首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The eutrophication status of the entire Baltic Sea is classified using a multi-metric indicator-based assessment tool. A total of 189 areas are assessed using indicators where information on reference conditions (RefCon), and acceptable deviation (AcDev) from reference condition could be combined with national monitoring data from the period 2001?C2006. Most areas (176) are classified as ??affected by eutrophication?? and only two open water areas and 11 coastal areas are classified as ??unaffected by eutrophication??. The classification is made by application of the recently developed HELCOM Eutrophication Assessment Tool (HEAT), which is described in this paper. The use of harmonized assessment principles and the HEAT tool allows for direct comparisons between different parts of the Baltic Sea despite variations in monitoring activities. The impaired status of 176 areas is directly related to nutrient enrichment and elevated loads from upstream catchments. Baltic Sea States have implemented nutrient management strategies since years which have reduced nutrient inputs. However, eutrophication is still a major problem for large parts of the Baltic Sea. The 2007 Baltic Sea Action Plan is projected to further reduce nutrient inputs aiming for a Baltic Sea unaffected by eutrophication by 2021.  相似文献   

2.
This study follows up on a previous assessment of eutrophication status in the Baltic Sea, which covered the period 2001–2006. The updated assessment is based on new eutrophication targets, an improved eutrophication assessment tool (HEAT 3.0) as well as monitoring data for the period 2007–2011. Based on classifications of eutrophication status in all Baltic Sea sub-basins, we reveal that during the assessment period 2007–2011, the entire open Baltic Sea was affected by eutrophication. This is a different conclusion compared to earlier assessments and studies. Whilst the confidence of the assessment was high or moderate in most basins, there were indications of declining confidence in some assessment units and improved confidence in others. The problems in confidence were mainly related to scarcity of in situ monitoring data on chlorophyll-a and Secchi depth. The potential implications of our results, e.g. the expansion of the eutrophic zone and declining confidence in the classifications of eutrophication status, are discussed in relation to the existing Baltic Sea-wide nutrient management strategy as well as future assessment activities.  相似文献   

3.
茅尾海营养状况及其来源研究   总被引:2,自引:0,他引:2  
根据2008年茅尾海海域水质调查结果,采用营养指数法、营养状态质量指数法、有机污染指数法对海湾营养状况进行了评价,并结合2007年入海污染源调查结果,探讨了茅尾海的营养盐来源。结果表明:茅尾海受无机氮污染较重,海域处于呈富营养状态,有机污染程度属2级,表明开始受到有机污染。营养盐高值区集中在北部海域和东部海域。钦江、茅岭江等入海河流携带入海的营养盐是海域营养的主要来源,占入海污染物总量的79%以上,其次来自钦州湾外海的混合排污口。2001~2007年茅尾海DIN、DIP年均浓度分别与入海河流氮、磷营养盐入海负荷呈显著正相关,两者的相关系数分别为0.873和0.824。  相似文献   

4.
Rönnberg  Cecilia  Bonsdorff  Erik 《Hydrobiologia》2004,514(1-3):227-241
Eutrophication of coastal waters is a global phenomenon. the amounts of nutrients in the brackish water of the Baltic Sea have increased several times during the last century, with severe ecological effects on the biota. With the increasing environmental problems caused by nutrient over-enrichment, public awareness to the problem has also risen. The Baltic Sea cannot be regarded as a uniform water mass, and area-specific ecological responses can be described. Changes in and detection of eutrophication-related parameters are discussed in relation to a generalized conceptual eutrophication model for the Baltic Sea. The cascading trophic and ecosystem-responses to eutrophication in 9 different sub-regions of the Baltic Sea are illustrated and discussed. The results clearly show the need not only for a common remedy for the Baltic Sea, but primarily show the importance of regional ecological assessment in relation to basin-wide eutrophication.  相似文献   

5.
During the last decades human activity has altered the natural cycle of nitrogen and phosphorus on a global scale, producing significant emissions to waters. In Europe, the amount of nutrients discharged from rivers to coastal waters as well as the effects of mitigation measures in place are known only partially, with no consistent temporal and spatial cover. In this study, we quantify the loads and concentration of nitrogen and phosphorus discharged in the European seas over the period 1985–2005, and we discuss their impact on coastal ecosystems. To support our analysis, a catchment database covering the whole of Europe was developed together with data layers of nutrients diffuse and point sources, and the statistical model green was used to estimate the annual loads of nitrogen and phosphorus discharged in all European seas. The results of this study show that during the last 20 years, Europe has discharged 4.1–4.8 Tg yr?1 of nitrogen and 0.2–0.3 Tg yr?1 of phosphorus to its coastal waters. We show that beside the North Sea and part of the Baltic Sea, annual nutrient exports have not changed significantly, in spite of the implementation of measures to reduce nutrient sources, and that the N : P ratio has increased steadily, especially in the North, Mediterranean and Atlantic seas. The response of river basins to changes in inputs was not linear, but influenced by climatic variations and nutrients previously accumulated in soils and aquifers. An analysis of the effects of European environmental policies shows that measures to reduce phosphorus were more successful that those tackling nitrogen and that policies aimed at point sources were more effective or more effectively implemented than those controlling pollution from diffuse sources. The increase of the N : P ratio could fuel eutrophication in N‐limited coastal ecosystems, reducing biodiversity and the ecosystem's resilience to future additional anthropogenic stress, such as climate change.  相似文献   

6.
Long-term modeling of large-scale nutrient cycles in the entire Baltic Sea   总被引:1,自引:1,他引:0  
Management of eutrophication in marine ecosystems requires a good understanding of nutrient cycles at the appropriate spatial and temporal scales. Here, it is shown that the biogeochemical processes controlling large-scale eutrophication of the Baltic Sea can be described with a fairly aggregated model: simple as necessary Baltic long-term large scale (SANBALTS). This model simulates the dynamics of nitrogen, phosphorus, and silica driven by the external inputs, the major physical transports, and the internal biogeochemical fluxes within the seven major sub-basins. In a long-term hindcast (1970–2003), the model outputs reasonably matched observed concentrations and fluxes. The model is also tested in a scenario where nutrient inputs are reduced to levels that existed over 100 years ago. The simulated response of the Baltic Sea trophic state to this very large reduction is verified by a similar simulation made with a much more complex process-oriented model. Both models indicate that after initial, rather rapid changes the system goes into much slower evolution, and nutrient cycles would not become balanced even after 130 years. Guest editors: J. H. Andersen & D. J. Conley Eutrophication in Coastal Ecosystems: Selected papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006, Nyborg, Denmark  相似文献   

7.
The Archipelago Sea in the northern Baltic has been subjected to large-scale cultural, economic and ecological changes, especially during the last three decades. Environmental threats originate from both basin-wide sources, affecting the whole Baltic Sea, and from local sources, such as nutrient loading from nearby river outflows, intense agriculture, fish farming, ships' traffic, boating, and man's physical impacts on the landscape and seascape. Both the Åland archipelago and the Archipelago Sea have been listed as hot-spots by HELCOM, Baltic Marine Environment Protection Commission, eutrophication being the main threat to the aquatic environment. In this study we review how biological communities have reacted to an increase in man-induced multisource stresses. Changes in plankton, benthic animals, macroalgal assemblages and fish communities have been documented in most parts of the Baltic Sea since the 1970s. What remains to be understood is the importance of these structural changes for the functioning of the Archipelago Sea ecosystem under various levels of human impact.  相似文献   

8.
Eutrophication (nutrient enrichment and subsequent processes) and its adverse ecosystem effects have been discussed as main issues over the last 20 years in international conferences and conventions for the protection of the marine environment such as the North Sea Conferences and the 1992 OSPAR Convention (OSPAR; which combined and updated the 1972 Oslo Convention on dumping waste at the sea and the 1974 Paris Convention on land-based sources of marine pollution). OSPAR committed itself to reduce phosphorus and nitrogen inputs (in the order of 50% compared with 1985) into the marine areas and ‘to combat eutrophication to achieve, by the year 2010, a healthy marine environment where eutrophication does not occur’. Within OSPAR, the Comprehensive Procedure (COMPP) has been developed and used to assess the eutrophication status of the OSPAR maritime area in an harmonised way. This is based on classification in terms of the following types of areas Non-Problem Areas (no effects), Potential Problem Areas (not enough data to assess effects) and Problem Areas (effects due to elevated nutrients and/or due to transboundary transport from adjacent areas). The COMPP consists of a set of harmonised assessment criteria with their area-specific assessment levels and an integrated area classification approach. The criteria cover all aspects of nutrient enrichment (nutrient inputs, concentrations and ratios) as well as possible direct effects (e.g. increased levels of nuisance and/or toxic phytoplankton species, shifts and/or losses of submerged aquatic vegetation) and indirect effects (e.g. oxygen deficiency, changes and/or death of benthos, death of fish, algal toxins). The COMPP also includes supporting environmental factors. It takes account of synergies and harmonisation with the EC Water Framework Directive, and has formed a major basis for the EC eutrophication guidance. Recently, additional components, such as total nitrogen, total phosphorus and transboundary transports have been included in the assessment of, e.g. the German Bight. The second application of the COMPP resulting in an update of the eutrophication status of the OSPAR maritime area will be finalised in 2008, and will include the agreed integrated set of Ecological Quality Objectives (EcoQOs) with respect to eutrophication. Guest editors: J. H. Andersen & D. J. Conley Eutrophication in Coastal Ecosystems: Selected papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006, Nyborg, Denmark  相似文献   

9.
Eutrophication management is still one of the major challenges in the Baltic Sea region. Intense transformation processes in several Baltic Sea states have led to drastic changes in e.g., landuse and thereby nutrient emissions and water quality. Several future development directions are possible. The Oder catchment – lagoon – coastal water system serves as a pilot study area, since it has a major influence on the nutrient loads into the Baltic Sea and about 90% of the catchment is located in Poland, a state with transitional economy. Different scenarios for landuse changes in the Oder catchment are developed and their consequences on nutrient emissions simulated. Next to politically induced changes of agricultural landuse in general, specific aspects such as cultivation of energy maize and increased animal stocks are considered. Nitrogen emissions are likely to increase due to agricultural landuse changes whereas phosphorus emissions will not change or even decrease according to the application of the EC‐Urban Waste Water Treatment Directive. Resulting nitrogen loads to the Oder Lagoon could increase up to 23%, phosphorus loads could decrease by 11% compared to 2005. These trends may lead to higher nitrogen availability compared to phosphorus at least in the Oder lagoon. Interannual differences in discharge also have profound effects on nutrient emissions. A good status of the Oder river basin – lagoon – coastal sea system according to EC‐Directives is not very likely to be achieved under the investigated circumstances. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Vegetated soft bottoms are under pressure due to a number of anthropogenic stressors, such as coastal exploitation and eutrophication. The ecological value of these biotopes has gained recognition through international conventions and the EU directives, which request methods for assessment of the environmental status of coastal areas. However, currently there is no appropriate method for assessing the status of shallow vegetated soft bottoms in the northern Baltic Sea. Therefore, we developed a macrophyte community index and tested its response in relation to important pressures (eutrophication and boating activity) and natural gradients (topographic openness, depth and salinity) on shallow bays in the northern Baltic Sea. The macrophyte index, and hence the proportion of sensitive to tolerant species, decreased with increasing phosphorus concentration, turbidity and level of boating activity, while the cumulative cover of macrophytes only showed a negative trend in response to increasing turbidity. Juvenile fish abundance was positively related to the index, indicating importance of sensitive macrophyte species for ecosystem functioning. As the index was tested in a wide geographic area, and showed a uniform response across natural gradients, it is a promising tool for assessment of environmental status that may be applied also in other vegetated soft-bottom areas.  相似文献   

11.
Raúl Ochoa‐Hueso  Elizabeth T. Borer  Eric W. Seabloom  Sarah E. Hobbie  Anita C. Risch  Scott L. Collins  Juan Alberti  Hctor A. Bahamonde  Cynthia S. Brown  Maria C. Caldeira  Pedro Daleo  Chris R. Dickman  Anne Ebeling  Nico Eisenhauer  Ellen H. Esch  Anu Eskelinen  Victoria Fernndez  Sabine Güsewell  Blanca Gutierrez‐Larruga  Kirsten Hofmockel  Ramesh Laungani  Eric Lind  Andrea Lpez  Rebecca L. McCulley  Joslin L. Moore  Pablo L. Peri  Sally A. Power  Jodi N. Price  Suzanne M. Prober  Christiane Roscher  Judith M. Sarneel  Martin Schütz  Julia Siebert  Rachel J. Standish  Sergio Velasco Ayuso  Risto Virtanen  Glenda M. Wardle  Georg Wiehl  Laura Yahdjian  Tara Zamin 《Global Change Biology》2020,26(8):4572-4582
Microbial processing of aggregate‐unprotected organic matter inputs is key for soil fertility, long‐term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro‐ and micro‐nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak‐season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.  相似文献   

12.
1. Changes in nutrients and climate have occurred over approximately the same timescales in many European lake catchments. Here, we attempt to interpret the sedimentary diatom record of a large shallow lake, Loch Leven, in relation to these pressures using information gained from analysis of long‐term data sets of water quality, climate and planktonic diatoms. 2. The core data indicate the enrichment of Loch Leven starting in c. 1800–1850, most likely from agricultural practices in the catchment, with a more marked phase since c. 1940–1950 caused by increased phosphorus inputs from sewage treatment works, land drainage and a woollen mill. 3. While the recent diatom plankton remains are dominated by taxa associated with nutrient‐rich conditions, an increase in Aulacoseira subarctica relative to Stephanodiscus taxa since the mid‐1980s suggests that reductions in external catchment sources of nutrients (since 1985) may have resulted in partial recovery. This observation accords well with the long‐term monitoring series of water chemistry and phytoplankton. 4. On a decadal‐centennial scale, the eutrophication signal in the sediment record outweighs any evidence of climate as a control on the diatom community. However, at an inter‐annual scale, while the diatom data exhibit high variability, there are several changes in species composition in the recent fossil record that may be attributed to climatic controls. 5. The study highlights the value of a palaeolimnological approach, particularly when coupled with long‐term data sets, for developing our understanding of environmental change at a range of temporal scales. The diatom record in the sediment can be used effectively to track recovery from eutrophication, but requires greater understanding of contemporary ecology to fully interpret climate impacts. 6. The study illustrates the complexity of ecosystem response to synchronous changes in nutrients and climate, and the difficulty of disentangling the effects of these multiple, interacting pressures.  相似文献   

13.
Invasive species and bottom‐water hypoxia both constitute major global threats to the diversity and integrity of marine ecosystems. These stressors may interact with unexpected consequences, as invasive species that require an initial environmental disturbance to become established can subsequently become important drivers of ecological change. There is recent evidence that improved bottom‐water oxygen conditions in coastal areas of the northern Baltic Sea coincide with increased abundances of the invasive polychaetes Marenzelleria spp. Using a reactive‐transport model, we demonstrate that the long‐term bioirrigation activities of dense Marenzelleria populations have a major impact on sedimentary phosphorus dynamics. This may facilitate the switch from a seasonally hypoxic system back to a normoxic system by reducing the potential for sediment‐induced eutrophication in the upper water column. In contrast to short‐term laboratory experiments, our simulations, which cover a 10‐year period, show that Marenzelleria has the potential to enhance long‐term phosphorus retention in muddy sediments. Over time bioirrigation leads to a substantial increase in the iron‐bound phosphorus content of sediments while reducing the concentration of labile organic carbon. As surface sediments are maintained oxic, iron oxyhydroxides are able to persist and age into more refractory forms. The model illustrates mechanisms through which Marenzelleria can act as a driver of ecological change, although hypoxic disturbance or natural population declines in native species may be needed for them to initially become established. Invasive species are generally considered to have a negative impact; however, we show here that one of the main recent invaders in the Baltic Sea may provide important ecosystem services. This may be of particular importance in low‐diversity systems, where disturbances may dramatically alter ecosystem services due to low functional redundancy. Thus, an environmental problem in one region may be either exacerbated or alleviated by a single species from another region, with potentially ecosystem‐wide consequences.  相似文献   

14.
Variability of nutrient limitation in the Archipelago Sea,SW Finland   总被引:1,自引:0,他引:1  
Kirkkala  T.  Helminen  H.  Erkkilä  A. 《Hydrobiologia》1997,356(1-3):117-126
Over a two year study period, zooplankton was sampledin Gazi Bay, Kenya, using a 335 μm mesh size Bongonet. Two Way Indicator Species Analysis (TWINSPAN)classification technique demonstrated that rainfalland tidal regime had substantial influence on thezooplankton community structure. Samples collectedduring the rainy season months clustered together whentreated with TWINSPAN. Furthermore, theclustering was more pronounced for neap tidesamples than for spring tide ones. Samples obtainedduring spring tide did not give a clear cut pattern. Canonical Correspondence Analysis (C.C.A.) confirmedthese findings, a clustering together of rainy/neaptide samples; and little separation (based onenvironmental variables) between samplingstations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Fish consumption is increasing globally. Overfishing puts pressure on fisheries, but aquaculture provides an alternative to satisfy the growing need for seafood. However, nutrient emissions from aquaculture contribute to eutrophication, and raising fish from the top of the food chain is inefficient. Here we use the approach of industrial ecology and report ImPACT decomposition analysis of the drivers of nutrient emissions to the Baltic Sea from rainbow trout aquaculture in Finland during 1980?2007. During this period, the nitrogen load studied increased markedly and was 522 tonnes in 2007. The phosphorus load quadrupled and then returned to its original level of about 65 tonnes. The Finnish population increased slightly, while the average affluence level increased significantly. Total salmonid consumption increased substantially during the period. The increasing percentage of imported salmonids and improvements in domestic aquaculture technology ended the period of strong growth of emissions in the 1980s. Decreasing the nutrient load through reductions in salmonid consumption in the future is unlikely, due to health benefits and consumer preferences. Replacing domestic production with import of salmonids raises questions regarding outsourcing of the environmental impact, and regarding rural development in Finland. Major improvements in production technology are not in sight. New perspectives on rainbow trout aquaculture may be needed, including using feed from the Baltic Sea, thus closing the nutrient cycle or changing consumption and production to herbivorous fish species.  相似文献   

16.
Eutrophication of the Baltic Sea has become a serious concern in recent decades. To provide a potential means for quality assessments of coastal waters in this area, we collected a data set of 49 embayments in the Gulf of Finland, and explored the relationship between surface sediment diatom assemblages and 15 environmental variables, with special emphasis on nutrients. Total dissolved nitrogen, total phosphorus, depth, and salinity all accounted for significant and independent fractions of variation in the diatom data and explained 34% of the total variation. There were clear changes in diatom assemblage structures along the nutrient gradients. Although these changes were gradual, we could identify a number of taxa that were more abundant in a particular nutrient environment. These taxa could be used as potential indicators of the quality of coastal waters in the Baltic Sea. Diatom assemblages that were least affected by nutrient enrichment included a variety of benthic species and a relatively high species richness. Small planktonic taxa such as Cyclotella atomus Hustedt, Cyclotella meneghiniana Kützing and Thalassiosira pseudonana Hasle and Heimdal were good indicators of highly elevated nutrient concentrations (>600 lg·L?1 total dissolved nitrogen and 60 lg·L?1 total phosphorus) together with low species richness. The first appearance of these small planktonic taxa in regular monitoring could be used as an early warning sign for deteriorating water quality. Diatoms could be applied to water quality classification and monitoring purposes in the coastal waters of the Baltic Sea area using techniques such as weighted‐averaging regression and calibration.  相似文献   

17.
A common and established view is that increased inputs of nutrients to the sea, for example via river flooding, will cause eutrophication and phytoplankton blooms in coastal areas. We here show that this concept may be questioned in certain scenarios. Climate change has been predicted to cause increased inflow of freshwater to coastal areas in northern Europe. River waters in these areas are often brown from the presence of high concentrations of allochthonous dissolved organic carbon (humic carbon), in addition to nitrogen and phosphorus. In this study we investigated whether increased inputs of humic carbon can change the structure and production of the pelagic food web in the recipient seawater. In a mesocosm experiment unfiltered seawater from the northern Baltic Sea was fertilized with inorganic nutrients and humic carbon (CNP), and only with inorganic nutrients (NP). The system responded differently to the humic carbon addition. In NP treatments bacterial, phytoplankton and zooplankton production increased and the systems turned net autotrophic, whereas the CNP-treatment only bacterial and zooplankton production increased driving the system to net heterotrophy. The size-structure of the food web showed large variations in the different treatments. In the enriched NP treatments the phytoplankton community was dominated by filamentous >20 µm algae, while in the CNP treatments the phytoplankton was dominated by picocyanobacteria <5 µm. Our results suggest that climate change scenarios, resulting in increased humic-rich river inflow, may counteract eutrophication in coastal waters, leading to a promotion of the microbial food web and other heterotrophic organisms, driving the recipient coastal waters to net-heterotrophy.  相似文献   

18.
19.
During past decades, many lakes underwent drastic human‐caused changes in trophic state with strong implications for population dynamics and food web processes. We investigated the influence of trophic state on nutrient allocation into Daphnia resting eggs. The production of resting eggs is an important survival strategy, allowing Daphnia to cope with unfavorable environmental conditions. Allocation of essential nutrients into resting eggs may crucially influence embryonic development and offspring survival and thus is of great ecological and evolutionary interest. The capacity of Daphnia to adjust the allocation of nutrients into resting eggs may depend on the dietary nutrient supply, which may vary with trophic state‐related changes in the phytoplankton community composition. Resting eggs were isolated from sediment cores taken from Lake Constance, a large prealpine lake with a distinct eutrophication and reoligotrophication history, and analyzed for elemental (carbon, nitrogen, and phosphorus) and biochemical (sterols and fatty acids) nutrients. Carbon allocation into Daphnia resting eggs continuously decreased over time, irrespective of changes in trophic state. The allocation of nitrogen into Daphnia resting eggs followed the changes in trophic state, that is, nitrogen concentrations in resting eggs increased with eutrophication and decreased again with reoligotrophication. The allocation of phosphorus, sterols and long‐chain polyunsaturated fatty acids, such as eicosapentaenoic acid, into Daphnia resting eggs did not change significantly over time. Changes in trophic state strikingly influenced all trophic levels in Lake Constance. However, nutrient allocation into Daphnia resting eggs was mostly resilient to changes in lake trophic state.  相似文献   

20.
1. As long‐term observational lake records continue to lengthen, the historical overlap with lake sediment records grows, providing increasing opportunities for placing the contemporary ecological status of lakes in a temporal perspective. 2. Comparisons between long‐term data sets and sediment records, however, require lake sediments to be accurately dated and for sediment accumulation rates to be sufficiently rapid to allow precise matching with observational data. 3. The critical role of the sediment record in this context is its value in tracking the changing impact of human activity on a lake from a pre‐disturbance reference through to the present day. 4. Here, we use data from a range of lakes across Europe presented as case studies in this Special Section. The seven sites considered all possess both long‐term observational records and high‐quality sediment records. Our objective is to assess whether recent climate change is having an impact on their trophic status and in particular whether that impact can be disentangled from the changes associated with nutrient pollution. 5. The palaeo‐data show clear evidence for the beginning of nutrient pollution varying from the mid‐nineteenth century at Loch Leven to the early and middle twentieth century at other sites. The monitoring data show different degrees of recovery when judged against the palaeo‐reference. 6. The reason for limited recovery is attributed to continuing high nutrient concentrations related to an increase in diffuse nutrient loading or to internal P recycling, but there is some evidence that climate change may be playing a role in offsetting recovery at some sites. If this is the case, then lake ecosystems suffering from eutrophication may not necessarily return to their pre‐eutrophication reference status despite the measures that have been taken to reduce external nutrient loading. 7. The extent to which future warming might further limit such recovery can be evaluated only by continued monitoring combined with the use of palaeo‐records that set the pre‐eutrophication reference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号