the growth of an indicator fungal pathogen: Fusarium solani using agar plate assay and the disruptive effects on the resting spores of P. brassicae. Four mutants exhibited inhibition activity significantly higher than the wild type. The cell extracts of these mutants and the XF-1 were subjected to matrix-assisted laser desorption ionization-time of flight mass spectra analysis, and three families of cyclic lipopeptides (CLPs) fengycin, surfactin and iturin were identified from the parental strain and the screened mutants. However, the relative contents and compound diversity changed after mutagenesis, and there was slight variation in the surfactin and fengycin. Notably, only 5 iturin components were discovered from the wild strain XF-1, but 13 were obtained from the mutant strains, and the relative CLPs contents of all mutant strains increased substantially. The results suggested that CLPs might be one of main biocontrol mechanisms of the clubroot disease by XF-1. The 4 mutants are far more effective than the parental strain, and they would be promising biocontrol candidates not only against P. brassicae but probably other plant diseases caused by fungi.  相似文献   

6.
7.
《Biological Control》2001,20(2):102-112
Spontaneous mutants of two scab-suppressive streptomycetes that were defective in in vitro pathogen inhibition activity were isolated. Morphological characterization of these mutants by rep-PCR genomic DNA fingerprinting or by fatty acid analysis indicated that the mutants of each parent were closely related to one another and to their respective parent, though the mutants could be differentiated from the parent strains and from one another. Despite the reduced in vitro pathogen inhibition activity, most of the mutants demonstrated significant scab biocontrol activity against pathogenic Streptomyces scabies strains. These results suggest that pathogen inhibition activity detected in vitro may not be an accurate predictor of scab biocontrol. Colonization of the suppressive strain or its mutants was generally reduced in the presence versus in the absence of the pathogen. In addition, colonization assays showed no significant differences in pathogen population density among the suppressive strain and mutant strain treatments.  相似文献   

8.
The intracellular fate of iron acquired by bacteria during siderophore-mediated assimilation is poorly understood. We investigated this question in the pathogenic enterobacterium Erwinia chrysanthemi. This bacterium produces two siderophores, chrysobactin and achromobactin, during plant infection. We analyzed the distribution of iron into cytosolic proteins in bacterial cells supplied with 59Fe-chrysobactin using native gel electrophoresis. A parental strain and mutants deficient in bacterioferritin (bfr), miniferritin (dps), ferritin (ftnA), bacterioferredoxin (bfd), or iron-sulfur cluster assembly machinery (sufABCDSE) were studied. In the parental strain, we observed two rapidly 59Fe-labeled protein signals identified as bacterioferritin and an iron pool associated to the protein chain-elongation process. In the presence of increased 59Fe-chrysobactin concentrations, we detected mini-ferritin-bound iron. Iron incorporation into bacterioferritin was severely reduced in nonpolar sufA, sufB, sufD, sufS, and sufE mutants but not in a sufC background. Iron recycling from bacterioferritin did not occur in bfd and sufC mutants. Iron depletion caused a loss of aconitase activity, whereas ferric chrysobactin supplementation stimulated the production of active aconitase in parental cells and in bfr and bfd mutants. Aconitase activity in sufA, sufB, sufD, sufS, and sufE mutant strains was 10 times lower than that in parental cells. In the sufC mutant, it was twice as low as that in the parental strain. Defects observed in the mutants were not caused by altered ferric chrysobactin transport. Our data demonstrate a functional link between bacterioferritin, bacterioferredoxin, and the Suf protein machinery resulting in optimal bacterial growth and a balanced distribution of iron between essential metalloproteins.  相似文献   

9.
Diffusible signal factor (DSF) is a fatty acid signal molecule involved in regulation of virulence in several Xanthomonas species as well as Xylella fastidiosa. In this study, we identified a variety of bacteria that could disrupt DSF-mediated induction of virulence factors in Xanthomonas campestris pv. campestris. While many bacteria had the ability to degrade DSF, several bacterial strains belonging to genera Bacillus, Paenibacillus, Microbacterium, Staphylococcus, and Pseudomonas were identified that were capable of particularly rapid degradation of DSF. The molecular determinants for rapid degradation of DSF in Pseudomonas spp. strain G were elucidated. Random transposon mutants of strain G lacking the ability to degrade DSF were isolated. Cloning and characterization of disrupted genes in these strains revealed that carAB, required for the synthesis of carbamoylphosphate, a precursor for pyrimidine and arginine biosynthesis is required for rapid degradation of DSF in strain G. Complementation of carAB mutants restored both pyrimidine prototrophy and DSF degradation ability of the strain G mutant. An Escherichia coli strain harboring carAB of Pseudomonas spp. strain G degrades DSF more rapidly than the parental strain, and overexpression of carAB in trans increased the ability of Pseudomonas spp. strain G to degrade as compared with the parental strain. Coinoculation of X. campestris pv. campestris with DSF-degrading bacteria into mustard and cabbage leaves reduced disease severity up to twofold compared with plants inoculated only with the pathogen. Likewise, disease incidence and severity in grape stems coinoculated with Xylella fastidiosa and DSF-degrading strains were significantly reduced compared with plants inoculated with the pathogen alone. Coinoculation of grape plants with a carAB mutant of Pseudomonas spp. strain G complemented with carAB in trans reduced disease severity as well or better than the parental strain. These results indicate that overexpression of carAB in other endophytes could be a useful strategy of biocontrol for the control of diseases caused by plant pathogens that produce DSF.  相似文献   

10.
Aims: To analyse the effects of plipastatin operon disruption and constitutive expression of surfactin operon in Bacillus subtilis 168 on surfactin productivity, in vitro invasive growth and antagonism against fungi. Methods and Results: The srfA native promoter was replaced by the constitutive promoter PrepU in B. subtilis 168 after integration of a functional sfp gene. Moreover, the plipastatin synthesis was further disrupted in the B. subtilis 168 derivatives. In liquid media, an earlier and higher expression of PrepU, than that found with PsrfA, led to a specific surfactin production fivefold higher after 6 h of culture. On solid media, not only the invasive growth and the haemolytic activity but also the antifungal activity of the constitutive strains were improved when compared to the parental strain BBG111. As expected, the disruption of the plipastatin operon strongly reduced in vitro antifungal properties but, interestingly, enhanced specific surfactin production (1·47 g g?1 of biomass), spreading behaviour and haemolytic activity of the strains. Conclusions: This work demonstrates for the first time the interdependency of surfactin and plipastatin regarding their biosynthesis as well as their influence on the biological activities of the producing strain. Significance and Impact of the Study: The constitutive overproduction of surfactin enhances the invasive growth and the in vitro antagonistic activity of the mutant strain. Both properties are known to play an important role in the biocontrol of plant diseases. Plipastatin operon disruption increases the surfactin productivity of mutant strains. These mutants are interesting for use in continuous bioprocesses for surfactin production or in bioremediation.  相似文献   

11.
The plant growth-promoting rhizobacterium Pseudomonas aeruginosa 7NSK2 produces three siderophores when iron is limited: the yellow-green fluorescent pyoverdin, the salicylate derivative pyochelin, and salicylic acid. This Pseudomonas strain was shown to be an efficient antagonist of Pythium-induced damping-off. The role of pyoverdin and pyochelin in the suppression of Pythium splendens was investigated by using various siderophore-deficient mutants derived from P. aeruginosa 7NSK2 in a bioassay with tomato (Lycopersicon esculentum). To provide more insight into the role of pyochelin in antagonism, mutant KMPCH, deficient in the production of pyoverdin and pyochelin, was complemented for pyochelin production. The complementing clone was further characterized by subcloning and transposon mutagenesis and used to generate a pyochelin-negative, pyoverdin-positive mutant by marker exchange. All mutants were able to reduce Pythium-induced preemergence damping-off to some extent. Production of either pyoverdin or pyochelin proved to be necessary to achieve wild-type levels of protection against Pythium-induced postemergence damping-off. Mutant KMPCH inhibited P. splendens but was less active than the parental strain. This residual protection could be due to the production of salicylic acid. Since pyoverdin and pyochelin are both siderophores, siderophore-mediated iron competition could explain the observed antagonism and the apparent interchangeability of the two compounds. We cannot, however, exclude the possibility that both siderophores act in an indirect way.  相似文献   

12.
13.
Xanthomonas campestris pv. glycines is the causal agent of bacterial pustule disease of soybeans. The objective of this work was to construct a nonpathogenic mutant derived from the pathogenic wild-type strain YR32 and to evaluate its effectiveness in preventing growth of its parent on the soybean phyllosphere. A mini-Tn5-derived transposon was used to generate nonpathogenic mutants. Southern hybridization and pulsed-field gel electrophoresis confirmed the presence of a single transposon in each of the nonpathogenic mutants. One of the nonpathogenic mutants, M715, failed to induce a hypersensitive response in tomato leaves. An ice nucleation gene (inaZ) carried in pJL1703 was introduced into strain YR32 as a reporter gene to demonstrate that the presence of M715 could reduce colonization of the soybean phyllosphere by YR32. de Wit serial replacement analysis showed that M715 competed equally with its wild-type parental strain, YR32. Epiphytic fitness analysis of YR32 in the greenhouse indicated that the population dynamics of strains YR32, YR32(pJL1703), and M715 were similar, although the density of the mutant was slightly less than that of its parent. The M715 mutant was able to survive for 16 days after inoculation on soybean leaves and maintained population densities of approximately 10(4) to 10(5) cells g (fresh weight) of leaf(-1). Therefore, M715 shows promise as an effective biocontrol agent for bacterial pustule disease in soybeans.  相似文献   

14.
The crown gall biocontrol agent strain K84 and three mutants derived from it, K1026 (Tra deletion mutant of pAgK84), K84 Agr (lacking pAgK84), and K1143 (lacking pAgK84 and pNoc), significantly reduced gall formation caused by two pathogenic strains resistant to agrocin 84 in peach × almond seedlings planted in infested soil. Cocolonization of roots by pathogenic and nonpathogenic strains was observed in these biocontrol experiments under field conditions. In spite of the efficient biocontrol observed, average populations consisting of 102 and 106 pathogenic agrobacteria per g of root were found 8 months after planting. The total numbers of pathogenic bacteria on roots were similar for plants treated with the biocontrol strains and for the untreated plants. Strain K84 and the genetically engineered organism K1026 survived at a level of 106 agrocin 84-producing bacteria per g of root. The population size of genetically engineered strain K1026 was not significantly different than the population size of wild-type strain K84 8 months after root inoculation. Strains K84 and K1026 controlled two pathogens resistant to agrocin 84 without reducing the total number of pathogenic bacteria in the root system. In addition, this study shows that some biological control activity of strain K84 against agrocin 84-resistant pathogens is independent of plasmids pAgK84 and pNoc.  相似文献   

15.
【目的】自小麦全蚀病自然衰退土壤分离得到的荧光假单胞菌(Pseudomonas fluorescens)2P24,可防治多种由植物病原菌引起的土传病害。菌株2P24具有群体感应(quorum-sensing,QS)系统PcoI/PcoR,该系统影响生防菌2P24生物膜的形成以及其在小麦根围的定殖能力,从而影响2P24的生防能力。本文利用遗传学方法进一步研究了2P24中QS系统的调控途径。【方法】将QS系统信号合成基因pcoI的转录报告质粒p970Gm-pcoIp转入gacA基因突变菌株PM201中,再利用Tn5转座子对该菌株进行随机突变,筛选影响pcoI基因表达的调控因子。【结果】根据菌落颜色的变化筛选到2株突变菌株。Tn5插入位点和基因序列分析表明这2个突变体中Tn5破坏了同一个基因mvaT;设计引物利用PCR方法从2P24基因组中获得mvaT基因及其同源基因mvaV。转录融合报告实验表明:与野生菌株2P24相比,mvaT及mvaV突变体中pcoI基因的表达和N-乙酰高丝氨酸内酯的产量显著提高;HPLC试验表明mvaT和mvaV基因影响抗生素2,4-二乙酰基间苯三酚的合成。细菌双杂交试验证实,MvaT蛋白和MvaV蛋白在体内发生自身互作,这两个蛋白也可相互作用。【结论】以上结果表明mvaT和mvaV参与调控生防假单胞菌2P24的PcoI/PcoR群体感应系统,并可能影响其生防功能基因的表达。  相似文献   

16.
浑球红假单胞菌Rps.sphaeroides 6128经甲基磺酸乙酯诱变处理,分离获得23株色素突变种。不具有细菌叶绿素a和类胡萝卜素的无色突变株不能光养生长,蓝绿突变株305不含带色的类胡萝卜素,但能光养生长,其世代时间比亲本株长5倍左右,而且,没有还原乙炔和放氢的固氮酶活性。绿色突变株309缺失球形烯和球形烯酮。当光照强度从3000lx增加到4000lx时,绿色突变株与亲本株生长速率之差由5.3小时缩短为0.3小时,其光合固氮和光合放氢的活性分别为亲本株的30%和45%。各菌株ATP的含量因所含色素成份不同而异。在指数生长期,蓝绿突变株305的ATP含量只有亲本株的8%,绿色突变株309的ATP含量为亲本株的32%,各色素变种的固氮能力与它们菌体ATP的含量相关。类胡萝卜素在为光合固氮提供能源中起着重要的作用。  相似文献   

17.
Summary Deoxyglucose-resistant mutants of Cellulomonas biazotea secreted elevated levels of cellulases and xylanases. The production of β-glucosidase in the constitutive mutant was increased 5-fold over its parent strain. This mutant showed an approximately 1.6-fold enhanced productivity of extracellular endo-glucanase following growth on Leptochloa fusca over the mutant parent. Extracellular production of xylanase, filter-paper cellulase (FPase) and endo-glucanase (CMCase) were also altered in the mutant. Maximum volumetric productivities for xylanase, β-xylosidase, FPase, β-glucosidase and endo-glucosidase were 451, 98, 80, 95, and 143 IU l−1 h−1 which were significantly more than their respective values from the parental strains. The enzyme preparation of the mutants exhibited improved saccharification of kallar grass straw.  相似文献   

18.
Coniothyrium minitans is a potential biological control agent of the plant pathogenic fungus Sclerotinia sclerotiorum. In this research, T-DNA insertional transformation of strain ZS-1 of C. minitans mediated by Agrobacterium tumefaciens was obtained, with optimization of spore maturity for transformation. After confirmation by PCR, transformants were subjected to Southern blot analysis, and results showed that more than 82.7% of transformants had single T-DNA insertions, and 12.1% of transformants had two copies T-DNA insertions. The genomic DNA segments of transformants flanking the T-DNA could be amplified from both borders with TAIL-PCR. Four types of mutants were screened and identified from the T-DNA insertional library, which comprised sporulation deficient mutants, pathogenicity deficient mutants, pigment change mutants and antibiotic deficient mutant, and some of the mutants were described; the number and frequency of each type of mutant from the library were calculated, and the frequency of each type is 3.27 x 10(-3), 1.0 x 10(-4), 1.4 x 10(-4), 2.5 x 10(-4), respectively. The successful creation of the T-DNA insertional transformation library may help us to unravel the interaction between a parasite and its host at a molecular level, to clarify the differentiation and development of this fungus, and to analyze and clone functional genes from the biocontrol microorganism in tripartite associations.  相似文献   

19.
Of 214 Pseudomonas strains isolated from maize rhizosphere, 46 turned out to be antagonistic, of which 43 displayed clear colony phase variation. The latter strains formed both opaque and translucent colonies, designated as phase I and phase II, respectively. It appeared that important biocontrol traits, such as motility and the production of antifungal metabolites, proteases, lipases, chitinases, and biosurfactants, are correlated with phase I morphology and are absent in bacteria with phase II morphology. From a Tn5luxAB transposon library of Pseudomonas sp. strain PCL1171 phase I cells, two mutants exhibiting stable expression of phase II had insertions in gacS. A third mutant, which showed an increased colony phase variation frequency was mutated in mutS. Inoculation of wheat seeds with PCL1171 bacteria of phase I morphology resulted in efficient suppression of take-all disease, whereas disease suppression was absent with phase II bacteria. Neither the gacS nor the mutS mutant was able to suppress take-all, but biocontrol activity was restored after genetic complementation of these mutants. Furthermore, in a number of cases, complementation by gacS of wild-type phase II sectors to phase I phenotype could be shown. A PCL1171 phase I mutant defective in antagonistic activity appeared to have a mutation in a gene encoding a lipopeptide synthetase homologue and had lost its biocontrol activity, suggesting that biocontrol by strain PCL1171 is dependent on the production of a lipopeptide. Our results show that colony phase variation plays a regulatory role in biocontrol by Pseudomonas bacteria by influencing the expression of major biocontrol traits and that the gacS and mutS genes play a role in the colony phase variation process. Therefore phase variation not only plays a role in escaping animal defense but it also appears to play a much broader and vital role in the ecology of bacteria producing exoenzymes, antibiotics, and other secondary metabolites.  相似文献   

20.
Mycobacterium tuberculosis bacilli display two signature features: acid-fast staining and the capacity to induce long-term latent infections in humans. However, the mechanisms governing these two important processes remain largely unknown. Ser/Thr phosphorylation has recently emerged as an important regulatory mechanism allowing mycobacteria to adapt their cell wall structure/composition in response to their environment. Herein, we evaluated whether phosphorylation of KasB, a crucial mycolic acid biosynthetic enzyme, could modulate acid-fast staining and virulence. Tandem mass spectrometry and site-directed mutagenesis revealed that phosphorylation of KasB occurred at Thr334 and Thr336 both in vitro and in mycobacteria. Isogenic strains of M. tuberculosis with either a deletion of the kasB gene or a kasB_T334D/T336D allele, mimicking constitutive phosphorylation of KasB, were constructed by specialized linkage transduction. Biochemical and structural analyses comparing these mutants to the parental strain revealed that both mutant strains had mycolic acids that were shortened by 4–6 carbon atoms and lacked trans-cyclopropanation. Together, these results suggested that in M. tuberculosis, phosphorylation profoundly decreases the condensing activity of KasB. Structural/modeling analyses reveal that Thr334 and Thr336 are located in the vicinity of the catalytic triad, which indicates that phosphorylation of these amino acids would result in loss of enzyme activity. Importantly, the kasB_T334D/T336D phosphomimetic and deletion alleles, in contrast to the kasB_T334A/T336A phosphoablative allele, completely lost acid-fast staining. Moreover, assessing the virulence of these strains indicated that the KasB phosphomimetic mutant was attenuated in both immunodeficient and immunocompetent mice following aerosol infection. This attenuation was characterized by the absence of lung pathology. Overall, these results highlight for the first time the role of Ser/Thr kinase-dependent KasB phosphorylation in regulating the later stages of mycolic acid elongation, with important consequences in terms of acid-fast staining and pathogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号