首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Across the globe, invasive alien species cause severe environmental changes, altering species composition and ecosystem functions. So far, mountain areas have mostly been spared from large‐scale invasions. However, climate change, land‐use abandonment, the development of tourism and the increasing ornamental trade will weaken the barriers to invasions in these systems. Understanding how alien species will react and how native communities will influence their success is thus of prime importance in a management perspective. Here, we used a spatially and temporally explicit simulation model to forecast invasion risks in a protected mountain area in the French Alps under future conditions. We combined scenarios of climate change, land‐use abandonment and tourism‐linked increases in propagule pressure to test if the spread of alien species in the region will increase in the future. We modelled already naturalized alien species and new ornamental plants, accounting for interactions among global change components, and also competition with the native vegetation. Our results show that propagule pressure and climate change will interact to increase overall species richness of both naturalized aliens and new ornamentals, as well as their upper elevational limits and regional range‐sizes. Under climate change, woody aliens are predicted to more than double in range‐size and herbaceous species to occupy up to 20% of the park area. In contrast, land‐use abandonment will open new invasion opportunities for woody aliens, but decrease invasion probability for naturalized and ornamental alien herbs as a consequence of colonization by native trees. This emphasizes the importance of interactions with the native vegetation either for facilitating or potentially for curbing invasions. Overall, our work highlights an additional and previously underestimated threat for the fragile mountain flora of the Alps already facing climate changes, land‐use transformations and overexploitation by tourism.  相似文献   

2.
We examined data comprising 1,028 successful and 967 failed introduction records for 596 species of alien reptiles and amphibians around the world to test for factors influencing establishment success. We found significant variations between families and between genera. The number of jurisdictions where a species was introduced was a significant predictor of the probability the species had established in at least one jurisdiction. All species that had been introduced to more than 10 jurisdictions (34 species) had established at least one alien population. We also conducted more detailed quantitative comparisons for successful (69 species) and failed (116 species) introductions to three jurisdictions (Great Britain, California and Florida) to test for associations with climate match, geographic range size, and history of establishment success elsewhere. Relative to failed species, successful species had better climate matches between the jurisdiction where they were introduced and their geographic range elsewhere in the world. Successful species were also more likely to have high establishment success rates elsewhere in the world. Cross-validations indicated our full model correctly categorized establishment success with 78–80% accuracy. Our findings may guide risk assessments for the import of live alien reptiles and amphibians to reduce the rate new species establish in the wild.  相似文献   

3.
Climate change and biological invasions are threatening biodiversity and ecosystem services worldwide. It has now been widely acknowledged that climate change will affect biological invasions. A large number of studies have investigated predicted shifts and other changes in the geographic ranges of invasive alien species related to climate change using modeling approaches. Yet these studies have provided contradictory evidence, and no consensus has been reached. We conducted a systematic review of 423 modeling case studies included in 71 publications that have examined the predicted effects of climate change on those species. We differentiate the approaches used in these studies and synthesize their main results. Our results reaffirm the major role of climate change as a driver of invasive alien species distribution in the future. We found biases in the literature both regarding the taxa, toward plants and invertebrates, and the areas of the planet investigated. Despite these biases, we found for the plants and vertebrates studied that climate change will more frequently contribute to a decrease in species range size than an increase in the overall area occupied. This is largely due to oceans preventing terrestrial invaders from spreading poleward. In contrast, we found that the ranges of invertebrates and pathogens studied are more likely to increase following climate change. An important caveat to these findings is that researchers have rarely considered the effects of climate change on transport, introduction success, or the resulting impacts. We recommend closing these research gaps, and propose additional avenues for future investigations, as well as opportunities and challenges for managing invasions under climate change.  相似文献   

4.
Understanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio‐economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid‐21st century. Based on responses from 36 experts in biological invasions, moderate (20%–30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions—transport, climate change and socio‐economic change—were predicted to significantly affect future impacts of alien species on biodiversity even under a best‐case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best‐case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post‐2020 Framework of the Convention on Biological Diversity.  相似文献   

5.
Montane regions worldwide have experienced relatively low plant invasion rates, a trend attributed to increased climatic severity, low rates of disturbance, and reduced propagule pressure relative to lowlands. Manipulative experiments at elevations above the invasive range of non‐native species can clarify the relative contributions of these mechanisms to montane invasion resistance, yet such experiments are rare. Furthermore, global climate change and land use changes are expected to cause decreases in snowpack and increases in disturbance by fire and forest thinning in montane forests. We examined the importance of these factors in limiting montane invasions using a field transplant experiment above the invasive range of two non‐native lowland shrubs, Scotch broom (Cytisus scoparius) and Spanish broom (Spartium junceum), in the rain–snow transition zone of the Sierra Nevada of California. We tested the effects of canopy closure, prescribed fire, and winter snow depth on demographic transitions of each species. Establishment of both species was most likely at intermediate levels of canopy disturbance, but at this intermediate canopy level, snow depth had negative effects on winter survival of seedlings. We used matrix population models to show that an 86% reduction in winter snowfall would cause a 2.8‐fold increase in population growth rates in Scotch broom and a 3.5‐fold increase in Spanish broom. Fall prescribed fire increased germination rates, but decreased overall population growth rates by reducing plant survival. However, at longer fire return intervals, population recovery between fires is likely to keep growth rates high, especially under low snowpack conditions. Many treatment combinations had positive growth rates despite being above the current invasive range, indicating that propagule pressure, disturbance, and climate can all strongly affect plant invasions in montane regions. We conclude that projected reductions in winter snowpack and increases in forest disturbance are likely to increase the risk of invasion from lower elevations.  相似文献   

6.
There is a poor understanding of the importance of biotic interactions in determining species distributions with climate change. Theory from invasion biology suggests that the success of species introductions outside of their historical ranges may be either positively (biotic acceptance) or negatively (biotic resistance) related to native biodiversity. Using data on fish community composition from two survey periods separated by approximately 28 years during which climate was warming, we examined the factors influencing the establishment of three predatory centrarchids: Smallmouth Bass (Micropterus dolomieu), Largemouth Bass (M. salmoides), and Rock Bass (Ambloplites rupestris) in lakes at their expanding northern range boundaries in Ontario. Variance partitioning demonstrated that, at a regional scale, abiotic factors play a stronger role in determining the establishment of these species than biotic factors. Pairing lakes within watersheds where each species had established with lakes sharing similar abiotic conditions where the species had not established revealed both positive and negative relationships between the establishment of centrarchids and the historical presence of other predatory species. The establishment of these species near their northern range boundaries is primarily determined by abiotic factors at a regional scale; however, biotic factors become important at the lake‐to‐lake scale. Studies of exotic species invasions have previously highlighted how spatial scale mediates the importance of abiotic vs. biotic factors on species establishment. Our study demonstrates how concepts from invasion biology can inform our understanding of the factors controlling species distributions with changing climate.  相似文献   

7.
1 An appraisal of non‐native invertebrate plant pest establishments in Great Britain, between 1970 and 2004, was carried out to improve our understanding of current invasion processes by non‐native plant pests, and to assist national strategies in managing the risks they pose. 2 A total of 164 establishments, comprising 50 natural colonists and 114 human‐assisted introductions, were recorded across 13 major taxonomic groups. 3 The mean rate of establishment was 22.1 species per 5‐year period: 19.1 and 3.0 species outside and inside protected cultivation, respectively. Despite the continuing rapid growth in international trade and a general perception that rates of pest invasions are accelerating, no significant temporal trends in the rate of establishments in Great Britain were detected, either for natural colonists or human‐assisted introductions, or for pests of plants grown indoors or outside. 4 The plant trade, particularly in ornamental plants, accounted for nearly 90% of human‐assisted introductions; apiculture, biological control, timber imports, transport stowaways and intentional releases each contributed less than 5%. Only eight (4.9%) of the establishments could be considered as having no direct potential economic impact because all other species have been recorded as feeding on cultivated plants. A greater proportion of establishments by both natural colonists and human‐assisted introductions occurred on non‐native, woody plants. 5 The present study confirms previous work in other European countries that highlight the predominant role of the ornamental plant trade in introducing new plant pests to the European continent, mainly from Asia and North America.  相似文献   

8.
Successful alien species invasion depends on many factors studied mostly in post invasion habitats, and subsequently summarized in frameworks tailored to describe the studied invasion. We used an existing expanded framework with three groups of contributing factors: habitat invisibility, system context and species invasiveness, to analyze the probability of alien species invasions in terrestrial communities of Maritime Antarctic in the future. We focused on the first two factor groups. We tested if the expanded framework could be used under a different scenario. We chose Point Thomas Oasis on King George Island to perform our analysis. Strong geographical barrier, low potential bioclimatic suitability and resource availability associated with habitat invasibility significantly reduce the likelihood of biological invasion in Antarctica. An almost full enemy release (low pressure of consumers), the high patchiness of the habitat, and the prevalence of open gaps also associated with habitat invasibility increase the possibility of invasion. The dynamics of functional connectivity, propagule pressure and spatio-temporal patterns of propagule arrival associated with human activity and climate change belonging to the system context contribute to an increase in the threat of invasions. Due to the still low land transport activity migration pathways are limited and will reduce the spread of alien terrestrial organisms by land. An effective way of preventing invasions in Antarctica seems to lie in reducing propagule pressure and eliminating alien populations as early as possible. The expanded conceptual framework opens up wider possibilities in analyzing invasions taking place in different systems and with multiple taxa.  相似文献   

9.
Aim Shifts in species ranges are a predicted and realized effect of global climate change; however, few studies have addressed the rates and consequence of such shifts, particularly in marine systems. Given ecological similarities between shifting and introduced species, we examined how our understanding of range shifts may be informed by the more established study of non‐native species introductions. Location Marine systems world‐wide. Methods Database and citation searches were used to identify 129 marine species experiencing range shifts and to determine spread rates and impacts on recipient communities. Analyses of spread rates were based on studies for which post‐establishment spread was reported in linear distance. The sizes of the effects of community impacts of shifting species were compared with those of functionally similar introduced species having ecologically similar impacts. Results Our review and meta‐analyses revealed that: (1) 75% of the range shifts found through the database search were in the poleward direction, consistent with climate change scenarios, (2) spread rates of range shifts were lower than those of introductions, (3) shifting species spread over an order of magnitude faster in marine than in terrestrial systems, and (4) directions of community effects were largely negative and magnitudes were often similar for shifters and introduced species; however, this comparison was limited by few data for range‐shifting species. Main conclusions Although marine range shifts are likely to proceed more slowly than marine introductions, the community‐level effects could be as great, and in the same direction, as those of introduced species. Because it is well‐established that introduced species are a primary threat to global biodiversity, it follows that, just like introductions, range shifts have the potential to seriously affect biological systems. In addition, given that ranges shift faster in marine than terrestrial environments, marine communities might be affected faster than terrestrial ones as species shift with climate change. Regardless of habitat, consideration of range shifts in the context of invasion biology can improve our understanding of what to expect from climate change‐driven shifts as well as provide tools for formal assessment of risks to community structure and function.  相似文献   

10.
Since the middle of the 20th century, six species of Ponto-Caspian amphipods (Chaetogammarus ischnus, C. warpachowskyi, Chelicorophium curvispinum, Dikerogammarus haemobaphes, Obesogammarus crassus, Pontogammarus robustoides), one Baikalian amphipod Gmelinoides fasciatus and one amphipod of Atlantic origin Gammarus tigrinus have expanded in Russia and adjacent regions. A wide variety of human mediated vectors such as deliberate and accidental introductions, natural migration via constructed inland waterways and high rates of spread, survival and reproduction in these species have facilitated rapid dispersal and successful establishment of these alien species. Causes of successful establishment of these invaders and potential consequences of the invasions including extinctions of native species in rivers, lakes and estuaries of north-western Russia are discussed.  相似文献   

11.
Aim To determine the potential combined effects of climate change and land transformation on the modelled geographic ranges of Banksia. Location Mediterranean climate South West Australian Floristic Region (SWAFR). Methods We used the species distribution modelling software Maxent to relate current environmental conditions to occurrence data for 18 Banksia species, and subsequently made spatial predictions using two simple dispersal scenarios (zero and universal), for three climate‐severity scenarios at 2070, taking the impacts of land transformation on species’ ranges into account. The species were chosen to reflect the biogeography of Banksia in the SWAFR. Results Climate‐severity scenario, dispersal scenario, biogeographic distribution and land transformation all influenced the direction and magnitude of the modelled range change responses for the 18 species. The predominant response of species to all climate change scenarios was range contraction, with exceptions for some northern and widespread species. Including land transformation in estimates of modelled geographic range size for the three climate‐severity scenarios generally resulted in smaller gains and larger declines in species ranges across both dispersal scenarios. Including land transformation and assuming zero dispersal resulted, as expected, in the greatest declines in projected range size across all species. Increasing climate change severity greatly increased the risk of decline in the 18 Banksia species, indicating the critical role of mitigating future emissions. Main conclusions The combined effects of climate change and land transformation may have significant adverse impacts on endemic Proteaceae in the SWAFR, especially under high emissions scenarios and if, as expected, natural migration is limiting. Although these results need cautious interpretation in light of the many assumptions underlying the techniques used, the impacts identified warrant a clear focus on monitoring across species ranges to detect early signs of change, and experiments that determine physiological thresholds for species in order to validate and refine the models.  相似文献   

12.
Aim Predictions of spread of non‐indigenous species allow for greater efficiency in managing invasions by targeting areas for preventative measures. The invasion sequence is a useful concept in predictions of spread, as it allows us to test hypotheses about the transport and establishment of propagules in novel habitats. Our aims are twofold: (1) to develop and validate multi‐stage invasion models for the introduced fishhook waterflea, Cercopagis pengoi, and (2) to assess how variability in the transport patterns of the propagules influences the accuracy and spatial extent for predictions of spread. Location New York State, USA. Methods We developed a two‐stage model for the spread of C. pengoi. First, we developed a stochastic gravity model for dispersal based on surveys of recreational boat traffic in New York State as a proxy for propagule pressure. We then modelled the probability of establishment based on predicted levels of propagule pressure and measures of lakes’ physicochemistry. In addition, we used Monte Carlo simulations based on the gravity model to propagate variability in boater traffic through the establishment model to assess how uncertainty in dispersal influenced predictions of spread. Results The amount recreationalists were willing to spend, lake area and population size of the city nearest to the destination lake were significant factors affecting boater traffic. In turn, boater traffic, lake area, specific conductance and turbidity were significant predictors of establishment. The inclusion of stochastic dispersal reduced the rate of false positives (i.e. incorrect prediction of an invasion) in detecting invasions at the upper 95% prediction interval for the probability of establishment. Main conclusions Combinations of measures of propagule pressure, habitat suitability and stochastic dispersal allow for the most accurate predictions of spread. Further, multi‐stage spread models may overestimate the extent of spread if stochasticity in early stages of the models is not considered.  相似文献   

13.
Although the problem of plant invasions is expected to increase with climate change, there is as yet little experimental evidence, in particular, for the effects of extreme weather events. We established communities of European meadow species, which were subjected to warming and extreme event (drought and deluge) treatments in a factorial design at an experimental garden in Zurich, Switzerland. Phylogenetically matched pairs of native and alien species (Bromus erectus, B. inermis, Trifolium pratense, T. hybridum, Lactuca serriola, and Conyza canadensis) were introduced into the communities to test if invader performance is favored by warming and extreme events, and if alien invaders perform better than native colonizers. With a warming of on average 0.3?°C, a higher cover of native plant communities was observed, while drought decreased cover in the short-term and lowered biomass. Germination, survival, and growth of the introduced species were lower under elevated temperature. Survival of all pairs and growth of Trifolium was greater in drought pots, while deluge had no effect. While the alien species showed a faster rate of increase in the number of leaves, mortality of alien species was greater than of native species. Overall, the performance of the focal species varied much more among taxonomic groups than native/alien provenances. The results suggest that with climate change, different types of extreme events will differ in the severity of their effects on native plant communities. Meanwhile, the effects of climate change on plant invasions are more likely to operate indirectly through the impacts on native vegetation.  相似文献   

14.
The human mediation of biological invasions is still an underestimated phenomenon. This paper attempts to show that introductions on varying spatial scales may strongly foster invasions throughout the whole invasion process. As shown by data from central Europe, invasions frequently result from an interplay of biological and anthropogenic mechanisms. The latter, however, cannot be explained nor predicted by ecological rules. This may be an important reason for the limited predictability of invasions. Initial introductions from a donor to a new range are here distinguished from following secondary releases within the new range. The rate of naturalisation is higher in deliberately introduced plants as compared to accidental introductions. Due to higher numbers of accidental introductions, such species contribute significantly to the pool of naturalised species. Secondary releases of alien species are frequently made over long periods subsequent to the initial introduction. They may mimic demographic and dispersal processes that lead to population growth and range expansion. They also offer a pathway to overcome spatial isolation in species whose propagules are not naturally moved long distances. This even holds for most of Germany's noxious alien plant species. Secondary releases may thus promote invasions even beyond the threshold of naturalisation. In consequence, attempts at prevention should focus on secondary releases as well as on initial introductions. In the last section of the paper, the final invasion stage subsequent to naturalisation is shown as a multi-scale phenomenon. In consequence, the classification of a species as 'invasive' depends on the perspective chosen. Using different biologically or anthropocentrically based approaches leads to sub-sets of alien species that overlap only partially. In conclusion, the term `invasive' should preferably be used in a broader sense to describe the entire invasion process. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Global change is driving a massive rearrangement of the world's biota. Trajectories of distributional shifts are shaped by species traits, the recipient environment and driving forces with many of the driving forces directly due to human activities. The relative importance of each in determining the distributions of introduced species is poorly understood. We consider 11 Australian Acacia species introduced to South Africa for different reasons (commercial forestry, dune stabilization and ornamentation) to determine how features of the introduction pathway have shaped their invasion history. Projections from species distribution models (SDMs) were developed to assess how the reason for introduction influences the similarity between climatic envelopes in native and alien ranges. A lattice model for an idealized invasion was developed to assess the relative contribution of intrinsic traits and introduction dynamics on the abundance and extent over the course of simulated invasions. SDMs show that alien populations of ornamental species in South Africa occupy substantially different climate space from their native ranges, whereas species introduced for forestry occupy a similar climate space in native and introduced ranges. This may partly explain the slow spread rates observed for some alien ornamental plants. Such mismatches are likely to become less pronounced with the current drive towards ‘eco gardens’ resulting in more introductions of ornamental species with a close climate match between native and newly introduced regions. The results from the lattice model showed that the conditions associated with the introduction pathway (especially introduction pressure) dominate early invasion dynamics. The placement of introduction foci in urban areas limited the extent and abundance of invasive populations. Features of introduction events appear to initially mask the influence of intrinsic species traits on invasions and help to explain the relative success of species introduced for different purposes. Introduction dynamics therefore can have long‐lasting influences on the outcomes of species redistributions, and must be explicitly considered in management plans.  相似文献   

16.
1. Temperate regions with fish communities dominated by cold‐water species (physiological optima <20 °C) are vulnerable to the effects of warming temperatures caused by climate change, including displacement by non‐native cool‐water (physiological optima 20–28 °C) and warm‐water fishes (physiological optima >28 °C) that are able to establish and invade as the thermal constraints on the expression of their life history traits diminish. 2. England and Wales is a temperate region into which at least 38 freshwater fishes have been introduced, although 14 of these are no longer present. Of the remaining 24 species, some have persisted but failed to establish, some have established populations without becoming invasive and some have become invasive. The aim of the study was to predict the responses of these 24 non‐native fishes to the warming temperatures of England and Wales predicted under climate change in 2050. 3. The predictive use of climate‐matching models and an air and water temperature regression model suggested that there are six non‐native fishes currently persistent but not established in England and Wales whose establishment and subsequent invasion would benefit substantially from the predicted warming temperatures. These included the common carp Cyprinus carpio and European catfish Silurus glanis, fishes that also exert a relatively high propagule pressure through stocking to support angling and whose spatial distribution is currently increasing significantly, including in open systems. 4. The potential ecological impacts of the combined effects of warming temperatures, current spatial distribution and propagule pressure on the establishment and invasion of C. carpio and Sglanis were assessed. The ecological consequences of Ccarpio invasion were assessed as potentially severe in England and Wales, with impacts likely to relate to habitat destruction, macrophyte loss and increased water turbidity. However, evidence of ecological impacts of Sglanis elsewhere in their introduced range was less clear and so their potential impacts in England and Wales remain uncertain.  相似文献   

17.
Understanding the factors that determine rates of range expansion is not only crucial for developing risk assessment schemes and management strategies for invasive species, but also provides important insight into the ability of species to disperse in response to climate change. However, there is little knowledge on why some invasions spread faster than others at large spatiotemporal scales. Here, we examine the effects of human activities, species traits and characteristics of the invaded range on spread rates using a global sample of alien reptile and amphibian introductions. We show that spread rates vary remarkably among invaded locations within a species, and differ across biogeographical realms. Spread rates are positively related to the richness of native congeneric species and human‐assisted dispersal in the invaded range but are negatively correlated with topographic heterogeneity. Our findings highlight the importance of environmental characteristics and human‐assisted dispersal in developing robust frameworks for predicting species' range shifts.  相似文献   

18.
Blackburn  Tim M.  Ewen  John G. 《EcoHealth》2016,14(1):61-73

We provide an overview of the current state of knowledge of parasites in biological invasions by alien species. Parasites have frequently been invoked as drivers of invasions, but have received less attention as invasion passengers. The evidence to date that parasites drive invasions by hosts is weak: while there is abundant evidence that parasites have effects in the context of alien invasions, there is little evidence to suggest that parasites have differential effects on alien species that succeed versus fail in the invasion process. Particular case studies are suggestive but not yet informative about general effects. What evidence there is for parasites as aliens suggests that the same kind of factors determine their success as for non-parasites. Thus, availability is likely to be an important determinant of the probability of translocation. Establishment and spread are likely to depend on propagule pressure and on the environment being suitable (all necessary hosts and vectors are present); the likelihood of both of these dependencies being favourable will be affected by traits relating to parasite life history and demography. The added complication for the success of parasites as aliens is that often this will depend on the success of their hosts. We discuss how these conclusions help us to understand the likely effects of parasites on the success of establishing host populations (alien or native).

  相似文献   

19.
Global factors, such as climate change, international trade and introductions of exotic species are often elicited as contributors to the unprecedented rate of disease emergence, but few studies have partitioned these factors for global pandemics. Although contemporary correlative species distribution models (SDMs) can be useful for predicting the spatial patterns of emerging diseases, they focus mainly on the fundamental niche (FN) predictors (i.e. abiotic climate and habitat factors), neglecting dispersal and propagule pressure predictors (PP, number of non-native individuals released into a region). Using a validated, predictive and global SDM, we show that both FN and PP accounted for significant, unique variation to the distribution of the chytrid fungus Batrachochytrium dendrobatidis (Bd), a pathogen implicated in the declines and extinctions of over 200 amphibian species worldwide. Bd was associated positively with vegetation, total trade and introduced amphibian hosts, nonlinearly with annual temperature range and non-significantly with amphibian leg trade or amphibian species richness. These findings provide a rare example where both FN and PP factors are predictive of a global pandemic. Our model should help guide management of this deadly pathogen and the development of other globally predictive models for species invasions and pathogen emergence influenced by FN and PP factors.  相似文献   

20.
Aim Invasive alien species are a growing threat to biodiversity, and identifying the mechanisms that enable these species to establish viable populations in their new environment is paramount for management of the problems they pose. Using an unusually large number of both failed and successful documented introductions of parakeets (Aves: Psittacidae) in Europe, we test two of the major hypotheses on the establishment success of invading species, namely the climate‐matching and the human‐activity hypothesis. Location European human population centres where ring‐necked parakeet (Psittacula krameri) and/or monk parakeet (Myiopsitta monachus) introductions have occurred. Methods Data on ring‐necked and monk parakeet introductions in Europe were gathered from various sources, including published books and articles, but also from unpublished reports and local grey literature. Information was verified with experts from the region under consideration. In order to test the climate‐matching hypothesis, we verified whether the climatic factors that determine the parakeets’ native ranges also explain establishment success in Europe. Parakeet occurrence data from the native ranges were analysed using the presence‐only modelling method Maxent , and correlations between parakeet establishment and climatic and anthropogenic variables in Europe were assessed using both stepwise logistic regression and the information‐theoretic model selection approach. Results The establishment success of ring‐necked and monk parakeets was found to be positively associated with human population density, and, both in the native and in the introduced regions, parakeet occurrence was negatively correlated with the number of frost days. Thus, parakeets are more likely to establish in warmer and human‐dominated areas. Main conclusions The large number of independent parakeet introductions in Europe allows us to test the often‐used climate‐matching and human‐activity hypotheses at the species level. We show that both hypotheses offer insight into the invasion process of monk and ring‐necked parakeets. Our results suggest that, in the future, parakeet establishment probability may increase even further because global warming is likely to cause a decrease in the number of frost days and because urbanization and human populations are still increasing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号