首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
Liu L  Hu BC  Zhang YJ 《生理科学进展》2000,31(3):269-272
血管内皮生长因子 (VEGF)的生物学效应是通过其特异的膜受体介导实现的。迄今发现VEGF有三种受体 ,受体的结构、功能 ,及VEGF的信号转导途径各不相同 ,也一直是VEGF研究的热点。本文主要综述了这方面的进展。  相似文献   

2.
应用鸡胚绒毛尿囊膜模型(chick embryo chorioallantoic membrane,CAM),观察人骨肉瘤OS-732细胞系诱导血管生成过程及血管生长相关因子的表达。结果显示,本细胞系具有较强的促血管生成能力并表达血管内皮生长因子(vacular endothelial growth factor,VEGF),碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF0,鸡胚绒毛尿囊膜OS-732细胞系接种瘤细胞中血管内皮生长因子(VEGF),转化生长因子β1(Transforming growth factor,TGF-β1)均呈阳性表达,而且VEGF呈持续高表达,结果表明VEGF,bFGF、TGF-β1可能共同参与骨肉瘤OS-732细胞系诱导的血管生成,而VEGF可能起着主要作用,提示阻断VEGF的作用可能影响骨肉瘤OS-732细胞系诱导的血管生成,此研究为以VEGF为靶点进行抗血管生成实验提供了依据。  相似文献   

3.
血管内皮细胞生长因子研究进展   总被引:5,自引:0,他引:5  
从不同侧面阐述了血管内皮细胞生长因子(VEGF)在新生血管形成中的作用.VEGF诱导新生血管形成,具有血管渗透性,是新生血管形成的主要调控者之一.VEGF mRNA不同剪接,形成5种VEGF变异体(isoform)即VEGF121-206.VEGF诱导新生血管的调控过程、拮抗VEGF成为大家竞相研究的领域.  相似文献   

4.
支气管哮喘小鼠模型气道血管变化及其影响因子分析   总被引:1,自引:0,他引:1  
目的明确支气管哮喘时血管网络及血管内皮细胞变化,以及血管内皮生长因子(VEGF)亚型及其受体在支气管哮喘小鼠模型气管及肺组织中的变化及作用。方法在建立小鼠支气管哮喘模型的基础上,应用免疫荧光染色和HE染色观察气道旁血管密度变化并计数不同血管单位长度上内皮细胞数量,应用逆转录多聚酶链反应(RT-PCR)方法检测气管和肺组织血管内皮生长因子(VEGF)亚型及其受体mRNA表达情况。结果1.随着疾病时间的延长,小鼠气道壁血管密度增加,血管内皮细胞数量逐渐增加,特别在慢性期小血管尤为明显;2.应用RT-PCR技术及琼脂糖凝胶电泳,小鼠气管及肺组织VEGF120,VEGF164,VEGF188和VEGF205各个亚型mRNA均增高。其中VEGF164在气管组织,VEGF188在周围肺组织中mRNA表达在慢性哮喘期明显增高,少见的亚型VEGF144只在周围肺组织中检测到,而在支气管组织中无表达;VEGFR1 mRNA水平没有明显变化,而VEGFR2在正常气管组织中未检测到,而在支气管哮喘气管组织明显表达,并且在支气管哮喘慢性期高于急性期。结论随着疾病的进展,小鼠支气管哮喘时气道存在血管密度及血管内皮细胞数量增加,VEGF在此过程中起着重要的作用,各亚型的作用存在差异。另外,VEGFR2在支气管哮喘中对于介导和增强VEGF信号和VEGF活性起着重要的作用,并且可能是导致VEGF诱导小鼠气道血管再生与重塑的重要介质。  相似文献   

5.
血管生长因子基因转移诱导的血管新生已成为治疗心肌缺血的一种新的思路. 重组腺病毒介导的肝细胞生长因子基因转移能够有效诱导治疗性血管新生. 为评价重组腺病毒肝细胞生长因子基因(Ad-HGF)转移治疗冠心病效果, 本实验利用Ameroid 缩窄环建立了小型猪慢性心肌缺血的研究模型, 并评价了Ad-HGF对慢性心肌缺血的治疗作用. 18只小型猪随机分成3组: 手术对照组、模型组和治疗组. 模型组和治疗组分别在回旋支近端放置Ameroid缩窄环, 模型成功后分别直接注射安慰剂和Ad-HGF到缺血心肌部位进行治疗. 治疗4周后对心功能和血液供应的改善进行了评价. 结果表明, 与对照组和模型组相比, Ad-HGF组的心肌灌注有了明显改善. 在治疗后4周, Ad-HGF组新形成的血管密度和血管数量明显高于模型组. Ad-HGF组心肌缺血面积明显减少, 左心室射血分数显著改善. 这些结果为肝细胞生长因子基因治疗慢性心肌缺血提供了直接的证据.  相似文献   

6.
血管内皮生长因子 (Vascular endothelial growth factor,VEGF165) 是一种高度特异性的促血管内皮细胞生长因子,高纯度的VEGF165对于抗肿瘤药物和生物标志物研发检测试剂必不可少。目前关于VEGF165的异源表达方法,纯化步骤多且产物纯度不高。以毕赤酵母表达系统为基础,构建人血管内皮生长因子 (VEGF165) 多拷贝的表达载体。按照酵母密码子偏好性优化人血管内皮生长因子基因 (vegf165) 的密码子,在毕赤酵母BBPB表达载体基础上,用Biobrick生物积块的方法,构建以Pgap为启动子的五拷贝rhVEGF165表达载体,同时添加组氨酸标签。利用His标签和VEGF165自身的肝素结合结构域,仅用两步亲和层析纯化得到纯度高于98%的rhVEGF165蛋白。rhVEGF165纯化后浓度为0.45 mg/mL,且具有生物学活性。该异源表达策略简化了rhVEGF165的纯化步骤,rhVEGF165具有天然VEGF165的生物学活性,且纯度达到目前文献报道的最高水平。  相似文献   

7.
血管内皮生长因子家族及其受体与肿瘤血管生成研究进展   总被引:7,自引:0,他引:7  
陈珊  金伟  闵平  陆核 《生命科学》2004,16(1):19-23
血管内皮生长因子(vascular endothelial growth factor,VEGF),又名血管通透性因子(vascular permeability factor,VPF)是重要的血管生成正性调节因子,是目前抗癌治疗的研究靶点之一。现已发现的VEGF家族成员包括VEGF—A、VEGF—B、VEGF—C、VEGF—D、VEGF—E和胎盘生长因子(placenta growth factor,PLGF)。VEGF的受体有VEGFR—1(fit—1)、VEGFR-2(flk-1/KDR)、VEGFR-3(fit-4)、neuropilin(NPR1/NPR2)。该家族的成员可以选择性地增强血管和/或淋巴管内皮细胞的有丝分裂,刺激内皮细胞增殖并促进血管生成,提高血管特别是微小血管的通透性,使血浆大分子外渗沉积在血管外的基质中,促进新生毛细血管网的建立,为肿瘤细胞的生长提供营养等。作者对VEGF家族成员及其受体的理化特征、VEGF与肿瘤的关系、VEGF抑制剂的研制作一综述。  相似文献   

8.
:"治疗性血管新生" 是利用外源性血管生长因子或基因促进缺血部位新生血管形成,达到改善缺血部位血液供应而起到治 疗的目的,该方法为缺血性疾病的治疗提供了新的思路。目前研究的多种与血管生成相关的因子中,血管内皮生长因子(Vascular Endothelial Growth Factor,VEGF)是公认的最具特异性且作用最强的促进血管生长因子。但由于外源性血管生长因子重组蛋白在 体内半衰期短,试验中难以长时间持续给药起到刺激新血管生成及成熟的作用。研究表明通过超声破坏微泡技术可使基因转染 的靶细胞持续表达该基因。因此,应用超声靶向微泡破坏技术使VEGF 基因在缺血部位持续表达,可起到治疗性血管新生的作 用。本文将就超声微泡介导VEGF基因转染治疗缺血性疾病研究进展进行综述。  相似文献   

9.
血管内皮生长因子(vascular endothelial growth factor,VEGF)是内皮细胞特异性的生长因子,大多数关于VEGF的研究都是致力于其在血管生长方面的作用,而近年来有大量文献报道VEGF具有神经营养和促神经发生作用,它能够直接作用于神经元细胞和神经胶质细胞甚至是神经干细胞,促进其生长及存活。VEGF的多种功能使其和多种神经退行性疾病相关,如阿茨海默病,肌萎缩侧索硬化症,帕金森病等。导入VEGF基因能够改善肌萎缩侧索硬化症、帕金森病动物模型的病情。  相似文献   

10.
血管内皮生长因子和抗肿瘤血管新生药物研究进展   总被引:1,自引:0,他引:1  
肿瘤的生长与迁移离不开新血管的形成,这使得抗血管新生成为肿瘤治疗的重要途径之一。血管内皮生长因子(VEGF)是针对内皮细胞作用最强、特异性最高的血管新生促进因子,因而VEGF是抗肿瘤治疗的重要靶点。我们简要介绍了VEGF的一些生物学特点及肿瘤血管新生,着重介绍了一些抗血管新生药物的最新研究成果及其临床应用。  相似文献   

11.
Therapeutic myocardial angiogenesis with vascular endothelial growth factors   总被引:14,自引:0,他引:14  
Emerging evidence has shown that administration of angiogenic growth factors, either as recombinant protein or by gene transfer, can augment tissue perfusion through neovascularization in animal models of myocardial and hindlimb ischemia. Many cytokines have angiogenic activity; one of those that have been best studied in animal models and clinical trials is vascular endothelial growth factor (VEGF). VEGF has been known to be a key regulator of physiologic and pathologic angiogenesis associated with tumor. Recently the effect of VEGF is not restricted to the direct angiogenic effect in vivo but includes mobilization of bone-marrow-derived endothelial progenitor cells and augmentation of postnatal vasculogenesis in situ. Clinical trials of therapeutic angiogenesis with VEGF in patients with end-stage coronary artery disease have shown increases in exercise time and reductions in anginal symptoms and have provided objective evidence of improved perfusion and left ventricular function. Larger scale placebo-controlled trials with recombinant protein (rhVEGF165) have been limited to intracoronary and intravenous administration and have shown favorable trends in exercise time and angina frequency. Small-scale, placebo-controlled, randomized clinical trials of gene transfer (phVEGF-2) via thoracotomy or percutaneous intramyocardial delivery demonstrated significant improvement of both subjective symptoms and objective measures of myocardial ischemia. Both therapeutic modalities appear to be safe and well tolerated. Further studies are required to determine the optimal dose, formulation, route of administration, and combinations of growth factors and the utility of adjunctive endothelial progenitor cell or other stem cell supplementation, to provide safe and effective therapeutic myocardial neovascularization.  相似文献   

12.
Emerging evidence has shown that administration of angiogenic growth factors, either as recombinant protein or by gene transfer, can augment tissue perfusion through neovascularization in animal models of myocardial and hindlimb ischemia. Many cytokines have angiogenic activity; one of those that have been best studied in animal models and clinical trials is vascular endothelial growth factor (VEGF). VEGF has been known to be a key regulator of physiologic and pathologic angiogenesis associated with tumor. Recently the effect of VEGF is not restricted to the direct angiogenic effect in vivo but includes mobilization of bone-marrow-derived endothelial progenitor cells and augmentation of postnatal vasculogenesis in situ. Clinical trials of therapeutic angiogenesis with VEGF in patients with end-stage coronary artery disease have shown increases in exercise time and reductions in anginal symptoms and have provided objective evidence of improved perfusion and left ventricular function. Larger scale placebo-controlled trials with recombinant protein (rhVEGF165) have been limited to intracoronary and intravenous administration and have shown favorable trends in exercise time and angina frequency. Small-scale, placebo-controlled, randomized clinical trials of gene transfer (phVEGF-2) via thoracotomy or percutaneous intramyocardial delivery demonstrated significant improvement of both subjective symptoms and objective measures of myocardial ischemia. Both therapeutic modalities appear to be safe and well tolerated. Further studies are required to determine the optimal dose, formulation, route of administration, and combinations of growth factors and the utility of adjunctive endothelial progenitor cell or other stem cell supplementation, to provide safe and effective therapeutic myocardial neovascularization. (Mol Cell Biochem 264: 63–74, 2004)  相似文献   

13.
The mechanisms underlying coronary capillary growth in response to ischemia are undefined. We hypothesized that the expression of vascular endothelial growth factor (VEGF) and angiopoietin (Ang)/Tie-2 were involved in capillary growth as an adaptation to ischemia. To test this hypothesis we measured capillary density, and the expressions of VEGF, Ang-1, Ang-2, and the Tie-2 receptor and its phosphorylation state during repetitive episodes of myocardial ischemia in chronically instrumented canines. Repetitive episodes of ischemia were induced by multiple (once/hour; 8/day), brief (2 min) occlusions of the left anterior descending coronary artery for 1, 7, 14, or 21 days. A sham group received the same instrumentation as the experimental groups but not the occlusion protocol. Collateral blood flow (microspheres) progressively increased from 9 +/- 3 to 83 +/- 10 ml. min-1. 100 g-1 on day 21. Capillary density increased at day 7 from 2378 +/- 53 (sham) to 2962 +/- 60/mm2, but it decreased to 2594 +/- 39/mm2 at day 21. Both VEGF and Ang-2 expression in myocardial interstitial fluid (Western analyses) peaked at day 3 of the repetitive occlusions but waned thereafter. In contrast the expression of Ang-1 remained relatively constant at all times in the occlusion groups. In shams, the expression of VEGF and Ang-2 was low and constant at all times. Tie-2 phosphorylation myocardial decreased decreased at day 7 but increased at 21 days of occlusions (P < 0.05). Our results indicate that capillary density was augmented by myocardial ischemia, but after development of collaterals and restoration of flow to the ischemic zone, capillary density returned to control levels. The change in capillary density paralleled with VEGF and Ang-2 expression but was inversely related to Tie-2 phosphorylation. We speculate the coronary angiogenesis is a coordinated event involving the expression of both VEGF and Ang-2 and that therapeutic angiogenic strategies may ultimately require treatment with more than a single factor.  相似文献   

14.
Bone marrow mesenchymal stem cells (MSCs) may be a novel treatment modality for organ ischemia, possibly through the release of beneficial paracrine factors. However, an age threshold likely exists as to when MSCs gain their beneficial protective properties. We hypothesized that 1) VEGF would be a crucial stem cell paracrine mediator in providing postischemic myocardial protection and 2) small-interfering (si)RNA ablation of VEGF in adult MSCs (aMSCs) would equalize the differences observed between aMSC- and neonatal stem cell (nMSC)-mediated cardioprotection. Female adult Sprague-Dawley rat hearts were subjected to ischemia-reperfusion injury via Langendorff-isolated heart preparation (15 min equilibration, 25 min ischemia, and 60 min reperfusion). MSCs were harvested from adult and 2.5-wk-old neonatal mice and cultured under normal conditions. VEGF was knocked down in both cell lines by VEGF siRNA. Immediately before ischemia, one million aMSCs or nMSCs with or without VEGF knockdown were infused into the coronary circulation. The cardiac functional parameters were recorded. VEGF in cell supernatants was measured via ELISA. aMSCs produced significantly more VEGF than nMSCs and were noted to increase postischemic myocardial recovery compared with nMSCs. The knockdown of VEGF significantly decreased VEGF production in both cell lines, and the pretreatment of these cells impaired stem cell-mediated myocardial function. The knockdown of VEGF in adult stem cells equalized the myocardial functional differences observed between adult and neonatal stem cells. Therefore, VEGF is a critical paracrine mediator in facilitating postischemic myocardial recovery and likely plays a role in mediating the observed age threshold during stem cell therapy.  相似文献   

15.
Myocardial ischemia, a disorder causing myocardial infarction and malfunction, can activate various adaptive mechanisms that protect cardiomyocytes from ischemic injury. During the early hours post myocardial ischemia, injured cardiac cells can release several molecules, including adenosine, opioids, and bradykinin, which promote myocardial survival by activating the G protein signaling pathways. During a later phase about several days, myocardial ischemia induces upregulation of growth factors and cytokines, including VEGF, ILGF, HGF, and SDF-1, in the injured myocardium, contributing to cardioprotection. In addition to the injured heart, the liver participates in cardioprotection. In response to myocardial ischemia, the liver upregulates and releases secretory proteins, including FGF21 and TFF3, both of which promote cardiomyocyte survival. The liver also provides a reservoir of hepatic cells that mobilize to the site of myocardial ischemia, potentially contributing to cardioprotection. Taken together, the early and late mechanisms act coordinately in a time-dependent manner, ensuring effective cardioprotection post myocardial infarction. Investigations on these innate cardioprotective mechanisms have provided insights into the development of cardioprotective strategies for treating myocardial infarction. In this article, the authors review the innate mechanisms of cardioprotection in myocardial ischemia.  相似文献   

16.
BACKGROUND: New vessel growth is often associated with ischemia, and hypoxic tissue has been identified as a potential source of angiogenic factors. In particular, ischemia is associated with the development of neovascularization in a number of ocular pathologies. For this reason, we have studied the induction of endothelial cell mitogens by hypoxia in retinal cells. MATERIALS AND METHODS: Human retinal pigment epithelium (hRPE) were grown under normoxic and hypoxic conditions and examined for the production of endothelial mitogens. Northern analysis, biosynthetic labeling and immunoprecipitation, and ELISA were used to assess the levels of vascular endothelial growth factor/vascular permeability factor (VEGF) and basic fibroblast growth factor (bFGF), two endothelial cell mitogens and potent angiogenic factors. Soluble receptors for VEGF were employed as competitive inhibitors to determine the contribution of the growth factor to the hypoxia-stimulated mitogen production. RESULTS: Following 6-24 hr of hypoxia, confluent and growing cultures of hRPE increase their levels of VEGF mRNA and protein synthesis. Biosynthetic labeling studies and RT-PCR analysis indicate that the cells secrete VEGF121 and VEGF165, the soluble forms of the angiogenic factor. In contrast, hRPE cultured under hypoxic conditions show reduced steady-state levels of basic fibroblast growth factor (bFGF) mRNA and decreased bFGF protein synthesis. Unlike VEGF, bFGF is not found in conditioned media of hRPE following 24 hr of hypoxia. Using a soluble high-affinity VEGF receptor as a competitive inhibitor of VEGF, we demonstrate that a VEGF-like activity is the sole hypoxia-inducible endothelial mitogen produced by cultured hRPE. CONCLUSIONS: From this comparison we conclude that hRPE do not respond to hypoxia with a general, nonspecific increase in the overall levels of growth factors, as is seen during cell wounding responses or serum stimulation. The physiological relevance of data from this in vitro model are affirmed by separate studies in an animal model of retinal ischemia-induced ocular neovascularization (1) in which retina-derived VEGF levels have been shown to correlate spatio-temporally with the onset of angiogenesis. Taken together, these data support the hypothesis that the induction of VEGF by hypoxia mediates the rapid, initial angiogenic response to retinal ischemia.  相似文献   

17.
One of the main goals in the treatment of myocardial ischemia is the development of effective therapy for angiogenesis and neovascularization. The first evidence demonstrating alleviation of myocardial ischemia and increased number of collateral blood vessels was reported in the early 90s following intra-coronary administration of basic fibroblast growth factor protein in canine. This study established the ground for extensive investigations to demonstrate the use of other angiogenic growth factor proteins, genes administered directly or incorporated in viruses, and more recently, endothelial progenitor stem cells (embryonic and adults). The positive results observed in animals failed, in most cases, to repeat themselves in clinical-trials in human patients. Therefore, additional experiments are warranted to allow full understanding of the mechanism underlying new blood vessel formation before further clinical studies are undertaken. This review will explore the milestones of angiogenic investigations and their clinical application.  相似文献   

18.
One of the main goals in the treatment of myocardial ischemia is the development of effective therapy for angiogenesis and neovascularization. The first evidence demonstrating alleviation of myocardial ischemia and increased number of collateral blood vessels was reported in the early 90s following intra-coronary administration of basic fibroblast growth factor protein in canine. This study established the ground for extensive investigations to demonstrate the use of other angiogenic growth factor proteins, genes administered directly or incorporated in viruses, and more recently, endothelial progenitor stem cells (embryonic and adults). The positive results observed in animals failed, in most cases, to repeat themselves in clinical trials in human patients. Therefore, additional experiments are warranted to allow full understanding of the mechanism underlying new blood vessel formation before further clinical studies are undertaken. This review will explore the milestones of angiogenic investigations and their clinical application. (Mol Cell Biochem 264: 75–83, 2004)  相似文献   

19.
《Cytokine》2015,72(2):385-393
Vascular endothelial growth factor (VEGF) is a notable chemokine that plays critical roles in angiogenesis and vasculogenesis. The contemporary body of literature contains a substantial amount of information regarding its chemical properties as well as its fundamental role in vascular development. Studies strongly indicate its potential use as a therapeutic agent, especially in the vascular restoration of injured and ischemic tissues. VEGF therapy could be most beneficial for diseases whose pathologies revolve around tissue inflammation and necrosis, such as myocardial infarction and stroke, as well as ischemic bowel diseases such as acute mesenteric ischemia and necrotizing enterocolitis. However, a delicate balance exists between the therapeutic benefits of VEGF and the hazards of tumor growth and neo-angiogenesis. Effective future research surrounding VEGF may allow for the development of effective therapies for ischemia which simultaneously limit its more deleterious side effects. This review will: (1) summarize the current understanding of the molecular aspects and function of VEGF, (2) review potential benefits of its use in medical therapy, (3) denote its role in tumorigenesis and inflammation when overexpressed, and (4) elucidate the qualities which make it a viable compound of study for diagnostic and therapeutic applications.  相似文献   

20.
Alterations in endogenous levels of the angiogenic proteins basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were assessed in rabbit hindlimb muscles subjected to 1, 5, or 21 days of ischemia. In the glycolytic [tibialis anterior (TA)] and the oxidative [soleus (SOL)] muscles from the ischemic and contralateral (control) hindlimb, bFGF and VEGF protein expression was determined by ELISA and immunoblot analysis. Total VEGF protein expression was greater in oxidative than in glycolytic muscles after 5 days of hindlimb ischemia. In SOL muscle, total VEGF detected by ELISA in ischemic limbs was increased to 137, 300, and 220% of control at 1, 5, and 21 days, respectively. However, in TA, total VEGF expression by ELISA was increased only at 1 and 5 days of ischemia to 140 and 134% of control, respectively. By immunoblotting, the expression of the 165-amino acid isoform (VEGF(165)) was initially decreased to 55% of control in ischemic SOL at 1 day but was increased to 250% of control at day 5 and remained at 155% at day 21. In TA, VEGF(165) was increased to 260% of control at 1 day of ischemia but only to 150% of control by day 5. The only significant change in bFGF expression in either the oxidative or glycolytic muscles was a small increase (129% of control) at 21 days in SOL. This study demonstrates that the magnitude and direction of change in VEGF protein expression depend on VEGF subtype, muscle fiber type, and duration of ischemia. These findings suggest that strategies in therapeutic angiogenesis may need to differ depending on muscle fiber type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号