首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Inteins are rare, translated genetic parasites mainly found in bacteria and archaea, while spliceosomal introns are distinctly eukaryotic features abundant in most nuclear genomes. Using targeted metagenomics, we discovered an intein in an Atlantic population of the photosynthetic eukaryote, Bathycoccus, harbored by the essential spliceosomal protein PRP8 (processing factor 8 protein). Although previously thought exclusive to fungi, we also identified PRP8 inteins in parasitic (Capsaspora) and predatory (Salpingoeca) protists. Most new PRP8 inteins were at novel insertion sites that, surprisingly, were not in the most conserved regions of the gene. Evolutionarily, Dikarya fungal inteins at PRP8 insertion site a appeared more related to the Bathycoccus intein at a unique insertion site, than to other fungal and opisthokont inteins. Strikingly, independent analyses of Pacific and Atlantic samples revealed an intron at the same codon as the Bathycoccus PRP8 intein. The two elements are mutually exclusive and neither was found in cultured Bathycoccus or other picoprasinophyte genomes. Thus, wild Bathycoccus contain one of few non-fungal eukaryotic inteins known and a rare polymorphic intron. Our data indicate at least two Bathycoccus ecotypes exist, associated respectively with oceanic or mesotrophic environments. We hypothesize that intein propagation is facilitated by marine viruses; and, while intron gain is still poorly understood, presence of a spliceosomal intron where a locus lacks an intein raises the possibility of new, intein-primed mechanisms for intron gain. The discovery of nucleus-encoded inteins and associated sequence polymorphisms in uncultivated marine eukaryotes highlights their diversity and reveals potential sexual boundaries between populations indistinguishable by common marker genes.  相似文献   

2.
Only two nuclear encoded inteins have been described. The first, SceVMA, was found in a vacuolar ATPase gene of Saccharomyces cerevisiae and related yeasts. The second, CnePRP8, was found in the PRP8 gene of Cryptococcus neoformans. CnePRP8 contains protein sequences associated with intein splicing but no endonuclease domain. We compared allelic mini-inteins in both varieties of C. neoformans (var. neoformans and var. grubii) and in the related primary pathogen C. gattii to study the evolution of both the mini-intein and the host. We also describe a full-length, endonuclease-containing intein in Cryptococcus laurentii, a moderately distant relation of C. neoformans. We did not detect an intein in the PRP8 gene of other species of Cryptococcus including species closely related to the C. neoformans/C. gattii group. It is therefore probable that the C. neoformans/C. gattii mini-intein was derived from horizontal transfer in which C. laurentii or another intein-containing species was the source.  相似文献   

3.
An intein is a protein sequence embedded within a precursor protein that is excised during protein maturation. Inteins were first found encoded in the VMA gene of Saccharomyces cerevisiae. Subsequently, they have been found in diverse organisms (eukaryotes, archaea, eubacteria and viruses). The VMA intein has been found in various saccharomycete yeasts but not in other fungi. Different inteins have now been found widely in the fungi (ascomycetes, basidiomycetes, zygomycetes and chytrids) and in diverse proteins. A protein distantly related to inteins, but closely related to metazoan hedgehog proteins, has been described from Glomeromycota. Many of the newly described inteins contain homing endonucleases and some of these are apparently active. The enlarged fungal intein data set permits insight into the evolution of inteins, including the role of horizontal transfer in their persistence. The diverse fungal inteins provide a resource for biotechnology using their protein splicing or homing endonuclease capabilities.  相似文献   

4.

Inteins (internal proteins) are mobile genetic elements, inserted in housekeeping proteins, with self-splicing properties. Some of these elements have been recently pointed out as modulators of genetic expression or protein function. Herein, we evaluated, in silico, the distribution and phylogenetic patterns of PRP8 intein among 93 fungal strains of the order Onygenales. PRP8 intein(s) are present in most of the species (45/49), mainly as full-length inteins (containing both the Splicing and the Homing Endonuclease domains), and must have transferred vertically in all lineages, since their phylogeny reflects the group phylogeny. While the distribution of PRP8 intein(s) varies among species of Onygenaceae family, being absent in Coccidioides spp. and present as full and mini-intein in other species, they are consistently observed as full-length inteins in all evaluated pathogenic species of the Arthrodermataceae and Ajellomycetaceae families. This conservative and massive PRP8 intein presence in Ajellomycetacean and Arthrodermatecean species reinforces the previous idea that such genetic elements do not decrease the fungal fitness significantly and even might play some role in the host–pathogen relationship, at least in these two fungal groups. We may better position the species Ophidiomyces ophiodiicola (with no intein) in the Onygenaceae family and Onygena corvina (with a full-length intein) as a basal member in the Arthrodermataceae family.

  相似文献   

5.
Strains of Botrytis cinerea are polymorphic for the presence of an intein in the Prp8 gene (intein +/?). The intein encodes a homing endonuclease (HEG). During meiosis in an intein +/? heterozygote, the homing endonuclease initiates intein ‘homing’ by inducing gene conversion. In such meioses, the homing endonuclease triggers gene conversion of the intein together with its flanking sequences into the empty allele. The efficiency of gene conversion of the intein was found to be 100%. The extent of flanking sequence affected by the gene conversion varied in different meioses. A survey of the inteins and flanking sequences of a group B. cinerea isolates indicates that there are two distinct variants of the intein both of which have active HEGs. The survey also suggests that the intein has been actively homing during the evolution of the species and that the PRP8 intein may have entered the species by horizontal transfer.  相似文献   

6.
The mobile elements termed inteins have a sporadic distribution in microorganisms. It is unclear how these elements are maintained. Inteins are intervening protein sequences that autocatalytically excise themselves from a precursor. Excision is a post-translational process referred to as 'protein splicing' in which the sequences flanking the intein are ligated, reforming the mature host protein. Some inteins contain a homing endonuclease domain (HEG) that is proposed to facilitate propagation of the intein element within a gene pool. We have previously demonstrated that the HEG of the PRP8 intein is highly active during meiosis in Botrytis cinerea. Here we analysed the Prp8 gene status in 21 additional Botrytis species to obtain insight into the mode of intein inheritance within the Botrytis lineage. Of the 21 species, 15 contained a PRP8 intein whereas six did not. The analysis was extended to closely related (Sclerotiniaceae) and distantly related (Ascomycota) taxa, focussing on evolutionary diversification of the PRP8 intein, including their possible acquisition by horizontal transfer and loss by deletion. Evidence was obtained for the occurrence of genetic footprints of previous intein occupation. There is no compelling evidence of horizontal transfer among species. Three distinct states of the Prp8 allele were identified, distributed over different orders within the Ascomycota: an occupied allele; an empty allele that was never occupied; an empty allele that was presumably previously occupied, from which the intein was precisely deleted. The presence of the genetic footprint identifies 20 species (including Neurospora crassa, Magnaporthe oryzae and Fusarium oxysporum) that previously contained the intein but have lost it entirely, while only 18 species (including Podospora anserina and Fusarium graminearum) appear never to have contained a PRP8 intein. The analysis indicates that inteins may be maintained in an equilibrium state.  相似文献   

7.
《Gene》1998,210(1):85-92
A new intein coding sequence was found in a topA (DNA topoisomerase I) gene by cloning and sequencing this gene from the hyperthermophilic Archaeon Pyrococcus furiosus. The predicted Pfu topA intein sequence is 373 amino acids long and located two residues away from the catalytic tyrosine of the topoisomerase. It contains putative intein sequence blocks (C, E, and H) associated with intein endonuclease activity, in addition to intein sequence blocks (A, B, F, and G) that are necessary for protein splicing. This DNA topoisomerase I intein is most related to a reverse gyrase intein from the methanogenic Archaeon Methanococcus jannaschii. These two inteins share 31% amino acid sequence identity and, more importantly, have the same insertion sites in their respective host proteins. It is suggested that these two inteins are homologous inteins present in structurally related, but functionally distinct, proteins, with implications on intein evolution and intein homing.  相似文献   

8.
Compilation and analysis of intein sequences.   总被引:18,自引:3,他引:15       下载免费PDF全文
We have compiled a list of all the inteins (protein splicing elements) whose sequences have been published or were available from on-line sequence databases as of September 18, 1996. Analysis of the 36 available intein sequences refines the previously described intein motifs and reveals the presence of another intein motif, Block H. Furthermore, analysis of the new inteins reshapes our view of the conserved splice junction residues, since three inteins lack the intein penultimate His seen in prior examples. Comparison of intein sequences suggests that, in general, (i) inteins present in the same location within extein homologs from different organisms are very closely related to each other in paired sequence comparison or phylogenetic analysis and we suggest that they should be considered intein alleles; (ii) multiple inteins present in the same gene are no more similar to each other than to inteins present in different genes; (iii) phylogenetic analysis indicates that inteins are so divergent that trees with statistically significant branches cannot be generated except for intein alleles.  相似文献   

9.
Phylogenetic diversity in the Phycodnaviridae (double‐stranded DNA viruses infecting photosynthetic eukaryotes) is most often studied using their DNA polymerase gene (PolB). This gene and its translated protein product can harbor a selfish genetic element called an “intein” that disrupts the sequence of the host gene without affecting its activity. After translation, the intein peptide sequence self‐excises precisely, producing a functional ligated host protein. In addition, inteins can encode homing endonuclease (HEN) domains that permit the possibility of lateral transfers to intein‐free alleles. However, no clear evidence for their transfer between viruses has previously been shown. The objective of this paper was to determine whether recent transfers of inteins have occurred between prasinoviruses (Phycodnaviridae) that infect the Mamiellophyceae, an abundant and widespread class of unicellular green algae, by using DNA sequence analyses and cophylogenetic methods. Our results suggest that transfer among prasinoviruses is a dynamic ongoing process and, for the first time in the Phycodnaviridae family, we showed a recombination event within an intein.  相似文献   

10.
The DNA polymerase I gene of a newly described deep-sea hydrothermal vent Archaea species, Thermococcus fumicolans, from IFREMERS's collection of hyperthermophiles has been cloned in Escherichia coli. As in Thermococcus litoralis, the gene is split by two intervening sequences (IVS) encoding inteins inserted in sites A and C of family B DNA polymerases. The entire DNA polymerase gene, containing both inteins, was expressed at 30°C in E. coli strain BL21(DE3)pLysS using the pARHS2 expression vector. The native polypeptide precursor of 170 kDa was obtained, and intein splicing as well as ligation of the three exteins was observed in vitro after heat exposure. The recombinant enzyme was purified and some of its activities were characterized: polymerization, thermostability, exonuclease activities, and fidelity. Received: September 17, 1999 / Accepted: March 21, 2000  相似文献   

11.
Inteins are the protein equivalent of introns. They are remarkable and robust single turnover enzymes that splice out of precursor proteins during post‐translational maturation of the host protein (extein). The Deinococcus radiodurans Snf2 intein is the second member of the recently discovered Class 3 subfamily of inteins to be characterized. Class 3 inteins have a unique sequence signature: (a) they start with residues other than the standard Class 1 Cys, Ser or Thr, (b) have a noncontiguous, centrally located Trp/Cys/Thr triplet, and (c) all but one have Ser or Thr at the start of the C‐extein instead of the more common Cys. We previously proposed that Class 3 inteins splice by a variation in the standard intein‐mediated protein splicing mechanism that includes a novel initiating step leading to the formation of a previously unrecognized branched intermediate. In this mechanism defined with the Class 3 prototypic Mycobacteriophage Bethlehem DnaB intein, the triplet Cys attacks the peptide bond at the N‐terminal splice junction to form the class specific branched intermediate after which the N‐extein is transferred to the side chain of the Ser, Thr, or Cys at the C‐terminal splice junction to form the standard intein branched intermediate. Analysis of the Deinococcus radiodurans Snf2 intein confirms this splicing mechanism. Moreover, the Class 3 specific Block F branched intermediate was isolated, providing the first direct proof of its existence.  相似文献   

12.
Inteins are protein-intervening sequences found inside the coding region of different host proteins and are translated in-frame with them. They can self-excise through protein splicing, which ligates the host protein flanks with a peptide bond. In this study, four different species of the genus Penicillium were investigated for the presence of inteins inside the conserved splicing-factor protein PRP8. We identified 157 to 162 amino acid in-frame insertions in the PRP8 protein of Penicillium chrysogenum, Penicillium expansum, and Penicillium vulpinum (formerly Penicillium claviforme). The Penicillium PRP8 inteins are mini-inteins without a conserved endonuclease domain. We demonstrated that the PRP8 mini-inteins of P. chrysogenum, P. expansum, and P. vulpinum undergo autocatalytic protein splicing when heterologously expressed in E. coli, in a model host protein, and in a divided GFP model system. They are, thus, among the smallest known nuclear-encoded, active splicing protein elements. The GFP assay should be valuable as a screening system for protein splicing inhibitors as potential antimycotic agents and as tools for studying the mechanism of protein splicing of fungal mini-inteins.  相似文献   

13.
Tori K  Perler FB 《PloS one》2011,6(10):e26361
An Arthrobacter species FB24 gene (locus tag Arth_1007) was previously annotated as a putative intein-containing DnaB helicase of phage origin (Arsp-FB24 DnaB intein). However, it is not a helicase gene because the sequence similarity is limited to inteins. In fact, the flanking exteins total only 66 amino acids. Therefore, the intein should be referred to as the Arsp-FB24 Arth_1007 intein. The Arsp-FB24 Arth_1007 intein failed to splice in its native precursor and in a model precursor. We previously noted that the Arsp-FB24 Arth_1007 intein is the only putative Class 3 intein that is missing the catalytically essential Cys at position 4 of intein Motif F, which is one of the three defining signature residues of this class. Additionally, a catalytically essential His in position 10 of intein Motif B is also absent; this His is the most conserved residue amongst all inteins. Splicing activity was not rescued when these two catalytically important positions were 'reverted' back to their consensus residues. This study restores the unity of the Class 3 intein signature sequence in active inteins by demonstrating that the Arsp-FB24 Arth_1007 intein is an inactive pseudogene.  相似文献   

14.
15.
Inteins are internal protein domains found inside the coding region of different proteins. They can autocatalytically self-excise from their host protein and ligate the protein flanks, called exteins, with a peptide bond via a post-translational process called protein cis-splicing. In contrast, protein trans-splicing involves inteins split into an N- and a C-terminal domain. Both domains are synthesized as two separate components and each joined to an extein; the intein domains can reassemble and link the joined exteins into one functional protein. In this study, we introduced three split sites into the PRP8 mini-intein of Penicillium chrysogenum and demonstrated for the first time trans-splicing of a fungal PRP8 intein. Two of the sites introduced allowed splicing to occur in trans while the third was not functional.  相似文献   

16.

Background  

Lateral gene transfer is increasingly invoked to explain phylogenetic results that conflict with our understanding of organismal relationships. In eukaryotes, the most common observation interpreted in this way is the appearance of a bacterial gene (one that is not clearly derived from the mitochondrion or plastid) in a eukaryotic nuclear genome. Ideally such an observation would involve a single eukaryote or a small group of related eukaryotes encoding a gene from a specific bacterial lineage.  相似文献   

17.

Background  

Transposable elements are major constituents of eukaryote genomes and have a great impact on genome structure and stability. Considering their mutational abilities, TEs can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution among several genomes is an essential condition to study their dynamics and to better understand their role in species evolution. DIRS1 -like retrotransposons are a particular group of retrotransposons according to their mode of transposition that implies a tyrosine recombinase. To date, they have been described in a restricted number of species in comparison with the LTR retrotransposons. In this paper, we determine the distribution of DIRS1 -like elements among 25 decapod species, 10 of them living in hydrothermal vents that correspond to particularly unstable environments.  相似文献   

18.
Inteins are phylogenetically diverse self-splicing proteins that are of great functional, evolutionary, biotechnological, and medical interest. To address the relationship between intein structure and function, particularly with respect to regulating the splicing reaction, and to groom inteins for application, we developed a phage display system to extend current in vivo selection for enhanced intein function to selection in vitro. We thereby isolated inteins that can function under excursions in temperature, pH, and denaturing environment. Remarkably, most mutations mapped to the surface of the intein, remote from the active site. We chose two mutants with enhanced splicing activity for crystallography, one of which was also subjected to NMR analysis. These studies define a “ripple effect”, whereby mutations in peripheral non-catalytic residues can cause subtle allosteric changes in the active-site environment in a way that facilitates intein activity. Altered salt-bridge formation and chemical shift changes of the mutant inteins provide a molecular rationale for their phenotypes. These fundamental insights will advance the utility of inteins in chemical biology, biotechnology, and medicine.  相似文献   

19.
Evolution of the multifaceted eukaryotic akirin gene family   总被引:1,自引:0,他引:1  

Background  

Akirins are nuclear proteins that form part of an innate immune response pathway conserved in Drosophila and mice. This studies aim was to characterise the evolution of akirin gene structure and protein function in the eukaryotes.  相似文献   

20.
Inteins are protein-intervening sequences that can self-excise and concomitantly splice together the flanking polypeptides. Two-piece split inteins capable of protein trans-splicing have been found in nature and engineered in laboratories, but they all have a similar split site corresponding to the endonuclease domain of the intein. Can inteins be split at other sites and do trans-splicing? After testing 13 split sites engineered into a Ssp DnaB mini-intein, we report the finding of three new split sites that each produced a two-piece split intein capable of protein trans-splicing. These three functional split sites are located in different loop regions between beta-strands of the intein structure, and one of them is just 11 amino acids from the beginning of the intein. Because different inteins have similar structures and similar beta-strands, these new split sites may be generalized to other inteins. We have also demonstrated for the first time that a three-piece split intein could function in protein trans-splicing. These findings have implications for intein structure-function, evolution, and uses in biotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号