首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细胞色素P450介导抗性的进化可塑性   总被引:1,自引:0,他引:1  
细胞色素P450是超基因家族,由其介导的杀虫剂代谢解毒的增强是昆虫产生抗药性的普遍而主要的机制。近年的研究表明,细胞色素P450介导的代谢抗性表现出一定程度的进化可塑性:即使是同种昆虫的不同种群在相同种类杀虫剂的胁迫下,进化选择出的抗性相关的细胞色素P450也有所不同,抗性的产生也可以是几种不同细胞色素P450协同作用或控制P450表达的调控因子的不同。  相似文献   

2.
P450酶系在昆虫代谢农药中有重要作用,NADPH-细胞色素P450还原酶(NADPH-cytochrome P450 reductase,CPR)和细胞色素P450(P450)在该酶系起核心作用。昆虫具有P450超基因家族,但只有一个单一的CPR基因,CPR是昆虫所有参与农药代谢的P450酶的唯一电子供体,其影响P450活性。P450基因的高水平表达在害虫抗药性中具有重要作用,P450基因介导的昆虫抗药性是最重要的代谢抗性类型。不同P450基因的高表达的调控机制不同,引起P450基因过量表达的原因可能有P450基因的编码区突变、顺式作用元件和反式作用因子变化、基因扩增等。细胞色素P450介导的抗药性存在一定程度的进化可塑性,即同种昆虫不同种群对相同的农药产生抗药性时,导致抗性产生的P450基因不同;同一昆虫品系在某种农药的抗性选择压力下,影响抗性的P450基因的种类和表达特性会随着持续的农药选择而发生变化。最近的研究显示,CPR的变异和昆虫抗药性相关,但是昆虫CPR基因介导抗药性的机制还缺乏深入研究。全面阐释P450酶系介导昆虫抗药性的机制、建立基于P450基因表达量变化与CPR突变的抗性分子标记,对于害虫抗药性治理具有重要意义。  相似文献   

3.
The expression of some insect P450 genes can be induced by both exogenous and endogenous compounds and there is evidence to suggest that multiple constitutively overexpressed P450 genes are co-responsible for the development of resistance to permethrin in resistant mosquitoes. This study characterized the permethrin induction profiles of P450 genes known to be constitutively overexpressed in resistant mosquitoes, Culex quinquefasciatus. The gene expression in 7 of the 19 P450 genes CYP325K3v1, CYP4D42v2, CYP9J45, (CYP) CPIJ000926, CYP325G4, CYP4C38, CYP4H40 in the HAmCqG8 strain, increased more than 2-fold after exposure to permethrin at an LC50 concentration (10 ppm) compared to their acetone treated counterpart; no significant differences in the expression of these P450 genes in susceptible S-Lab mosquitoes were observed after permethrin treatment. Eleven of the fourteen P450 genes overexpressed in the MAmCqG6 strain, CYP9M10, CYP6Z12, CYP9J33, CYP9J43, CYP9J34, CYP306A1, CYP6Z15, CYP9J45, CYPPAL1, CYP4C52v1, CYP9J39, were also induced more than doubled after exposure to an LC50 (0.7 ppm) dose of permethrin. No significant induction in P450 gene expression was observed in the susceptible S-Lab mosquitoes after permethrin treatment except for CYP6Z15 and CYP9J39, suggesting that permethrin induction of these two P450 genes are common to both susceptible and resistant mosquitoes while the induction of the others are specific to insecticide resistant mosquitoes. These results demonstrate that multiple P450 genes are co-up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, providing additional support for their involvement in the detoxification of insecticides and the development of insecticide resistance.  相似文献   

4.
We have identified resistance mechanisms in the German cockroach, Blattella germanica (L.), for propoxur and chlorpyrifos in strains of cockroaches that display multiresistance to several organophosphate and carbamate insecticides. The resistance mechanisms involve the combined effects of increased oxidative and hydrolytic metabolism and both strains are resistant to chlorpyrifos and propoxur. Experiments designed to test for similarity in metabolic enzymes suggest that, although the mechanisms involve similar processes, the enzymes responsible for insecticide detoxification are different in the two strains. Both resistant strains exhibited enhanced activity toward alpha-naphtholic esters relative to a standard susceptible strain; however, analysis of the progeny from resistant X susceptible crosses suggests that this general esterase activity is inherited differently than propoxur or chlorpyrifos resistance. Hybrids of the propoxur-resistant strain displayed the highest activity of all cockroaches tested, in contrast to hybrids of the chlorpyrifos-resistant strain, which were similar to the susceptible strain. Native gel electrophoresis of cytosolic preparations provided further evidence for differences in the pattern of hydrolytic enzymes and inheritance of resistance in the two strains. Analysis of components of the cytochrome P450-dependent monooxygenase system and activities toward model substrates indicate that the two resistance mechanisms also involve different oxidative processes. The propoxur-resistant strain displayed significantly higher levels of total cytochrome P450, but no other components were correlated with resistance. In contrast with the chlopyrifos-resistant strain, which was similar to the susceptible strain in all parameters measured, activity toward model substrates was higher in the propoxur-resistant strain than in any of the other strains and hybrids tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
7.
Cytochrome P450 monooxygenases and insecticide resistance in insects   总被引:14,自引:0,他引:14  
Cytochrome P450 monooxygenases are involved in many cases of resistance of insects to insecticides. Resistance has long been associated with an increase in monooxygenase activities and with an increase in cytochrome P450 content. However, this increase does not always account for all of the resistance. In Drosophila melanogaster, we have shown that the overproduction of cytochrome P450 can be lost by the fly without a corresponding complete loss of resistance. These results prompted the sequencing of a cytochrome P450 candidate for resistance in resistant and susceptible flies. Several mutations leading to amino-acid substitutions have been detected in the P450 gene CYP6A2 of a resistant strain. The location of these mutations in a model of the 3D structure of the CYP6A2 protein suggested that some of them may be important for enzyme activity of this molecule. This has been verified by heterologous expression of wild-type and mutated cDNA in Escherichia coli. When other resistance mechanisms are considered, relatively few genetic mutations are involved in insecticide resistance, and this has led to an optimistic view of the management of resistance. Our observations compel us to survey in more detail the genetic diversity of cytochrome P450 genes and alleles involved in resistance.  相似文献   

8.
Liu N  Li T  Reid WR  Yang T  Zhang L 《PloS one》2011,6(8):e23403
Four cytochrome P450 cDNAs, CYP6AA7, CYP9J40, CYP9J34, and CYP9M10, were isolated from mosquitoes, Culex quinquefasciatus. The P450 gene expression and induction by permethrin were compared for three different mosquito populations bearing different resistance phenotypes, ranging from susceptible (S-Lab), through intermediate (HAmCq(G0), the field parental population) to highly resistant (HAmCq(G8), the 8(th) generation of permethrin selected offspring of HAmCq(G0)). A strong correlation was found for P450 gene expression with the levels of resistance and following permethrin selection at the larval stage of mosquitoes, with the highest expression levels identified in HAmCq(G8), suggesting the importance of CYP6AA7, CYP9J40, CYP9J34, and CYP9M10 in the permethrin resistance of larva mosquitoes. Only CYP6AA7 showed a significant overexpression in HAmCq(G8) adult mosquitoes. Other P450 genes had similar expression levels among the mosquito populations tested, suggesting different P450 genes may be involved in the response to insecticide pressure in different developmental stages. The expression of CYP6AA7, CYP9J34, and CYP9M10 was further induced by permethrin in resistant mosquitoes. Taken together, these results indicate that multiple P450 genes are up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, thus increasing the overall expression levels of P450 genes.  相似文献   

9.
The cytochrome P450 monooxygenases are an important metabolic system whose level of activity can be influenced by several dietary constituents. We examined the effects of six known P450 inducers on the levels of total cytochromes P450, cytochrome b(5), and six monooxygenase activities in adult German cockroaches. In addition, the levels of CYP6L1 and CYP9E2 mRNA were also investigated. Phenobarbital treatment resulted in increases in total cytochromes P450 and metabolism of three resorufin analogues, but not CYP6L1 nor CYP9E2 mRNA. There was no significant effect of the other five inducers on any of the monooxygenase parameters we measured. In comparison with other insects, the German cockroach seems unusually refractory to most inducing agents.  相似文献   

10.
Adaptive changes in populations encountering a new environment are often constrained by deleterious pleiotropic interactions with ancestral physiological functions. Evolutionary responses of populations can thus be limited by natural selection under fluctuating environmental conditions, if the adaptive mutations are associated with pleiotropic fitness costs. In this context, we have followed the evolution of the frequencies of insecticide-resistant mutants of Cydia pomonella when reintroduced into an untreated environment. The novel set of selective forces after removal of insecticide pressure led to the decline of the frequencies of resistant phenotypes over time, suggesting that the insecticide-adapted genetic variants were selected against the absence of insecticide (with a selective coefficient estimated at 0.11). The selective coefficients were also estimated for both the major cytochrome P450-dependent monooxygenase (MFO) and the minor glutathione S-transferase (GST) systems (0.17 and negligible, respectively), which have been previously shown to be involved in resistance. The involvement of metabolic systems acting both through xenobiotic detoxification and biosynthetic pathways of endogenous compounds may be central to explaining the deleterious physiological consequences resulting from pleiotropy of adaptive changes. The estimation of the magnitude of the fitness cost associated with insecticide resistance in C. pomonella suggests that resistance management strategies exclusively based on insecticide alternations would be unlikely to delay such a selection process.  相似文献   

11.
The interactions of protein components of the xenobiotic-metabolizing cytochrome P450 system, CYP6A1, P450 reductase, and cytochrome b5 from the house fly (Musca domestica) have been characterized. CYP6A1 activity is determined by the concentration of the CYP6A1-P450 reductase complex, regardless of which protein is present in excess. Both holo- and apo-b5 stimulated CYP6A1 heptachlor epoxidase and steroid hydroxylase activities and influenced the regioselectivity of testosterone hydroxylation. The conversion of CYP6A1 to its P420 form was decreased by the addition of apo-b5. The effects of cytochrome b5 may involve allosteric modification of the P450 enzyme that modify the conformation of the active site. The overall stoichiometry of the P450 reaction was substrate-dependent. High uncoupling of CYP6A1 was observed with generation of hydrogen peroxide, in excess over the concomitant testosterone hydroxylation or heptachlor epoxidation. Inclusion of cytochrome b5 in the reconstituted system improved efficiency of oxygen consumption and electron utilization from NADPH, or coupling of the P450 reaction. Depending on the reconstitution conditions, coupling efficiency varied from 8 to 25% for heptachlor epoxidation, and from 11 to 70% for testosterone hydroxylation. Because CYP6A1 is a P450 involved in insecticide resistance, this suggests that xenobiotic metabolism by constitutively overexpressed P450s may be linked to significant oxidative stress in the cell that may carry a fitness cost.  相似文献   

12.
Mosquito control based on chemical insecticides is considered as an important element of the current global strategies for the control of mosquito-borne diseases. Unfortunately, the development of insecticide resistance of important vector mosquito species jeopardizes the effectiveness of insecticide-based mosquito control. In contrast to target site resistance, other mechanisms are far from being fully understood. Global protein profiles among cypermethrin-resistant, propoxur-resistant, dimethyl-dichloro-vinyl-phosphate-resistant and susceptible strain of Culex pipiens pallens were obtained and proteomic differences were evaluated by using isobaric tags for relative and absolute quantification labeling coupled with liquid chromatography/tandem mass spectrometric analysis. A susceptible strain of Culex pipiens pallens showed elevated resistance levels after 25 generations of insecticide selection, through iTRAQ data analysis detected 2,502 proteins, of which 1,513 were differentially expressed in insecticide-selected strains compared to the susceptible strain. Finally, midgut differential protein expression profiles were analyzed, and 62 proteins were selected for verification of differential expression using iTRAQ and parallel reaction monitoring strategy, respectively. iTRAQ profiles of adaptation selection to three insecticide strains combined with midgut profiles revealed that multiple insecticide resistance mechanisms operate simultaneously in resistant insects of Culex pipiens pallens. Significant molecular resources were developed for Culex pipiens pallens, potential candidates were involved in metabolic resistance and reducing penetration or sequestering insecticide. Future research that is targeted towards RNA interference of the identified metabolic targets, such as cuticular proteins, cytochrome P450s, glutathione S-transferases and ribosomal proteins proteins and biological pathways (drug metabolism—cytochrome P450, metabolism of xenobiotics by cytochrome P450, oxidative phosphorylation, ribosome) could lay the foundation for a better understanding of the genetic basis of insecticide resistance in Culex pipiens pallens.  相似文献   

13.
Cytochromes P450 and insecticide resistance.   总被引:34,自引:0,他引:34  
The cytochrome P450-dependent monooxygenases (monooxygenases) are an extremely important metabolic system involved in the catabolism and anabolism of xenobiotics and endogenous compounds. Monooxygenase-mediated metabolism is a common mechanism by which insects become resistant to insecticides as evidenced by the numerous insect species and insecticides affected. This review begins by presenting background information about P450s, the role of monooxygenases in insects, and the different techniques that have been used to isolate individual insect P450s. Next, insecticide resistance is briefly described, and then historical information about monooxygenase-mediated insecticide resistance is reviewed. For any case of monooxygenase-mediated resistance, identification of the P450(s) involved, out of the dozens that are present in an insect, has proven very challenging. Therefore, the next section of the review focuses on the minimal criteria for establishing that a P450 is involved in resistance. This is followed by a comprehensive examination of the literature concerning the individual P450s that have been isolated from insecticide resistant strains. In each case, the history of the strain and the evidence for monooxygenase-mediated resistance are reviewed. The isolation and characterization of the P450(s) from the strain are then described, and the evidence of whether or not the isolated P450(s) is involved in resistance is summarized. The remainder of the review summarizes our current knowledge of the molecular basis of monooxygenase-mediated resistance and the implications for the future. The importance of these studies for development of effective insecticide resistance management strategies is discussed.  相似文献   

14.
朱江  邱星辉 《昆虫学报》2021,64(1):109-120
杀虫剂的频繁持续使用,必然导致昆虫产生抗药性。大量研究事例表明参与杀虫剂解毒的细胞色素P450(简称P450)过量表达是昆虫对不同类型杀虫剂产生抗性的重要原因,但目前人们对P450基因过量表达机制的认识还非常有限。近十年来,随着生命科学与相关研究技术的发展,有关昆虫P450基因表达调控机制的研究取得了实质性的进展。本文综述了这一研究领域的重要发现。除了基因重复或基因扩增导致的P450基因拷贝数增加外,P450基因在转录层面的上调表达是P450介导抗药性的普遍且重要的机制。P450基因的转录上调由顺式调控元件与反式作用因子相互作用得以实现。现已发现了几种不同类型的转录因子(CncC, CREB和核受体等)对昆虫P450表达的直接调控,也鉴定了间接调控P450表达的作用因子如G蛋白偶联受体及其下游效应子。ncC:Maf/Keap1是抗药性相关P450基因表达的重要而普遍的调控途径。越来越多的事例表明小RNA在昆虫P450的表达调控中起重要作用。现有的研究结果揭示了昆虫P450基因调控因子和信号转导通路的多样性及调控机制的复杂性。  相似文献   

15.
Insecticide resistance is a major obstacle to the management of disease‐vectoring mosquitoes worldwide. The genetic changes and detoxification genes involved in insecticide resistance have been extensively studied in populations of insecticide‐resistant mosquitoes, however few studies have focused on the resistance genes upregulated upon insecticide exposure and the possible regulation pathways involved in insecticide resistance. To characterize the changes in gene expression during insecticide exposure, and to investigate the possible connection of known regulation pathways with insecticide resistance, we conducted RNA‐Seq analysis of a highly permethrin‐resistant strain of Culex quinquefasciatus following permethrin exposure. Gene expression profiles revealed a total of 224 upregulated and 146 downregulated genes when compared to a blank acetone carrier treated control, respectively, suggesting that there were multiple, but specific genes involved in permethrin resistance. Functional enrichment analysis showed that the upregulated genes contained multiple detoxification genes including a glutathione S‐transferase and multiple cytochrome P450 genes, as well as several immune‐related genes, while the downregulated genes consisted primarily of proteases and carbohydrate metabolism and transport. Further analysis showed that permethrin exposure resulted in a decrease in the expression of serum storage proteins and likely represented a delay in the development of the fourth instar possibly due to a decrease in feeding. This effect was more pronounced in an insecticide‐resistant strain than in an insecticide‐susceptible strain and may represent a behavioral mechanism of insecticide resistance in Culex mosquitoes.  相似文献   

16.
Two cytochrome P450 alleles, CYP6A5 and CYP6A5v2, were isolated from a pyrethroid-resistant house fly stain, ALHF. The two alleles shared 98% similarity in amino acid sequence. To understand the importance of these two alleles in resistance and examine the expression profile of the two alleles between resistant and susceptible strains, quantitative real-time PCR (qRT-PCR) was performed and compared with the Northern blot analysis. We found that qRT-PCR was an efficient method to characterize the expression profiles between these two sequence-closely-related P450 genes between resistant and susceptible houses flies. One of them, CYP6A5v2, was constitutively overexpressed in ALHF house flies compared with susceptible house fly strains. Moreover, this gene was predominantly expressed in the abdominal tissues of ALHF, in which the primary detoxification organs of insects are located. However, there was no significant difference in the expression of CYP6A5 between ALHF and susceptible house flies. The genetic linkage analysis was conducted to determine the possible link between the constitutively overexpressed CYP6A5v2 and insecticide resistance. CYP6A5v2 was mapped on autosome 5, which is correlated with the linkage of resistance in ALHF. Taken together, the study suggests the importance of CYP6A5v2 in increasing metabolic detoxification of insecticides in ALHF. The distinct expression of CYP6A5 and CYP6A5v2 in resistant and susceptible house flies implies the functional difference of theses two genes in house flies and suggests that they are two recently diverged P450 genes presented in a single organism.  相似文献   

17.
Control of Frankliniella occidentalis (Pergande) is a serious problem for agriculture all over the world because of the limited range of insecticides that are available. Insecticide resistance in F. occidentalis has been reported for all major insecticide groups. Our previous studies showed that cytochrome P450-mediated detoxification is a major mechanism responsible for insecticide resistance in this pest. Degenerate polymerase chain reaction was used to identify P450 genes that might be involved in acrinathrin resistance, in a laboratory population of F. occidentalis. Associated sequences were classified as belonging to the CYP4 and CYP6 families. Real-time quantitative polymerase chain reaction analyses revealed that two genes, CYP6EB1 and CYP6EC1, were over-expressed in adults and L2 larvae of the resistant population, when compared with the susceptible population, suggesting their possible involvement in resistance to acrinathrin.  相似文献   

18.

Background

Insects may use various biochemical pathways to enable them to tolerate the lethal action of insecticides. For example, increased cytochrome P450 detoxification is known to play an important role in many insect species. Both constitutively increased expression (overexpression) and induction of P450s are thought to be responsible for increased levels of detoxification of insecticides. However, unlike constitutively overexpressed P450 genes, whose expression association with insecticide resistance has been extensively studied, the induction of P450s is less well characterized in insecticide resistance. The current study focuses on the characterization of individual P450 genes that are induced in response to permethrin treatment in permethrin resistant house flies.

Results

The expression of 3 P450 genes, CYP4D4v2, CYP4G2, and CYP6A38, was co-up-regulated by permethrin treatment in permethrin resistant ALHF house flies in a time and dose-dependent manner. Comparison of the deduced protein sequences of these three P450s from resistant ALHF and susceptible aabys and CS house flies revealed identical protein sequences. Genetic linkage analysis located CYP4D4v2 and CYP6A38 on autosome 5, corresponding to the linkage of P450-mediated resistance in ALHF, whereas CYP4G2 was located on autosome 3, where the major insecticide resistance factor(s) for ALHF had been mapped but no P450 genes reported prior to this study.

Conclusion

Our study provides the first direct evidence that multiple P450 genes are co-up-regulated in permethrin resistant house flies through the induction mechanism, which increases overall expression levels of P450 genes in resistant house flies. Taken together with the significant induction of CYP4D4v2, CYP4G2, and CYP6A38 expression by permethrin only in permethrin resistant house flies and the correlation of the linkage of the genes with resistance and/or P450-mediated resistance in resistant ALHF house flies, this study sheds new light on the functional importance of P450 genes in response to insecticide treatment, detoxification of insecticides, the adaptation of insects to their environment, and the evolution of insecticide resistance.  相似文献   

19.
Studies were undertaken to determine the immunochemical relationship between constitutive trout cytochrome P450s and mammalian cytochrome P450IIIA enzymes. Polyclonal antibodies (IgG) generated against trout P450 LMC5 reacted strongly with P450IIIA1 in dexamethasone-induced rat liver microsomes and with P450IIIA4 in human liver microsomes in immunoblots. In contrast, rabbit anti-P450 LMC1 IgG did not recognize these proteins in rat and human liver microsomes. Reciprocal immunoblots using anti-rat P450IIIA1 showed that this antibody does not recognize trout P450 LMC1 or LMC5. However, anti-human P450IIIA4 IgG was found to cross react strongly with P450 LMC1 and LMC5. Progesterone 6 beta-hydroxylase activity of trout liver microsomes, a reaction catalyzed by P450 LMC5, was markedly inhibited by anti-P450IIIA4 and by gestodene, a mechanism-based inactivator of P450IIIA4. These results provide evidence for a close structural similarity between trout P450 LMC5 and human P450IIIA4.  相似文献   

20.
Modifications of metabolic pathways are important in insecticide resistance evolution. Mutations leading to changes in expression levels or substrate specificities of cytochrome P450 (P450), glutathione-S-transferase (GST) and esterase genes have been linked to many cases of resistance with the responsible enzyme shown to utilize the insecticide as a substrate. Many studies show that the substrates of enzymes are capable of inducing the expression of those enzymes. We investigated if this was the case for insecticides and the enzymes responsible for their metabolism. The induction responses for P450s, GSTs and esterases to six different insecticides were investigated using a custom designed microarray in Drosophila melanogaster. Even though these gene families can all contribute to insecticide resistance, their induction responses when exposed to insecticides are minimal. The insecticides spinosad, diazinon, nitenpyram, lufenuron and dicyclanil did not induce any P450, GST or esterase gene expression after a short exposure to high lethal concentrations of insecticide. DDT elicited the low-level induction of one GST and one P450. These results are in contrast to induction responses we observed for the natural plant compound caffeine and the barbituate drug phenobarbital, both of which highly induced a number of P450 and GST genes under the same short exposure regime. Our results indicate that, under the insecticide exposure conditions we used, constitutive over-expression of metabolic genes play more of a role in insect survival than induction of members of these gene families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号