首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grain size and filling are two key determinants of grain thousand-kernel weight (TKW) and crop yield, therefore they have undergone strong selection since cereal was domesticated. Genetic dissection of the two traits will improve yield potential in crops. A quantitative trait locus significantly associated with wheat grain TKW was detected on chromosome 7AS flanked by a simple sequence repeat marker of Wmc17 in Chinese wheat 262 mini-core collection by genome-wide association study. Combined with the bulked segregant RNA-sequencing (BSR-seq) analysis of an F2 genetic segregation population with extremely different TKW traits, a candidate trehalose-6-phosphate phosphatase gene located at 135.0 Mb (CS V1.0), designated as TaTPP-7A, was identified. This gene was specifically expressed in developing grains and strongly influenced grain filling and size. Overexpression (OE) of TaTPP-7A in wheat enhanced grain TKW and wheat yield greatly. Detailed analysis revealed that OE of TaTPP-7A significantly increased the expression levels of starch synthesis- and senescence-related genes involved in abscisic acid (ABA) and ethylene pathways. Moreover, most of the sucrose metabolism and starch regulation-related genes were potentially regulated by SnRK1. In addition, TaTPP-7A is a crucial domestication- and breeding-targeted gene and it feedback regulates sucrose lysis, flux, and utilization in the grain endosperm mainly through the T6P-SnRK1 pathway and sugar–ABA interaction. Thus, we confirmed the T6P signalling pathway as the central regulatory system for sucrose allocation and source–sink interactions in wheat grains and propose that the trehalose pathway components have great potential to increase yields in cereal crops.  相似文献   

2.
3.
Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) has been located at the heart of the control of metabolism and development in plants. The active SnRK1 form is usually a heterotrimeric complex. Subcellular localization and specific target of the SnRK1 kinase are regulated by specific beta subunits. In Arabidopsis, there are at least seven genes encoding beta subunits, of which the regulatory functions are not yet clear. Here, we tried to study the function of one beta subunit, AKINβ1. It showed that AKINβ1 expression was dramatically induced by ammonia nitrate but not potassium nitrate, and the investigation of AKINβ1 transgenic Arabidopsis and T-DNA insertion lines showed that AKINβ1 negatively regulated the activity of nitrate ruductase and was positively involved in sugar repression in early seedling development. Meanwhile AKINβ1 expression was reduced upon sugar treatment (including mannitol) and did not affect the activity of sucrose phos-phate synthase. The results indicate that AKINβ1 is involved in the regulation of nitrogen metabolism and sugar signaling.  相似文献   

4.
Grain filling and grain development are essential biological processes in the plant’s life cycle, eventually contributing to the final seed yield and quality in all cereal crops. Studies of how the different wheat (Triticum aestivum L.) grain components contribute to the overall development of the seed are very scarce. We performed a proteomics and metabolomics analysis in four different developing components of the wheat grain (seed coat, embryo, endosperm, and cavity fluid) to characterize molecular processes during early and late grain development. In-gel shotgun proteomics analysis at 12, 15, 20, and 26 days after anthesis (DAA) revealed 15 484 identified and quantified proteins, out of which 410 differentially expressed proteins were identified in the seed coat, 815 in the embryo, 372 in the endosperm, and 492 in the cavity fluid. The abundance of selected protein candidates revealed spatially and temporally resolved protein functions associated with development and grain filling. Multiple wheat protein isoforms involved in starch synthesis such as sucrose synthases, starch phosphorylase, granule-bound and soluble starch synthase, pyruvate phosphate dikinase, 14-3-3 proteins as well as sugar precursors undergo a major tissue-dependent change in abundance during wheat grain development suggesting an intimate interplay of starch biosynthesis control. Different isoforms of the protein disulfide isomerase family as well as glutamine levels, both involved in the glutenin macropolymer pattern, showed distinct spatial and temporal abundance, revealing their specific role as indicators of wheat gluten quality. Proteins binned into the functional category of cell growth/division and protein synthesis/degradation were more abundant in the early stages (12 and 15 DAA). At the metabolome level all tissues and especially the cavity fluid showed highly distinct metabolite profiles. The tissue-specific data are integrated with biochemical networks to generate a comprehensive map of molecular processes during grain filling and developmental processes.  相似文献   

5.
6.
Hydroperoxides are the primary oxygenated products of polyunsaturated fatty acids and are key intermediates in the octadecanoid signalling pathway in plants. Lipid hydroperoxides (LHPO) were determined spectrophotometrically based on their reaction with an excess of Fe(2+)at low pH in the presence of the dye xylenol orange. Triphenylphosphine-mediated hydroxide formation was used to authenticate the signal generated by the hydroperoxides. The method readily detected lipid peroxidation in Phaseolus: microsomes, senescing potato leaves and in a range of other plant tissues including Phaseolus hypocotyls (26+/-5 nmol g(-1) FW), Alstroemeria floral tissues (sepals 66+/-13 nmol g(-1) FW petals 49+/-6 nmol g(-1) FW), potato leaves (334+/-75 nmol g(-1) FW), broccoli florets (568+/-68 nmol g(-1) FW) and Chlamydomonas cells (602+/-40 nmol g(-1) FW). Relative to the total fatty acid content of the tissues, the % LHPO was within the range of 0.6-1.7% for all tissue types (photosynthetic and non-photosynthetic) and represents the basal oxidation level of membrane fatty acids in plant cells. In order to relate the levels of LHPO to specific signalling pathways, transgenic potato plant lines were used in which lipoxygenase (LOX) (responsible for hydroperoxide biosynthesis) and hydroperoxide lyase (a route of hydroperoxide degradation) activities were largely reduced by an antisense-mediated approach. While the LHPO levels were similar to wild type in the individual LOX antisensed plants, basal LHPO levels, by contrast, were elevated by 38% in transgenic potato leaves antisensed in hydroperoxide lyase, indicating a role for this enzyme in the maintenance of cellular levels of LHPOs.  相似文献   

7.
8.
Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (np-Ga3PDHase) is a cytosolic unconventional glycolytic enzyme of plant cells regulated by phosphorylation in heterotrophic tissues. After interaction with 14-3-3 proteins, the phosphorylated enzyme becomes less active and more sensitive to regulation by adenylates and inorganic pyrophosphate. Here, we acknowledge that in wheat (Triticum aestivum), np-Ga3PDHase is specifically phosphorylated by the SnRK (SNF1-related) protein kinase family. Interestingly, only the kinase present in heterotrophic tissues (endosperm and shoots, but not in leaves) was found active. The specific SnRK partially purified from endosperm exhibited a requirement for Mg(2+) or Mn(2+) (being Ca(2+) independent), having a molecular mass of approximately 200 kD. The kinase also phosphorylated standard peptides SAMS, AMARA, and SP46, as well as endogenous sucrose synthase, results suggesting that it could be a member of the SnRK1 subfamily. Concurrently, the partially purified wheat SnRK was recognized by antibodies raised against a peptide conserved between SnRK1s from sorghum (Sorghum bicolor) and maize (Zea mays) developing seeds. The wheat kinase was allosterically inhibited by ribose-5-phosphate and, to a lesser extent, by fructose-1,6-bisphosphate and 3-phosphoglycerate, while glucose-6-phosphate (the main effector of spinach [Spinacia oleracea] leaves, SnRK1) and trehalose-6-phosphate produced little or no effect. Results support a distinctive allosteric regulation of SnRK1 present in photosynthetic or heterotrophic plant tissues. After in silico analysis, we constructed two np-Ga3PDHase mutants, S404A and S447A, identifying serine-404 as the target of phosphorylation. Results suggest that both np-Ga3PDHase and the specific kinase could be under control, critically affecting the metabolic scenario involving carbohydrates and reducing power partition and storage in heterotrophic plant cells.  相似文献   

9.
Two genetically related wheat lines growing in cabinets were given different temperatures during grain filling, and abscisic acid (ABA) was measured in whole grains by gas chromatography with an electron-capture detector. Three genetically related barley lines grown in the field were assayed for ABA content in endosperm and embryo fractions separately by radiommunoassay.Maximum grain growth rate and final weight per grain of the two wheat lines differed by 50–60% at low temperature and 30–40% at high temperature. During grain development two peaks in ABA level were observed at low temperature but only one at high temperature. At times when differences in grain growth rate between genotypes and between temperature treatments were large, the corresponding differences in ABA concentration were small. In barley, one line (Iabo 14) had 30% heavier grains than the other two (Onice and Opale). Endosperm ABA concentrations showed no clear differences between genotypes until grain filling was nearly complete. Embryo ABA levels were up to 10-times greater than those in the endosperm, with Opale having significantly less ABA in the embryo than the other two cultivars.Our experiments did not provide evidence for a causal relationship between ABA levels during grain filling and grain growth rate or final weight.Abbreviations ABA Abscisic acid - DAA days after anthesis - DW dry weight - FW fresh weight  相似文献   

10.
How plants relate their requirements for energy with the reducing power necessary to fuel growth is not understood. The activated glucose forms and NADPH are key precursors in pathways yielding, respectively, energy and reducing power for anabolic metabolism. Moreover, they are substrates or allosteric regulators of trehalose-phosphate synthase (TPS1) in fungi and probably also in plants. TPS1 synthesizes the signalling metabolite trehalose-6-phosphate (T6P) and, therefore, has the potential to relate reducing power with energy metabolism to fuel growth. A working model is discussed where trehalose-6-phosphate (T6P) inhibition of SnRK1 is part of a growth-regulating loop in young and metabolically active heterotrophic plant tissues. SnRK1 is the Snf1 Related Kinase 1 and the plant homologue of the AMP-dependent protein kinase of animals, a central energy gauge. T6P accumulation in response to high sucrose levels in a cell inhibits SnRK1 activity, thus promoting anabolic processes and growth. When T6P levels drop due to low glucose-6-phosphate, uridine-diphosphoglucose, and altered NADPH or due to restricted TPS1 activity, active SnRK1 promotes catabolic processes required to respond to energy and carbon deprivation. The model explains why too little or too much T6P has been found to be growth inhibitory: Arabidopsis thaliana embryos and seedlings without TPS1 are growth arrested and Arabidopsis seedlings accumulating T6P on a trehalose medium are growth arrested. Finally, the insight gained with respect to the possible role of T6P metabolism, where it is known to alter developmental and environmental responses of plants, is discussed.  相似文献   

11.
Plant orthologs of the yeast sucrose non-fermenting (Snf1) kinase and mammalian AMP-activated protein kinase (AMPK) represent an emerging class of important regulators of metabolic and stress signalling. The catalytic alpha-subunits of plant Snf1-related kinases (SnRKs) interact in the yeast two-hybrid system with different proteins that share conserved domains with the beta- and gamma-subunits of Snf1 and AMPKs. However, due to the lack of a robust technique allowing the detection of protein interactions in plant cells, it is unknown whether these proteins indeed occur in SnRK complexes in vivo. Here we describe a double-labelling technique, using intron-tagged hemagglutinin (HA) and c-Myc epitope sequences, which provides a simple tool for co-immunopurification of interacting proteins expressed in Agrobacterium-transformed Arabidopsis cells. This generally applicable plant protein interaction assay was used to demonstrate that AKINbeta2, a plant ortholog of conserved Snf1/AMPK beta-subunits, forms different complexes with the catalytic alpha-subunits of Arabidopsis SnRK protein kinases AKIN10 and AKIN11 in vivo.  相似文献   

12.
Carbon signaling can override carbon supply in the regulation of growth. At least some of this regulation is imparted by the sugar signal trehalose 6-phosphate (T6P) through the protein kinase, SnRK1. This signaling pathway regulates biosynthetic processes involved in growth under optimal growing conditions. Recently, using a seedling system we showed that under sub-optimal conditions, such as cold, carbon signaling by T6P/ SnRK1 enables recovery of growth following relief of the stress. The T6P/ SnRK1 mechanism thus could be selected as a means of improving low temperature tolerance. High-throughput automated Fv/Fm measurements provide a potential means to screen for T6P/ SnRK1, and here we confirm through measurements of Fv/Fm in rosettes that T6P promotes low temperature tolerance and recovery during cold to warm transfer. Further, to better understand the coordination between sugars, trehalose pathway, and temperature-dependent growth, we examine the interrelationship between sugars, trehalose phosphate synthase (TPS), and trehalose phosphate phosphatase (TPP) gene expression and T6P content in seedlings. Sucrose, particularly when fed exogenously, correlated well with TPS1 and TPPB gene expression, suggesting that these enzymes are involved in maintaining carbon flux through the pathway in relation to sucrose supply. However, when sucrose accumulated to higher levels under low temperature and low N, TPS1 and TPPB expression were less directly related to sucrose; other factors may also contribute to regulation of TPS1 and TPPB expression under these conditions. TPPA expression was not related to sucrose content and all genes were not well correlated with endogenous glucose. Our work has implications for understanding acclimation to sink-limited growth conditions such as low temperature and for screening cold-tolerant genotypes with altered T6P/ SnRK1 signaling.  相似文献   

13.
The most abundant thiol in beans (Phaseolus vulgaris L. cv. Saxa) is the tripeptide homoglutathione (hGSH) rather than glutathione (GSH). At the whole-plant level the GSH content is less than 0.5% of the hGSH content. In the present study GSH was supplied to the roots of bean seedlings to test whether GSH can be taken up by roots and transported to the shoot. Therefore, 12-day-old plants were exposed to 1 mmol/L GSH for 4, 8 and 24 h prior to harvest. In response to this GSH exposure, elevated GSH contents were found in all tissues. After 4 h the GSH content increased in the roots from 1 +/- 1 to 22 +/- 2 nmol GSH g(-1) fresh weight (FW), in the leaves from 2 +/- 1 to 9 +/- 4 nmol GSH g(-1) FW, and in the apex from 30 +/- 5 to 75 +/- 4 nmol GSH g(-1) FW. These data indicate that GSH is taken up by bean roots and is transported to above above-ground parts of the plants. Roots exposed to GSH for 24 h contained 2-fold higher cysteine (Cys) and hGSH contents than the controls. Apparently, GSH taken up by the roots is not only loaded into the xylem but also partially degraded and used for hGSH synthesis.  相似文献   

14.
构建了肌醇甲基转移酶(Imtl)基因的植物表达载体pDH5.通过农杆菌(Agrobacterium)介导,获得了转基因烟草(NicotianatabacumLev.SR1)植株,在附加1.2%-1.5%NaCl的生根培养基MSr(MSO+3g/L蔗糖+7g/L葡萄糖)上可生根。生化分析表明,不具有芒柄醇(D-ononitol)合成途径的烟草鲜叶片积累了100-654nmol/g的芒柄醇,新产生了一个代谢分支。Western杂交分析证明Imtl基因在烟草中的表达,从而为植物耐盐的基因工程育种提供了一条新途径。  相似文献   

15.
构建了肌醇甲基转移酶(Imt1)基因的植物表达载体pDH5, 通过农杆菌(Agrobacterium)介导,获得了转基因烟草(Nicotiana tabacum L. cv. SR1)植株,在附加1.2%~1.5% NaCl的生根培养基MSr(MSO 3 g/L蔗糖 7 g/L 葡萄糖)上可生根。 生化分析表明,不具有芒柄醇(D-ononitol)合成途径的烟草鲜叶片积累了100~654 nmol/g的芒柄醇, 新产生了一个代谢分支。Western杂交分析证明Imt1基因在烟草中的表达,从而为植物耐盐的基因工程育种提供了一条新途径。  相似文献   

16.
17.
Tre6P (trehalose 6-phosphate) is implicated in sugar-signalling pathways in plants, but its exact functions in vivo are uncertain. One of the main obstacles to discovering these functions is the difficulty of measuring the amount of Tre6P in plant tissues. We have developed a highly specific assay, using liquid chromatography coupled to MS-Q3 (triple quadrupole MS), to measure Tre6P in the femto-picomole range. The Tre6P content of sucrose-starved Arabidopsis thaliana seedlings in axenic culture increased from 18 to 482 pmol x g(-1) FW (fresh weight) after adding sucrose. Leaves from soil-grown plants contained 67 pmol x g(-1) FW at the end of the night, which rose to 108 pmol x g(-1)FW after 4 h of illumination. Even greater changes in Tre6P content were seen after a 6 h extension of the dark period, and in the starchless mutant, pgm. The intracellular concentration of Tre6P in wild-type leaves was estimated to range from 1 to 15 microM. It has recently been reported that the addition of Tre6P to isolated chloroplasts leads to redox activation of AGPase (ADPglucose pyrophosphorylase) [Kolbe, Tiessen, Schluepmann, Paul, Ulrich and Geigenberger (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 11118-11123]. Using the new assay for Tre6P, we found that rising sugar levels in plants are accompanied by increases in the level of Tre6P, redox activation of AGPase and the stimulation of starch synthesis in vivo. These results indicate that Tre6P acts as a signalling metabolite of sugar status in plants, and support the proposal that Tre6P mediates sucrose-induced changes in the rate of starch synthesis.  相似文献   

18.
In plants, myoinositol signaling pathways have been associated with several stress, developmental, and physiological processes, but the regulation of these pathways is largely unknown. In our efforts to better understand myoinositol signaling pathways in plants, we have found that the WD40 repeat region of a myoinositol polyphosphate 5-phosphatase (5PTase13; At1g05630) interacts with the sucrose nonfermenting-1-related kinase (SnRK1.1) in the yeast two-hybrid system and in vitro. Plant SnRK1 proteins (also known as AKIN10/11) have been described as central integrators of sugar, metabolic, stress, and developmental signals. Using mutants defective in 5PTase13, we show that 5PTase13 can act as a regulator of SnRK1 activity and that regulation differs with different nutrient availability. Specifically, we show that under low-nutrient or -sugar conditions, 5PTase13 acts as a positive regulator of SnRK1 activity. In contrast, under severe starvation conditions, 5PTase13 acts as a negative regulator of SnRK1 activity. To delineate the regulatory interaction that occurs between 5PTase13 and SnRK1.1, we used a cell-free degradation assay and found that 5PTase13 is required to reduce the amount of SnRK1.1 targeted for proteasomal destruction under low-nutrient conditions. This regulation most likely involves a 5PTase13-SnRK1.1 interaction within the nucleus, as a 5PTase13:green fluorescent protein was localized to the nucleus. We also show that a loss of function in 5PTase13 leads to nutrient level-dependent reduction of root growth, along with abscisic acid (ABA) and sugar insensitivity. 5ptase13 mutants accumulate less inositol 1,4,5-trisphosphate in response to sugar stress and have alterations in ABA-regulated gene expression, both of which are consistent with the known role of inositol 1,4,5-trisphosphate in ABA-mediated signaling. We propose that by forming a protein complex with SnRK1.1 protein, 5PTase13 plays a regulatory role linking inositol, sugar, and stress signaling.  相似文献   

19.
It has been proposed that abscisic acid (ABA) may stimulate sucrose transport into filling seeds of legumes, potentially regulating seed growth rate. The objective of this study was to determine whether the rate of dry matter accumulation in seeds of soybeans (Glycine max L.) is correlated with the endogenous levels of ABA and sucrose in those sinks. The levels of ABA and sucrose in seed tissues were compared in nine diverse Plant Introduction lines having seed growth rates ranging from 2.5 to 10.0 milligrams dry weight per seed per day. At 14 days after anthesis (DAA), seeds of all genotypes contained less than 2 micrograms of ABA per gram fresh weight. Levels of ABA increased rapidly, however, reaching maxima at 20 to 30 DAA, depending upon tissue type and genotype. ABA accumulated first in seed coats and then in embryos, and ABA maxima were higher in seed coats (8 to 20 micrograms per gram fresh weight) than in embryos (4 to 9 micrograms per gram fresh weight. From 30 to 50 DAA, ABA levels in both tissues decreased to less than 2 micrograms per gram fresh weight. Levels of sucrose were also low early in development, less than 10 milligrams per gram fresh weight at 14 DAA. However, by 30 DAA, sucrose levels in seed coats had increased to 20 milligrams per gram fresh weight and remained fairly constant for the remainder of the filling period. In contrast, sucrose accumulated in embryos throughout the filling period, reaching levels greater than 40 milligrams per gram fresh weight by 50 DAA. Correlation analyses indicated that the level of ABA in seed coats and embryos was not directly correlated to the level of sucrose measured in those tissues or to the rate of seed dry matter accumulation during the linear filling period. Rather, the ubiquitous pattern of ABA accumulation early in development appeared to coincide with water uptake and the rapid expansion of cotyledons occurring at that time. Whole tissue sucrose levels in embryos and seed coats, as well as sucrose levels in the embryo apoplast, were generally not correlated with the rate of dry matter accumulation. Thus, it appears that, in this set of diverse soybean genotypes, seed growth rate was not limited by endogenous concentrations of ABA or sucrose in reproductive tissues.  相似文献   

20.
植物海藻糖代谢及海藻糖-6-磷酸信号研究进展   总被引:2,自引:0,他引:2  
海藻糖代谢和海藻糖-6-磷酸(T6P)信号途径在植物生长和发育过程中具有重要的调控作用。T6P是海藻糖的代谢前体,是植物响应碳元素可用性、调控生长发育的关键信号分子。植物体中除了自身的海藻糖合成途径外,由病原菌产生的海藻糖或T6P能够导致植物代谢和发育的重新编程。植物不同阶段的生长发育,包括胚胎发育、幼苗生长、成花诱导及叶片衰老等,都受T6P的调控。T6P信号的一个关键互作因子是蔗糖非发酵相关激酶1(SnRKl),T6P能够抑制SnRK1的催化活性,进而调控植物的生长和发育过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号