首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The monoclonal antibody (mAb) CO17‐1A specifically binds to the tumor‐associated cell surface glycoprotein GA733 in colorectal cancer cells. Thus, mAb CO17‐1A has the potential to act as an immune therapeutic protein against colorectal cancer. Recently, it was shown that the baculovirus insect cell expression system produces anti‐colorectal cancer mAb CO17‐1A. In this study, the colorectal cancer antibody mAb CO17‐1A fused to the endoplasmic reticulum (ER) retention signal sequence (KDEL), and the (mAb CO17‐1AK) was expressed in Spodoptera frugiperda Sf9 insect cells. The yield, cell cytotoxicity, and in vitro anti‐tumor activity of mAb CO17‐1AK were verified. Western blotting was performed to confirm that both heavy and light chains of mAb CO17‐1A were expressed in Sf9 insect cells. The insect‐derived mAb (mAbI) CO17‐1A was purified using a protein G affinity column. An in vitro wound healing assay was conducted to determine the inhibition activity of mAb CO17‐1A during tumor cell migration, showing that mAbI CO17‐1AK was effective as mammalian‐derived mAb CO17‐1A (mAbM CO17‐1A). These results suggest that the insect cell expression system can produce and properly assemble mAbs that inhibit tumor cell migration.  相似文献   

2.
Colorectal cancer is a commonly diagnosed cancer in the world. Monoclonal antibody (mAb) CO17‐1A recognizes the tumor‐associated antigen GA733, a cell surface glycoprotein highly expressed in colorectal carcinoma cell, which is considered to be applicable for diagnosis and therapeutic treatment against colorectal cancer. In addition antibodies are glycoproteins, efficiently recognize and eliminate specific pathogenic and disease antigens. We have currently established baculovirus insect cell expression system to produce anti‐colorectal cancer mAb CO17‐1A. In this study, mAb CO17‐1A was expressed in the transgenic insect cell line SfSWT4, in which glycosylation processing pathway has been humanized. Immunoblot confirmed that mAb CO17‐1A properly expressed in SfSWT4 insect cells. mAb CO17‐1A was purified using protein G affinity column. In addition, MALDI‐TOF verified that the mAb CO17‐1A fused to KDEL, endoplasmic reticulum (ER) retention signal (mAb CO17‐1AK) had high mannose type of glycan structure. Migration assay showed that insect cell‐derived mAb CO17‐1AK (mAbI CO17‐1AK) with high mannose type of glycan structure was effective as mammalian‐derived mAb CO17‐1A (mAbM CO17‐1A) in inhibition of metastasis. Kinetic analysis of antigen‐antibody interaction using Surface Plasmon Resonance (SPR) confirmed that mAbI CO17‐1AK is efficient to interact with antigen GA733 as mAbM CO17‐1A. These results suggest that the insect cell expression system with the SfSWT4 possibly can be used as a useful alternative way to produce full‐size mAb for cancer immunotherapy.  相似文献   

3.
Colorectal cancer is the third most commonly diagnosed cancer in the world. Monoclonal antibody (mAb) CO17‐1A recognizes the tumor‐associated antigen GA733‐2, a cell surface glycoprotein highly expressed in colorectal carcinoma cells which is applicable for preventing and curing colorectal cancer. In this study, we tried to produce a new recombinant anti‐colorectal cancer large single chain (lsc) mAb based on mAb CO17‐1A in the baculovirus‐insect cell protein expression system. Two kinds of recombinant lsc mAbs were generated where variable light chain (VL) and heavy chain (HC) of mAb CO17‐1A were fused together by an interchain linker. The only difference between the two mAbs is based on fusion of an ER retention signal (KDEL) at its C‐terminus of HC. Polymerase chain reaction analysis verified the presence of both recombinant genes in the bacmid for generating viral expression vectors in insect cells. Western blot confirmed the expression of lsc mAbs in baculovirus‐infected insect cells. Cell enzyme linked immunosorbent assay (ELISA) showed that the mAbs from cell lysates bound to SW480 and SW620 human colorectal cancer cells. These results indicate that the baculovirus insect expression system can produce anti‐colorectal lsc mAb recognizing human colorectal cancer cells.  相似文献   

4.
The anti‐breast cancer monoclonal antibody (mAb) BR55 was expressed in the baculovirus–insect cell expression system, which is advantageous because of its high production capacity, cell culture flexibility and glycosylation capability. The baculovirus–insect cell expression system was successfully established for production of mAb BR55 and mAb BR55 fused with the KDEL (Lys–Asp–Glu–Leu) endoplasmic reticulum (ER) retention signal (mAb BR55K). The heavy chain (HC) and light chain (LC) genes of mAb BR55 were cloned under the control of the polyhedrin (PPH) and P10 promoters, respectively, in the pFastBacDual vector. The antibody gene‐expression cassettes carrying both the HC and LC genes were transferred into a bacmid in Escherichia coli (DH10Bac). The bacmid carrying the expression cassettes was transfected into Sf9 insect cells to generate baculovirus expressing mAb BR55 and BR55K. Western blot analysis confirmed the expression of mAb BR55 and BR55K in baculovirus‐infected insect cells. Cell direct enzyme linked immunosorbent assay (ELISA) showed that both mAbs from insect cell lysates or cell culture medium bound to MCF‐7 human breast cancer cells. Both mAb BR55 and BR55K were successfully purified using a Protein A affinity column. Collectively, these results suggest that the anti‐breast cancer mAb BR55 can be expressed, properly assembled and purified from the baculovirus expression system, which can serve as an alternative system for antibody production.  相似文献   

5.
An epithelial cell adhesion molecule (EpCAM) was selectively expressed in human colorectal carcinoma. Treatment with plant-derived anti-EpCAM mAb (mAbP CO17-1A) and RAW264.7 cells inhibited cell growth in the human colorectal cancer cell line SW620. In SW620 treated with mAbP CO17-1A and RAW264.7 cells, expression of p53 and p21 increased, whereas the expression of G1 phase-related proteins, cyclin D1, CDK4, cyclin E, and CDK2, decreased, similar to mammalian-derived mAb (mAbM) CO17-1A. Similar to mAbM CO17-1A, treatment with mAbP CO17-1A and RAW264.7 cell decreased the expression of anti-apoptotic protein, Bcl-2, but the expression of pro-apoptotic proteins Bax, TNF-α, caspase-3, caspase-6, caspase-8 and caspase-9, increased. Cells treated with mAbP CO17-1A and RAW264.7 cells expressed metastasis-related gangliosides, GM1 and GD1a, similar to mAbM CO17-1A. These results suggest that mAbP CO17-1A is as effective on anti-cancer activity as mAbM CO17-1A.  相似文献   

6.
β‐Asarone is the predominant component of the essential oil of rhizomes of Acorus calamus Linn ( Sweet flag). Although rhizome extracts from this plant have long been used for insect pest control, their cytotoxic effects on insect cells are not well understood. In this study, we evaluated the potency of β‐asarone as a natural insecticide by using a Spodoptera frugiperda cell line (Sf9). To assess the cytotoxic effects of β‐asarone on Sf9 cells, we observed morphologic changes in treated cells and performed a cell proliferation assay and a DNA fragmentation assay. After 24 and 48 h of treatment with β‐asarone, the proliferation of the Sf9 cells was inhibited in a dose‐dependent manner, with IC50 values of 0.558 mg/ml at 24 h and 0.253 mg/ml at 48 h. Morphologic changes in β‐asarone‐treated cells were typical of apoptosis and included loss of adhesion, cell shrinkage, and small apoptotic bodies. The DNA laddering present in β‐asarone‐treated SF9 cells and annexin V assay confirmed that this compound can induce apoptosis in insect cells. Together, these findings suggest that apoptosis induction may be one mechanism through which β‐asarone inhibits the proliferation of insect cells and thus exerts insecticidal effects.  相似文献   

7.
8.
Affinity precipitation using Z‐elastin‐like polypeptide‐functionalized E2 protein nanocages has been shown to be a promising alternative to Protein A chromatography for monoclonal antibody (mAb) purification. We have previously described a high‐yielding, affinity precipitation process capable of rapidly capturing mAbs from cell culture through spontaneous, multivalent crosslinking into large aggregates. To challenge the capabilities of this technology, nanocage affinity precipitation was investigated using four industrial mAbs (mAbs A–D) and one Fc fusion protein (Fc A) with diverse molecular properties. A molar binding ratio of 3:1 Z:mAb was sufficient to precipitate >95% mAb in solution for all molecules evaluated at ambient temperature without added salt. The effect of solution pH on aggregation kinetics was studied using a simplified two‐step model to investigate the protein interactions that occur during mAb–nanocage crosslinking and to determine the optimal solution pH for precipitation. After centrifugation, the pelleted mAb–nanocage complex remained insoluble and was capable of being washed at pH ≥ 5 and eluted with at pH < 4 with >90% mAb recovery for all molecules. The four mAbs and one Fc fusion were purified from cell culture using optimal process conditions, and >94% yield and >97% monomer content were obtained. mAb A–D purification resulted in a 99.9% reduction in host cell protein and >99.99% reduction in DNA from the cell culture fluids. Nanocage affinity precipitation was equivalent to or exceeded expected Protein A chromatography performance. This study highlights the benefits of nanoparticle crosslinking for enhanced affinity capture and presents a robust platform that can be applied to any target mAb or Fc‐containing proteins with minimal optimization of process parameters.  相似文献   

9.
The baculovirus expression system has been considered as a highly efficient tool for the production of recombinant biopharmaceutical proteins. The recombinant antigenic glycoprotein GA733 is a cell surface protein that is strongly expressed in human colorectal cancer. Efficient virus titration should be established to achieve optimal multiplicity of infection (MOI) conditions, which are in turn essential for strong expression of the recombinant GA733 fused to the human immunoglobulin IgG Fc fragment (GA733‐Fc) in the baculovirus‐insect system. In the present study, the Sf9 cell line was transfected with plasmid DNA containing the GA733‐Fc expression cassette under the control of the baculovirus polyhedron promoter. MOI values (0.05, 0.1, 0.5, 1, and 3) were calculated based on both microscope observations and results of titration assay and then used to determine the optimum recombinant expression and harvested sample [cell culture media (CM) or cell lysate (CL)]. The pFastBac dual vector carrying the GA733‐Fc gene was constructed to express GA733‐Fc and used to generate recombinant baculoviruses. Western blotting results showed that recombinant protein expression was dependent on the MOI. In addition, CM and CL showed significant differences in protein synthesis and protein secretion capacities. Our findings suggested that our proposed titration method can be used for reliable calculation of MOI values, which significantly influence recombinant GA733‐Fc protein expression in the baculovirus‐insect cell system.  相似文献   

10.
A problem in the mass production of recombinant proteins and biopesticides using insect cell culture is CO2 accumulation. This research investigated the effect of elevated CO2 concentration on insect cell growth and metabolism. Spodoptera frugiperda Sf‐9 insect cells were grown at 20% air saturation, 27°C, and a pH of 6.2. The cells were exposed to a constant CO2 concentration by purging the medium with CO2 and the headspace with air. The population doubling time (PDT) of Sf‐9 cells increased with increasing CO2 concentration. Specifically, the PDT for 0‐37, 73, 147, 183, and 220 mm Hg CO2 concentrations were 23.2 ± 6.7, 32.4 ± 7.2, 38.1 ± 13.3, 42.9 ± 5.4, and 69.3 ± 35.9 h (n = 3 or 4, 95% confidence level), respectively. The viability of cells in all experiments was above 90%, i.e., while increased CO2 concentrations inhibited cell growth, it did not affect cell viability. The osmolality for all bioreactor experiments was observed to be 300–360 mOsm/kg, a range that is known to have a negligible effect on insect cell culture. Elevated CO2 concentration did not significantly alter the cell specific glucose consumption rate (2.5–3.2 × 10?17 mol/cell s), but slightly increased the specific lactate production rate from ?3.0 × 10?19 to 10.2 × 10?19 mol/cell s. Oxidative stress did not contribute to CO2 inhibition in uninfected Sf‐9 cells as no significant increase in the levels of lipid hydroperoxide and protein carbonyl concentrations was discovered at elevated CO2 concentration. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:465–469, 2016  相似文献   

11.
Interleukin‐17 family cytokines, consisting of six members, participate in immune response in infections and autoimmune and inflammatory diseases. The prototype cytokine of the family, IL‐17A, was originally identified from CD4+ T cells which are now termed Th17 cells. Later, IL‐17A‐producing cells were expanded to include various hematopoietic cells, namely CD8+ T cells (Tc17), invariant NKT cells, γδ T cells, non‐T non‐B lymphocytes (termed type 3 innate lymphoid cells) and neutrophils. Some IL‐17 family cytokines other than IL‐17A are also expressed by CD4+ T cells: IL‐17E by Th2 cells and IL‐17F by Th17 cells. IL‐17A and IL‐17F induce expression of pro‐inflammatory cytokines to induce inflammation and anti‐microbial peptides to kill pathogens, whereas IL‐17E induces allergic inflammation. However, the functions of other IL‐17 family cytokines have been unclear. Recent studies have shown that IL‐17B and IL‐17C are expressed by epithelial rather than hematopoietic cells. Interestingly, expression of IL‐17E and IL‐17F by epithelial cells has also been reported and epithelial cell‐derived IL‐17 family cytokines shown to play important roles in immune responses to infections at epithelial sites. In this review, we summarize current information on hematopoietic cell‐derived IL‐17A and non‐hematopoietic cell‐derived IL‐17B, IL‐17C, IL‐17D, IL‐17E and IL‐17F in infections and propose functional differences between these two categories of IL‐17 family cytokines.  相似文献   

12.
The baculovirus–insect cell expression system has been used to produce functional recombinant proteins. The antigen GA733 is a cell‐surface glycoprotein highly expressed on most human colorectal carcinoma cells. Conditions for the expression of GA733 fused to the human immunoglobulin IgG Fc fragment (GA733‐Fc) were optimized in the baculovirus expression system. Several variable factors were adjusted to optimize expression, including the cell line (Sf9 and High Five), multiplicity of infection (MOI) value (0.05, 0.1, 0.5, 1 and 3), post‐infection time (48, 72 and 96 h) and harvested sample (cell culture media (CM) or cell lysate (CL)). In addition, two pFastBac Dual vectors carrying the GA733‐Fc gene were constructed to express GA733‐Fc with or without an endoplasmic reticulum (ER) retention sequence KDEL and used to generate recombinant baculoviruses. Western blot showed that expression depended on the conditions used to express the recombinant proteins. The protein production level and secretion capability differed in each cell line. In Sf9 cells, the highest expression in the CM and CL was obtained with GA733‐Fc at 96 h post‐infection at 0.1 MOI and with GA733‐FcK at 96 h post‐infection at 3 MOI, respectively. In High Five cells, the highest expression in the CM and CL was obtained with GA733‐Fc at 48 h post‐infection at 1 MOI and with GA733‐FcK at 48 h post‐infection at 3 MOI, respectively. These results suggest that the MOI value, post‐infection time and subcellular localization affect expression, and that these conditions can be modified to optimize protein expression in the baculovirus–insect cell system.  相似文献   

13.
目的:在原核表达抗黄曲霉毒素B1(aflatoxin B1,AFB1)单链抗体(single chain Fv fragment,scFv)研究的基础上,为进一步了解和提高抗AFB1 scFv的活性,利用Sf9昆虫细胞表达抗AFB1 scFv,并对其活性进行探索研究。方法:构建pFastBac 1-scFv2E6VHVL重组质粒,将重组质粒转化Escherichia coli (E. coli) DH10Bac细胞,进行蓝白斑筛选,挑取阳性克隆。提取相应的重组杆状病毒穿梭载体Bacmid侵染Sf9昆虫细胞,表达scFv,利用镍亲和层析法纯化scFv,并以ELISA检测scFv活性。结果:蓝白斑筛选后,经菌落PCR和测序验证挑取的白斑阳性单克隆含有正确的单链抗体基因。提取相应的重组杆状病毒穿梭载体Bacmid侵染Sf9昆虫细胞,通过Western blot检测得知抗AFB1 scFv在Sf9昆虫细胞中成功表达。AFB1对scFv的抑制中浓度(IC50)为30μg/ml。结论:与E. coli BL21(DE3)表达系统相比,scFv灵敏度转好,但仍有较大提升空间。  相似文献   

14.
The human voltage‐gated proton channel (Hv1) is a membrane protein consisting of four transmembrane domains and intracellular amino‐ and carboxy‐termini. The protein is activated by membrane depolarization, similar to other voltage‐sensitive proteins. However, the Hv1 proton channel lacks a traditional ion pore. The human Hv1 proton channel has been implicated in mediating sperm capacitance, stroke, and most recently as a biomarker/mediator of cancer metastasis. Recently, the three‐dimensional structures for homologues of this voltage‐gated proton channel were reported. However, it is not clear what artificial environment is needed to facilitate the isolation and purification of the human Hv1 proton channel for structural study. In the present study, we generated a chimeric protein that placed an enhanced green fluorescent protein (EGFP) to the amino‐terminus of the human Hv1 proton channel (termed EGFP‐Hv1). The chimeric protein was expressed in a baculovirus expression system using Sf9 cells and subjected to detergent screening using fluorescence‐detection size‐exclusion chromatography. The EGFP‐Hv1 proton channel can be solubilized in the zwitterionic detergent Anzergent 3–12 and the nonionic n‐dodecyl‐β‐d ‐maltoside (DDM) with little protein aggregation and a prominent monomeric protein peak at 48 h postinfection. Furthermore, we demonstrate that the chimeric protein exhibits a monomeric protein peak, which is distinguishable from protein aggregates, at the final size‐exclusion chromatography purification step. Taken together, we can conclude that solubilization in DDM will provide a useable final product for further structural characterization of the full‐length human Hv1 proton channel.  相似文献   

15.
Sf‐caspase‐1 is the principal effector caspase in Spodoptera frugiperda cells. Like the caspases in other organisms, Sf‐caspase‐1 is processed by upstream caspases to form an active heterotetramer composed of the p19 and p12 subunits. The regulation of active caspases is crucial for cellular viability. In mammal cells, the subunits and the active form of caspase‐3 were rapidly degraded relative to its proenzyme form. In the present study, the S. frugiperda Sf9 cells were transiently transfected with plasmids encoding different fragments of Sf‐caspase‐1: the pro‐Sf‐caspase‐1 (p37), a prodomain deleted fragment (p31), a fragment containing the large subunit and the prodomain (p25), the large subunit (p19), and the small subunit (p12). Flow cytometry and Western blot analysis revealed that p12, p19, and p25 were unstable in the transfected cells, in contrast to p37 and p31. Lactacystin, a proteasome inhibitor, increased the accumulation of the p19 and p12 subunits, suggesting that the degradation is performed by the ubiquitin‐proteasome system. During the activation, the Sf‐caspase‐1 produces an intermediate form and then undergoes proteolytic processing to form active Sf‐caspase‐1. We found that both the active and the intermediate form were unstable, indicating that once activated or during its activation, the Sf‐caspase‐1 was unstable.  相似文献   

16.
Summary The release of chloramphenicol acetyl transferase (CAT) from a recombinant Escherichia coli strain by ultrasonication and the French press was compared. French pressing disrupted all cells in suspension whereas only a fraction of the cells was disrupted following sonication. The level of CAT released was highest when cells were totally disrupted. Additional treatment with the detergent Triton X-100 was necessary to maximize CAT recovery, presumably due to association of CAT with cellular debris.  相似文献   

17.
Anti-colorectal cancer mAb CO17-1A (IgG2a) recognizes the antigen GA733, which is highly expressed on the surface membrane of human colorectal carcinoma cells. In this study, a transgenic tobacco system for the production of mAb CO17-1A was developed. The mAb construct included a KDEL sequence, an endoplasmic reticulum (ER) retention signal attached to the C-terminus of the heavy chain, to target accumulation of mAb into ER. An immunoblot showed significantly enhanced levels of expression of the plant-derived mAbK (mAbPK) CO17-1A compared to mAbP CO17-1A mAb without the KDEL sequence. An ELISA assay using human colorectal carcinoma cells confirmed that expression of mAbPK was also significantly higher than that of mAbP. Glycosylation analysis revealed that mAbP had plant-specific glycans; whereas, mAbPK primarily had oligomannose glycans. FACS showed that the Fc domains of both mAbPK and mammalian-derived mAb (mAbM) had similar binding activity to the FcγRI receptor (CD64). However, the Fc domains of the mAbP had slightly lower binding activity to the FcγRI receptor than both mAbPK and mAbM. The antibody-dependent cell cytotoxicity of mAbPK, against human colorectal cancer cells, was as efficient as mAbM; whereas mAbP was very low. These results suggest that KDEL localized and accumulated mAbP in the ER and eventually enhanced the expression of mAbP with oligomannose glycan and similar anti-cancer biological activity to the parental mAbM.  相似文献   

18.
mAbs T1 and T2 were established by immunizing PrP gene ablated mice with recombinant MoPrP of residues 121–231. Both mAbs were cross‐reactive with PrP from hamster, sheep, cattle and deer. A linear epitope of mAb T1 was identified at residues 137–143 of MoPrP and buried in PrPC expressed on the cell surface. mAb T1 showed no inhibitory effect on accumulation of PrPSc in cultured scrapie‐infected neuroblastoma (ScN2a) cells. In contrast, mAb T2 recognized a discontinuous epitope ranged on, or structured by, residues 132–217 and this epitope was exposed on the cell surface PrPC. mAb T2 showed an excellent inhibitory effect on PrPSc accumulation in vitro at a 50% inhibitory concentration of 0.02 μg/ml (0.14 nM). The scFv form of mAb T2 (scFv T2) was secreted in neuroblastoma (N2a58) cell cultures by transfection through eukaryotic secretion vector. Coculturing of ScN2a cells with scFv T2‐producing N2a58 cells induced a clear inhibitory effect on PrPSc accumulation, suggesting that scFv T2 could potentially be an immunotherapeutic tool for prion diseases by inhibition of PrPSc accumulation.  相似文献   

19.
During inflammation, high‐mobility group box 1 in reduced all‐thiol form (at‐HMGB1) takes charge of chemoattractant activity, whereas only disulfide‐HMGB1 (ds‐HMGB1) has cytokine activity. Also as pro‐angiogenic inducer, the role of HMGB1 in different redox states has never been defined in tumour angiogenesis. To verify which redox states of HMGB1 induces angiogenesis in colorectal carcinoma. To measure the expression of VEGF‐A and angiogenic properties of the endothelial cells (ECs), at‐HMGB1 or ds‐HMGB1 was added to cell medium, further with their special inhibitors (DPH1.1 mAb and 2G7 mAb) and antibodies of corresponding receptors (RAGE Ab and TLR4 Ab). Also, a co‐culture system and conditioned medium from tumour cells were applied to mimic tumour microenvironment. HMGB1 triggered VEGF‐A secretion mainly through its disulfide form interacting with TLR4, while co‐operation of at‐HMGB1 and RAGE mediated migratory capacity of ECs. Functional inhibition of HMGB1 and its receptors abrogated HMGB1‐induced angiogenic properties of ECs co‐cultured with tumour cells. HMGB1 orchestrates the key events of tumour angiogenesis, migration of ECs and their induction to secrete VEGF‐A, by adopting distinct redox states.  相似文献   

20.
Macrobrachium rosenbergii nodavirus (MrNV) is a virus native to giant freshwater prawn. Recombinant MrNV capsid protein has been produced in Escherichia coli, which self‐assembled into virus‐like particles (VLPs). However, this recombinant protein is unstable, degrading and forming heterogenous VLPs. In this study, MrNV capsid protein was produced in insect Spodoptera frugiperda (Sf9) cells through a baculovirus system. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the recombinant protein produced by the insect cells self‐assembled into highly stable, homogenous VLPs each of approximately 40 nm in diameter. Enzyme‐linked immunosorbent assay (ELISA) showed that the VLPs produced in Sf9 cells were highly antigenic and comparable to those produced in E. coli. In addition, the Sf9 produced VLPs were highly stable across a wide pH range (2–12). Interestingly, the Sf9 produced VLPs contained DNA of approximately 48 kilo base pairs and RNA molecules. This study is the first report on the production and characterization of MrNV VLPs produced in a eukaryotic system. The MrNV VLPs produced in Sf9 cells were about 10 nm bigger and had a uniform morphology compared with the VLPs produced in E. coli. The insect cell production system provides a good source of MrNV VLPs for structural and immunological studies as well as for host–pathogen interaction studies. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:549–557, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号