首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
观察温度和pH 值对产朊假丝酵母细胞与分离纯化的细胞壁对铜离子吸附的影响,探讨细胞壁在酵母吸附重金属离子过程中的作用pH 升高,细胞和细胞壁对铜离子的吸附能力都提高,吸附最适pH 为6-0 。温度升高可提高细胞和细胞壁的吸附能力,最适温度为50 ℃。细胞壁是铜离子吸附的主要部位,细胞壁嵌合蛋白(33 ×103蛋白) 起重要作用。  相似文献   

2.
观察温度和pH值对产朊假丝酵母细胞与分离纯化的细胞壁对铜离子吸附的影响,探讨细胞壁在酵母吸附重金属离子过程中的作用pH升高,细胞和细胞壁对铜离子的吸附能力都提高,吸附最适pH为6.0。温度升高可提高细胞和细胞壁的吸附能力,最适温度为50℃。细胞壁是铜离子吸附的主要部位,细胞壁嵌合蛋白(33×10^3蛋白)起重要作用。  相似文献   

3.
以固相酯化法制备一种具有羧基的柠檬酸改性麦草阳离子吸附剂.用批次实验法研究了不同实验条件下(pH值、吸附剂量、吸附质浓度和吸附时间)水溶液中铜离子和亚甲蓝在酯化麦草上的吸附行为.结果表明:溶液初始pH≥40时,铜离子和亚甲蓝达到最大吸附值.≥2.0 g·L-1的酯化麦草能去除铜浓度为100 mg·L-1溶液中96%的铜及亚甲蓝浓度为250 mg·L-1溶液中99%的亚甲蓝.酯化麦草对铜离子和亚甲蓝的吸附符合Langmuir等温模型,其最大吸附能力分别为79.37 mg·g-1和312.50 mg·g-1.铜离子和亚甲蓝达到吸附平衡的时间分别为75 min和5 h,准一级和准二级反应动力学方程可分别描述酯化麦草对铜离子和亚甲蓝的吸附过程.  相似文献   

4.
生物吸附剂对污染物吸附的细胞学机理   总被引:3,自引:0,他引:3  
蔡佳亮  黄艺  礼晓 《生态学杂志》2008,27(6):1005-1011
重金属和持久性有机污染物在自然界中非常稳定,具有难去除性,对人类生命和健康会造成直接或间接的危害.目前,生物吸附剂已成为处理重金属和持久性有机污染物研究的热点和重点.本文根据近年来的研究成果对生物吸附剂进行了系统分类,阐述了生物吸附剂对重金属和持久性有机污染物吸附的细胞外、细胞表面和细胞内吸附机理,以及相关的影响因素.同时,还探讨了其研究现状中所存在的问题和未来的研究方向.  相似文献   

5.
采用悬空培养及离体培养的方式,观察玉米的根边缘细胞在铜离子胁迫下发生的形态、数量及存活率变化情况,结果表明,在玉米根长为32mm的时候,边缘细胞的数量达到最大,为4125个,但其存活率此时最低。玉米的根边缘细胞随着铜离子浓度增加,边缘细胞的数量发生变化。当处理浓度为50umol·L-1时,边缘细胞的死细胞数量达到758个(存活率为24.80%),随后铜离子处理浓度增加到100umol·L-1时,存活率降低了17.54%。玉米根边缘细胞的数量随着铜离子浓度的增加呈现出逐渐减少的趋势,而存活率逐渐降低,说明在重金属铜离子胁迫下,根边缘细胞的释放起到对根际区域的保护作用。  相似文献   

6.
目的:研究青霉(Penicillium lh-1)作为吸附剂去除水体中六价铬的吸附条件与吸附特性.方法:菌种摇瓶培养收获茵体,干燥粉碎分选,添加吸附剂到体积100ml浓度50mg/L六价铬溶液中,对最优吸附温度、pH、共存离子以及铬被吸附形式进行研究.结果:①温度28℃以及酸性环境(pH 3)为最优吸附条件,10 h内,Cr(Ⅵ)的生物吸附去除效率达99%.②铬的生物吸附主要以六价形式,约占80%,部分Cr(Ⅵ)被还原成Cr(Ⅲ),约占20%.③溶液中共存离子对六价铬吸附的影响不同,一价阴离子与Cu2+对Cr(Ⅵ)的吸附几乎没有影响,二价阴离子和Ni2+的存在却明显地影响了生物吸附剂对Cr(Ⅵ)的吸附.结论环境温度、溶液pH以及溶液中共存离子对铬的生物吸附有显著的影响.  相似文献   

7.
重金属废水是对环境污染最严重和对人类危害最大的工业废水之一。丝状真菌生物富集重金属是处理废水的一种重要的方法,近十几年来一直是研究热点。首先介绍了去除废水中重金属的常规方法 :化学沉淀法、离子交换法和吸附法的优缺点。尤其是生物吸附法的独特优点:吸附剂材料廉价,耗费少,吸附重金属离子效率高,适用条件广,生物体吸附剂可重复使用,特别适合于微量重金属废水的处理;其次,介绍了应用到富集重金属的丝状真菌种类,如根霉(Pb~(2+)、Cd~(2+)、Cr5+)、毛霉(Pb~(2+)、Ni~(2+)、Cd~(2+)、Zn~(2+))、曲霉(Pb~(2+))、木霉(Zn~(2+)、Pb~(2+))和担子菌(Cu~(2+)、Pb~(2+)、Cd~(2+))等都在重金属废水中取得较理想的效果;介绍了生物富集重金属的机理,主要是细胞外、细胞表面和细胞内富集重金属离子的机理;最后介绍了影响生物富集重金属效果的几种因素:p H值、重金属离子初始浓度和吸附剂的比例、富集温度、共存离子,展望了丝状真菌富集重金属的研究,旨为推广丝状真菌在富集重金属废水中的应用,并为即将投入新品种的丝状真菌富集重金属的研究奠定基础。  相似文献   

8.
花生壳粉作为生物吸附剂去除水溶液中偶氮染料的研究   总被引:24,自引:0,他引:24  
用低值的花生壳粉作为生物吸附剂对苋菜红、日落黄两种偶氮染料进行了吸附研究,目的是寻求经济的染料废水处理方法。考察了PH、染料浓度、吸附剂量、吸附剂粒径、离子强度和吸附时间等因素对染料吸附的影响,确定了最佳吸附条件。结果显示,初始pH2,两种偶氮染料的去除率较高。吸附等温线符合Langmuir和Freondlich模式,吸附过程符合准一级反应动力学方程。研究结果表明,花生壳是一种很有前途的偶氮染料废水处理生物材料。  相似文献   

9.
产朊假丝酵母细胞壁对铜离子吸附机理研究   总被引:4,自引:0,他引:4  
比较了产朊假丝酵母细胞与分离纯化的细胞壁对铜离子吸附能力。观察铜离子浓度、温度和pH值对产朊假丝酵母吸附铜离子的影响,探讨细胞壁在酵母吸附重金属离子过程中的作用机理。结果表明,细胞壁是酵母吸附重金属离子的主要部位。细胞壁的蛋白酶酶解实验证明,对胰蛋白酶不敏感的细胞壁嵌合蛋白是铜离子吸附的主要位点。  相似文献   

10.
为了提高竹炭去除废水中重金属离子能力,采用交联法设计合成新型的磁性壳聚糖改性竹炭复合吸附剂,并采用傅里叶红外光谱对改性竹炭复合吸附剂进行表征,同时开展不同Cu2+初始浓度、吸附剂投加量、吸附时间、pH和温度等因素对Cu2+吸附去除率的影响。结果表明,吸附效率与Cu2+初始浓度和吸附剂投加量成正效应;吸附平衡时间约8 h;在作用温度范围内,吸附效率随温度升高而上升;pH为7时吸附效果最好。振荡条件吸附效果优于静置处理。该结果为废水重金属深度处理及水环境保护提供依据。  相似文献   

11.
Pb2+ adsorption by the living cyanobacterium, Phormidium angustissimum followed the Langmuir adsorption model, with the maximum adsorption capacity (q max ) of 295.4?±?13.8 mg g?1. This result suggests that P. angustissimum is a promising living biosorbent to remove Pb2+ from wastewaters. Living biosorbents are better able to remove Pb2+ from wastewater than dead biosorbents, however there are practical limitations for their use are encountered in extreme conditions such as low pH and high Pb2+ concentration. The feasibility of using cyanobacterium, P. angustissimum, as a living biosorbent for the extraction of Pb2+ from wastewater was studied by investigating its photosynthestic performance and tolerance under Pb2+ (0–5 mg ?L?1) contamination and low pH (pH?3–7). Decreased photosynthetic performance caused by Pb2+ contamination and low pH stress was detected in this study by means of a reduction of the maximum photochemical efficiency of PSII (Fv/Fm). Detoxification mechanisms of P. angustissimum on Pb2+ appeared to increase its intracellular polysaccharides (IPS), exocellular polysaccharides (EPS), and protein. Living P. angustissimum could increase the pH of the solution which resulted in Pb2+ precipitation. The unique ability of P. angustissimum to remove Pb2+ and to grow under toxic conditions, demonstrated herein, indicates that it is a promising living biosorbent for mildly acidic water contaminated with Pb2+ in bioremoval systems in the which pH is not lower than 5 and Pb2+ is not higher than 5 mg L?1.  相似文献   

12.
The aim of this work was to determine the potential application of dried sewage sludge as a biosorbent for removing phenol from aqueous solution. Results showed that biosorption capacity was strongly influenced by the pH of the aqueous solution with an observed maximum phenol removal at pH around 6-8. Biosorption capacity increased when initial phenol concentration was increased to 110 mg/L but beyond this concentration, biosorption capacity decreased suggesting an inhibitory effect of phenol on biomass activity. Biosorption capacity decreased from 94 to 5 mg/g when biosorbent concentration was increased from 0.5 to 10 g/L suggesting a possible competitive effect of leachable heavy metals from the sludge. The effect of Cu2+ on biosorption capacity was also observed and the results confirmed that the phenol biosorption capacity decreased when concentration of Cu2+ in the sorption medium was increased up to 15 mg/L. Desorption of phenol using distilled deionized water was less than 2% suggesting a strong biosorption by the biomass.  相似文献   

13.
Copper removal from wastewater using spent-grain as biosorbent   总被引:3,自引:0,他引:3  
Lu S  Gibb SW 《Bioresource technology》2008,99(6):1509-1517
The removal of Cu(II) ions from aqueous solutions using spent-grain was studied. The experimental data fitted the Langmuir isotherm and the maximum adsorption capacity of spent-grain was determined to be 10.47 mg g(-1) dry weight (pH 4.2). Kinetic studies showed the adsorption process followed pseudo second-order rate model. Column studies with synthetic Cu(II) solutions were used to investigate the effects of Cu(II) ion concentration, initial pH, flow rate and the presence of EDTA on the Cu(II) removal performance. When treating the spent-lees, the wastewater from the whisky distilling industry, the reduction of Cu(II) uptake capacity to 77.7% (solution pH adjusted to 4.5 with 1N NaOH) and 31.6% (pH 3.8 without adjustment) was observed compared to Cu(II) uptake capacity when treating synthetic Cu(II) solution. On the basis of the results and that spent-grain is an abundant and by-product from the whisky distilling industry we suggest that it can be economically and effectively applied as a biosorbent for the removal of Cu(II) ions from distilling wastewaters.  相似文献   

14.
用废啤酒酵母吸附水溶液中Cu2+,考察了溶液pH值、Cu2+浓度和吸附时间对Cu2+吸附的影响。结果表明:废啤酒酵母吸附Cu2+在4-6个小时内达到吸附平衡,酸性条件利于吸附,以pH为5时最佳,吸附等温曲线符合Langmuir模式。用电位滴定及FTIR分析的方法确定生物吸附剂主要含有磺酸基、羧基及氨基等功能团。生物吸附剂对Cu2+的吸附以单分子层的化学吸附为主,功能团在不同的pH条件下呈现不同的电离性能,在吸附过程中发挥重要作用。  相似文献   

15.
Biosorption is potentially an attractive technology for treatment of wastewater for retaining heavy metals from dilute solutions. This study investigated the feasibility of anaerobic granules as a novel type of biosorbent, for lead, copper, cadmium, and nickel removal from aqueous solutions. Anaerobic sludge supplied from a wastewater treatment plant in the province of Quebec was used. Anaerobic granules are microbial aggregates with a strong, compact and porous structure and excellent settling ability. After treatment of the biomass with Ca ions, the cation exchange capacity of the biomass was approximately 111 meq/100 g of biomass dry weight which is comparable to the metal binding capacities of commercial ion exchange resins. This work investigated the equilibrium, batch dynamics for the biosorption process. Binding capacity experiments using viable biomass revealed a higher value than those for nonviable biomass. Binding capacity experiments using non-viable biomass treated with Ca revealed a high value of metals uptake. The solution initial pH value affected metal sorption. Over the pH range of 4.0-5.5, pH-related effects were not significant. Meanwhile, at lower pH values the uptake capacity decreased. Time dependency experiments for the metal ions uptake showed that adsorption equilibrium was reached almost 30 min after metal addition. It was found that the q(max) for Pb2+, Cd2+, Cu2+, and Ni2+ ions, were 255, 60, 55, and 26 mg/g respectively (1.23, 0.53, 0.87, and 0.44 mmol/g respectively). The data pertaining to the sorption dependence upon metal ion concentration could be fitted to a Langmiur isotherm model. Based on the results, the anaerobic granules treated with Ca appear to be a promising biosorbent for removal of heavy metals from wastewater due to its optimal uptake of heavy metals, its particulate shape, compact porous structure, excellent settling ability, and its high mechanical strength.  相似文献   

16.
选取林业入侵植物假苍耳(Iva xanthifolia)叶片匀浆体(LSI)和茎匀浆体(SSI)作为生物吸附材料, 考察了溶液pH值、吸附时间、Cu 2+浓度对吸附性能的影响, 确定了最佳吸附pH值为6.0-7.0, 吸附平衡时间为30分钟, 处理水体中的Cu 2+浓度应不超过800 mg.L-1。采用Langmuir和Freundlich等温吸附模型进行线性拟合, 推算出LSI和SSI的饱和吸附率分别为28.68 mg.g-1和13.06 mg.g-1。通过对吸附Cu2+前后的LSI和SSI进行傅立叶红外光谱和X射线衍射分析可知, 假苍耳参与Cu2+吸附的主要物质是纤维素类和糖类, 并且可能是由它们具有的-OH、-CONH2及-C=O等官能团提供结合位点。研究结果显示假苍耳有可能成为一种具有开发潜力的新型重金属生物吸附材料。  相似文献   

17.
Copper biosorption by Auricularia polytricha   总被引:2,自引:0,他引:2  
AIMS: The objective of the present study was to determine the optimum conditions for copper (Cu) biosorption by Auricularia polytricha mycelium in view of its immobilization in polyvinyl alcohol (PVA). METHODS AND RESULTS: The adsorption of Cu(II) onto A. polytricha was studied in batch with respect to initial pH, temperature, adsorption time, initial metal ion and biomass concentration. At optimal adsorption conditions, biomass was immobilized in PVA in column and a biosorption capacity of about 90% was obtained. CONCLUSIONS: Auricularia polytricha strain could successfully be used as Cu biosorbent. SIGNIFICANCE AND IMPACT OF THE STUDY: The low cost and simplicity of the technique make it suitable for the detoxification of contaminated effluents before their environmental discharge.  相似文献   

18.
Both resting (living) and autoclaved (dead) bio-sludges showed almost the same Cu2+ and Zn2+ adsorption capacities with synthetic industrial estate wastewater (SIEWW). The resting bio-sludge showed not only Cu2+ and Zn2+ adsorption abilities but also organic matter adsorption ability. But, the organic matter (COD and BOD5) adsorption ability of bio-sludge with SIEWW containing 60 mg/L Cu2+ was about half of that with SIEWW containing 60 mg/L Zn2+. The adsorbed Cu2+ and Zn2+ were easily eluted (70-75%) from bio-sludge with 0.1 N HNO3 and 0.1 M EDTA solutions. Bio-sludge from a wastewater treatment plant could be used as an adsorbent for metal ions (Cu2+ and Zn2+). Cu2+ and Zn2+ could repress the SBR system efficiency but its efficiency could be increased with the increase of mixed liquor suspended solids (MLSS), and Cu2+ had more effect than Zn2+ to repress the system efficiency. The SBR system showed very low removal efficiencies of the pollutants with industrial estate wastewater (IEWW), but its pollutant removal efficiencies with IEWW could be increased with the addition of glucose. The Zn2+, Cu2+, BOD5, COD and TKN removal efficiencies of the system with IEWW containing 1.27 g/L glucose, 10 mg/L Cu2+ and 10 mg/L Zn2+ under MLSS of 4500 mg/L were 92.61 +/- 0.28%, 83.77 +/- 0.93%, 98 +/- 0%, 92 +/- 0% and 78.1 +/- 0.1%, respectively.  相似文献   

19.
Dead cells of Saccharomyces cerevisiae 54 were immobilized by entrappment in polyacrylonitrile. The beads obtained were used to adsorb copper in an up-flow fixed-bed column. The effect of polymer content and cell loading were studied to optimize the porosity and the efficiency in copper removal of the biosorbent beads in a batch system. The optimal concentration of the polyacrylonitrile was assumed to be 12%(w/v) and a concentration of 0.5 g cell dry weight in 1 g polymer was most effective in adsorption of Cu2+. The adsorption capacity of this biosorbent was 27 mg Cu2+/g dry biomass at 200 mg/l initial concentration of copper ions. Adsorption of Cu2+ in a batch system was studied using different initial concentrations of the solute. The optimal conditions in the up-flow column of the following parameters were determined: flow rate, bed height, and initial concentration of Cu2+ of the solutions. Results of fixed-bed biosorption showed that breakthrough and saturation time appeared to increase with the bed height, but decrease with the flow rate and the initial concentration. The linearized form of the Thomas equation was used to describe dynamic adsorption of metal ions. As a result, the adsorption capacity of the batch system and the column system was compared. Desorption of copper ions was achieved by washing the column biomass with 0.1 M HCl at an eluent flow rate of 1 ml/min. The reusability of the immobilized biomass was tested in five consecutive adsorption-desorption cycles. The regenerated beads retained over 45% of their original adsorption capacity after five A/D cycles. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
研究盐土粘细菌NUST03对Cu2+、Cr3+、Ni2+的吸附能力及不同条件下菌体对离子的吸附。实验表明盐土粘细菌NUST03对Cu2+、Cr3+、Ni2+吸附能力为Cu2+>Cr3+>Ni2+,pH值对菌体吸附Cu2+、Ni2+影响较大,氯化钙和氯化镁的存在对菌体吸附Cu2+、Ni2+、Cr3+有一定的抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号