首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Less intensively managed semi-natural habitats, e.g., field and meadow margins like hedgerows, are thought to be crucial landscape components for maintaining biodiversity in highly disturbed and intensively managed agricultural landscapes. In this study, we focused on the effects of three meadow margin types on activity-density, species richness and species composition of carabid and staphylinid beetles recorded by pitfall traps in Central European landscapes dominated by intensively managed meadows. Carabid activity-density was significantly higher in meadows than in meadow margins and within meadow margins their activity-density increased from grassy meadow margins via shrubby ones to woody meadow margins. We found that recorded species richness of both carabid and staphylinid beetles was not significantly affected by habitat identity (meadow margin or neighbouring meadow) and meadow margin type. Recorded species composition of both investigated taxa was significantly affected by habitat identity and interaction between habitat identity and meadow margin type (i.e. it differed between particular meadow margin types). Assemblages inhabiting various meadow margin types were more dissimilar between each other than assemblages from neighbouring meadows. Meadow margins within grassland dominated landscapes maintain local species richness by hosting different species from those living in surrounding meadows. Dissimilarity of carabid and staphylinid assemblages from meadows neighbouring both sides of particular meadow margin did not differ between meadow margin types. Our results indicate that semi-natural habitats play an important role in maintaining biodiversity not only in agricultural landscapes dominated by arable fields, but also in those dominated by meadows.  相似文献   

2.
Aim To determine whether the effect of habitat fragmentation and habitat heterogeneity on species richness at different spatial scales depends on the dispersal ability of the species assemblages and if this results in nested species assemblages. Location Agricultural landscapes distributed over seven temperate Europe countries covering a range from France to Estonia. Methods We sampled 16 local communities in each of 24 agricultural landscapes (16 km2) that differ in the amount and heterogeneity of semi‐natural habitat patches. Carabid beetles were used as model organisms as dispersal ability can easily be assessed on morphological traits. The proximity and heterogeneity of semi‐natural patches within the landscape were related to average local (alpha), between local (beta) and landscape (gamma) species richness and compared among four guilds that differ in dispersal ability. Results For species assemblages with low dispersal ability, local diversity increased as the proximity of semi‐natural habitat increased, while mobile species showed an opposite trend. Beta diversity decreased equally for all dispersal classes in relation to proximity, suggesting a homogenizing effect of increased patch isolation. In contrast, habitat diversity of the semi‐natural patches affected beta diversity positively only for less mobile species, probably due to the low dispersal ability of specialist species. Species with low mobility that persisted in highly fragmented landscapes were consistently present in less fragmented ones, resulting in nested assemblages for this mobility class only. Main conclusions The incorporation of dispersal ability reveals that only local species assemblages with low dispersal ability show a decrease of richness as a result of fragmentation. This local species loss is compensated at least in part by an increase in species with high dispersal ability, which obscures the effect of fragmentation when investigated across dispersal groups. Conversely, fragmentation homogenizes the landscape fauna for all dispersal groups, which indicates the invasion of non‐crop habitats by similar good dispersers across the whole landscape. Given that recolonization of low dispersers is unlikely, depletion of these species in modern agricultural landscapes appears temporally pervasive.  相似文献   

3.
Landscape heterogeneity has been shown to be a major factor in the maintenance of biodiversity and associated services in agricultural landscapes. Farmlands are mosaics of fields with various crop types and farming practices. Crop phenology creates asynchrony between fields sown and harvested in different periods (winter vs. spring crops). The present study was conducted to examine the influence of such spatio-temporal heterogeneity on biodiversity, with the hypothesis that it would lead to spatio-temporal redistribution (shifting) of species. Species richness and activity-density of carabid beetles in winter cereal (winter) and maize (spring) crops were compared across 20 landscapes distributed along a double gradient of relative area and spatial configuration of winter and spring crops. Maize fields were sampled in spring and late summer for comparison over time. The response of carabid species richness to landscape heterogeneity was weak in spring, but maize field richness benefited from adjacencies with woody habitat, in late summer. In spring, increased length of interfaces between winter and spring crops lowered carabid activity-density in winter cereal fields, suggesting that maize fields acted as sinks. Interfaces between woody habitats and crops increased activity-density in both crop types. We found no evidence of spatio-temporal complementation, but different species benefited from winter cereals and maize in spring and late summer, increasing overall diversity. These findings confirm the role of adjacencies between woody and cultivated habitats in the conservation of abundant carabid assemblage in winter cereals and maize. We conclude that between-field population movement occurs, and advocate for better consideration of farmland heterogeneity in future research.  相似文献   

4.
Landscape heterogeneity is a major driver of biodiversity in agricultural areas and represents an important parameter in conservation strategies. However, most landscape ecology studies measure gamma diversity of a single habitat type, despite the assessment of multiple habitats at a landscape scale being more appropriate. This study aimed to determine the effects of landscape composition and spatial configuration on life-history trait distribution in carabid beetle and herbaceous plant communities. Here, we assessed the gamma diversity of carabid beetles and plants by sampling three dominant habitats (woody habitats, grasslands and crops) across 20 landscapes in western France. RLQ and Fourth Corner three-table analyses were used to assess the association of dispersal, phenology, reproduction and trophic level traits with landscape characteristics. Landscape composition and configuration were both significant in explaining functional composition. Carabid beetles and plants showed similar response regarding phenology, i.e. open landscapes were associated with earlier breeding species. Carabid beetle dispersal traits exhibited the strongest relationship with landscape structure; for instance, large and apterous species preferentially inhabited woody landscapes, whereas small and macropterous species preferentially inhabited open landscapes. Heavy seeded plant species dominated in intensified agricultural landscapes (high % crops), possibly due to the removal of weeds (which are usually lightweight seeded species). The results of this study emphasise the roles of landscape composition and configuration as ecological filters and the importance of preserving a range of landscape types to maintain functional biodiversity at regional scales.  相似文献   

5.
6.
Aim To evaluate the joint and independent effects of spatial location, landscape composition and landscape structure on the distribution patterns of bird and carabid beetle assemblages in a mosaic landscape dominated by pine plantation forests. Location A continuous 3000‐ha landscape mosaic with native maritime pine Pinus pinaster plantations of different ages, deciduous woodlands and open habitats, located in the Landes de Gascogne forest of south‐western France. Methods We sampled breeding birds by 20‐min point counts and carabid beetles by pitfall trapping using a systematic grid sampling of 200 points every 400 m over the whole landscape. Explanatory variables were composed of three data sets derived from GIS habitat mapping: (1) spatial variables (polynomial terms of geographical coordinates of samples), (2) landscape composition as the percentage cover of the six main habitats, and (3) landscape structure metrics including indices of fragmentation and spatial heterogeneity. We used canonical correspondence analysis with variance partitioning to evaluate the joint and independent effects of the three sets of variables on the ordination of species assemblages. Moran's I correlograms and Mantel tests were used to assess for spatial structure in species distribution and relationships with separate landscape attributes. Results Landscape composition was the main factor explaining the distribution patterns of birds and carabids at the mesoscale of 400 × 400 m. Independent effects of spatial variables and landscape structure were still significant for bird assemblages once landscape composition was controlled for, but not for carabid assemblages. Spatial distributions of birds and carabids were primarily influenced by the amount of heathlands, young pine plantations, herbaceous firebreaks and deciduous woodlands. Deciduous woodland species had positive responses to edge density, while open habitat species were positively associated with mean patch area. Main conclusions Forest birds were favoured by an increase in deciduous woodland cover and landscape heterogeneity, but there was no evidence for a similar effect on carabid beetles. Fragmentation of open habitats negatively affected both early‐successional birds and carabids, specialist species being restricted to large heathlands and young plantations. Several birds of conservation concern were associated with mosaics of woodlands and grasslands, especially meadows and firebreaks. Conserving biodiversity in mosaic plantation landscapes could be achieved by the maintenance of a significant amount of early‐successional habitats and deciduous woodland patches within a conifer plantation matrix.  相似文献   

7.
European agricultural landscapes are mosaics of intensively cultivated areas and semi-natural elements. Although comprising only a small fraction of the total area, semi-natural elements provide habitat for most of the landscape biodiversity. Agricultural intensification has increasingly fragmented semi-natural elements and species numbers are in decline. Insights into the effects of landscape structure on species’ distributions within and among semi-natural habitats are needed to conserve biodiversity in agricultural landscapes more effectively. We investigated the landscape- and habitat-specific diversity partitions of wild bees, true bugs, and carabid beetles in two differently structured agricultural landscapes in Switzerland. In each landscape, we partitioned the total species diversity (γ) into its additive components within (P) and among patches (βP) and among habitats (βH). In the landscape characterized by a patchy, isolated distribution of habitat elements, among-patch diversity (βP) explained 44% of the total species richness (γ) and was significantly higher than expected under a random distribution of samples among habitat patches; in the landscape with higher habitat connectivity, among-patch diversity (βP) comprised 32% of the total species richness (γ) and did not differ from the random expectation. Habitat-specific within-patch contributions to species richness were similarly low across habitat types (P=23–24%) in the patchy landscape, whereas in the more connected landscape within-patch partitions tended to be higher and differed among habitat types (P=22–38%). Functionally different groups of bees, true bugs, and carabids also responded differently to landscape structure in a manner that was consistent with known differences in resource specialization and dispersal ability. Differences in diversity partitions among landscapes and taxa indicate the need for flexible conservation strategies. Conservation of habitat-specific diversity may require more habitat patches in landscapes that have lower habitat connectivity and low within-patch diversity (P) than in landscapes with higher within-patch diversity (P).  相似文献   

8.
Agriculture is a primary factor underlying world-wide declines in biodiversity. However, different agricultural systems vary in their effects depending on their resemblance to the natural ecosystem, coverage across the landscape, and operational intensity. We combined data from the North American Breeding Bird Survey with remotely sensed measures of crop type and linear woody feature (LWF) density to study how agricultural type, woody structure and crop heterogeneity influenced the avian community at landscape scales across a broad agricultural region of eastern Canada. Specifically, we examined whether 1) avian diversity and abundance differed between arable crop agriculture (e.g., corn, soy) and forage (e.g., hay) and pastoral agriculture, 2) whether increasing the density of LWF enhances avian diversity and abundance, and 3) whether increasing the heterogeneity of arable crop types can reduce negative effects of arable crop amount. Avian diversity was lower in landscapes dominated by arable crop compared to forage agriculture likely due to a stronger negative correlation between arable cropping and the amount of natural land cover. In contrast, total avian abundance did not decline with either agricultural type, suggesting that species tolerant to agriculture are compensating numerically for the loss of non-tolerant species. This indicates that bird diversity may be a more sensitive response than bird abundance to crop cover type in agricultural landscapes. Higher LWF densities had positive effects on the diversity of forest and shrub bird communities as predicted. Higher crop heterogeneity did not reduce the negative effects of high crop amount as expected except for wetland bird abundance. In contrast, greater crop heterogeneity actually strengthened the negative effects of high crop amount on forest bird abundance, shrub-forest edge bird diversity and total bird diversity. We speculate that this was due to negative correlations between crop heterogeneity and the amount of shrub and forest habitat patches in crop-dominated landscapes in our study region. The variable response to crop heterogeneity across guilds suggests that policies aimed at crop diversification may not enhance avian diversity on their own and that management efforts aimed at the retention of natural forest and shrub patches, riparian corridors, and hedge-rows would be more directly beneficial.  相似文献   

9.
北京密云农业景观步甲群落空间分布格局   总被引:9,自引:0,他引:9  
采用陷阱法对北京密云县西田各庄南部农业景观中玉米地、花生地、果园及半自然林地4种典型生境中的步甲群落进行调查分析.结果表明: 果园步甲群落α多样性最高,花生地最低,林地与玉米地居中,且二者无显著差异;林地、花生地及果园的步甲群落结构明显不同,但均与玉米地的步甲群落结构有不同程度的相似性.果园维持着较多的捕食性步甲和兼食性步甲个体数;且不同生境间捕食性步甲的物种周转率与兼食性步甲的差异更明显.低集约化的果园生境可能较半自然生境林地维持更高的步甲群落α多样性,但多样化的景观组成有利于维持步甲群落及捕食性步甲较高的β多样性.重视景观多样性和低集约化农田生境的保护对保护农业景观步甲群落多样性和实现其害虫控制功能具有重要的意义.  相似文献   

10.
Several processes are hypothesised to mediate the relationship between local (microsite) plant species richness and the topographical heterogeneity of the surrounding landscape. In a topographically heterogeneous landscape with various habitats occurring close to each other, local species richness may be enriched by species from surrounding habitats due to the spatial mass effect (sink‐source dynamics). In contrast, increased habitat fragmentation due to spatial heterogeneity may have a negative effect on local species richness. The spatial mass effect is thought to be more pronounced in communities with a higher ratio of generalists, as generalists are more likely to establish viable populations in sink habitats. To reveal the pattern of local species richness along a gradient of landscape topographical heterogeneity at middle altitudes of the Bohemian Massif, we used 2551 forest vegetation plots stored in the Czech National Phytosociological Database. We developed an analytical approach relating the pattern of local species richness of vegetation types to the gradient of landscape topographical heterogeneity. An increase or decrease in species richness with increasing landscape heterogeneity was related to changes in the generalist/specialist ratio, and also to changes in soil reaction and productivity estimated through Ellenberg indicator values. Local species richness along a gradient of increasing landscape heterogeneity increased in nutrient‐poor vegetation and decreased in nutrient‐rich vegetation. Nutrient‐poor vegetation types, such as thermophilous and acidophilous oak forests, also had a high proportion of habitat generalists, supporting the hypothesis that increased richness in heterogeneous landscapes may result from the spatial mass effect. However, the same pattern may be explained by a shift in environmental conditions along the landscape heterogeneity gradient, such as increasing productivity of nutrient‐rich vegetation types or increasing soil reaction of most vegetation types in more heterogeneous landscapes. We discuss available evidence and conclude that these two explanations need not be mutually exclusive.  相似文献   

11.
A fundamental problem in ecology, regardless of habitat or system, is understanding the relationship between habitats and assemblage of organisms. It is commonly accepted that differences in composition and surrounding landscape of habitats affect the diversity of assemblages, although there is not much empirical evidence because of difficulties of manipulating structure in many habitats. These relationships were examined experimentally, using habitats of artificial turfs that are colonized by diverse assemblages of gastropods. Each habitat was made of nine sub‐habitats, which were sampled individually to allow tests of hypotheses about the effect of type of habitat and the influence of other adjacent sub‐habitats on the colonizing assemblage. Turf habitats were deployed for 8 weeks on a rocky shore after which they were collected and the colonizing assemblages of gastropods sampled. Independently of the types of turfs combined to form different habitats, there were more species where there was more than one type of component in a habitat (i.e. structural diversity). The type of habitat (i.e. structural identity) itself had little or no influence on the colonizing assemblage. The number of species colonizing short‐sparse and short‐dense turfs was influenced by which type of habitat was adjacent. Thus, when units of one type (e.g. short‐sparse turf) were added to a patch of habitat of long‐sparse turfs, the number of species in short‐sparse turfs was greater than in patches of the same type. This also increased total number of taxa in the whole patch of habitat. These results show how diversity of gastropods colonizing heterogeneous patches of habitat is influenced not only by the number of types of sub‐habitats, but also by interactions with surrounding sub‐habitats. These findings reiterate the importance of investigating the role of structure of habitats and of their surrounding landscapes across different systems, irrespective of their size or associated assemblages of organisms.  相似文献   

12.
Farmland birds are of conservation concerns around the world. In China, conservation management has focused primarily on natural habitats, whereas little attention has been given to agricultural landscapes. Although agricultural land use is intensive in China, environmental heterogeneity can be highly variable in some regions due to variations in crop and noncrop elements within a landscape. We examined how noncrop heterogeneity, crop heterogeneity, and noncrop features (noncrop vegetation and water body such as open water) influenced species richness and abundance of all birds as well as three functional groups (woodland species, agricultural land species, and agricultural wetland species) in the paddy‐dominated landscapes of Erhai water basin situated in northwest Yunnan, China. Birds, crop, and noncrop vegetation surveys in twenty 1 km × 1 km landscape plots were conducted during the winter season (from 2014 to 2015). The results revealed that bird community compositions were best explained by amounts of noncrop vegetation and compositional heterogeneity of noncrop habitat (Shannon–Wiener index). Both variables also had a positive effect on richness and abundance of woodland species. Richness of agricultural wetland species increased with increasing areas of water bodies within the landscape plot. Richness of total species was also greater in the landscapes characterized by larger areas of water bodies, high proportion of noncrop vegetation, high compositional heterogeneity of noncrop habitat, or small field patches (high crop configurational heterogeneity). Crop compositional heterogeneity did not show significant effects neither on the whole community (all birds) nor on any of the three functional groups considered. These findings suggest that total bird diversity and some functional groups, especially woodland species, would benefit from increases in the proportion of noncrop features such as woody vegetation and water bodies as well as compositional heterogeneity of noncrop features within landscape.  相似文献   

13.
Carabid beetles are common predators of pest insects and weed seeds in agricultural systems. Understanding their dispersal across farmland is important for designing farms and landscapes that support pest and weed biological control. Little is known, however, about the effect of farmland habitat discontinuities on dispersal behaviour and the resulting redistribution of these beetles. We released 1,985 well‐fed and 1,680 food‐deprived individuals of the predatory carabid beetle Pterostichus melanarius (Illiger) (Coleoptera: Carabidae) on a farm in Wageningen, The Netherlands. We recaptured 23.6% of those beetles over a period of 23 days in 2010. The farmland comprised agricultural fields with various crop species and tillage, separated by strips of perennial vegetation. We developed discrete Fokker‐Planck diffusion models to describe dispersal based on motility (m2 day?1) and preferential behaviour at habitat interfaces. We used model selection and Akaike’s information criterion to determine whether movement patterns were driven by variation in motility between habitats, preferential behaviour at habitat interfaces, or both. Model selection revealed differences in motility among habitats and gave strong support for preferential behaviour at habitat interfaces. Behaviour at interfaces between crop and perennial vegetation was asymmetric, with beetles preferentially moving towards the crop. Furthermore, beetles had lower motility in perennial strips than in arable fields. Also between arable habitats movement was asymmetric, with beetles preferentially moving towards the habitat in which motility was lowest. Neither crop type nor tillage explained differences in motility between crop habitats. Recapture data representing dispersal patterns of beetles were best described by a model that accounted for differences in motility between farmland habitats and preferential behaviour at habitat interfaces. Motility in farmland and behaviour at interfaces can also be estimated for other organisms and farmland habitats to support design of farmland conducive to natural pest suppression. Landscape design for early recruitment of carabids into arable fields should take into account the quantity and quality of resource habitats in the landscape, their proximity to crop fields, movement rates, and the possibility of movement responses at interfaces between landscape elements.  相似文献   

14.
Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island size, indicating that the creation of quite small but diversified (e.g., differing in vegetation cover) non-crop habitat islands could be the most efficient tool for the maintenance and enhancement of diversity of ground-dwelling carabids and spiders in agricultural landscapes.  相似文献   

15.
农业景观生物多样性与害虫生态控制   总被引:12,自引:1,他引:11  
郑云开  尤民生 《生态学报》2009,29(3):1508-1518
现代农业的一个重要特征就是人类对农田生态系统的干扰强度及频率不断增加,严重影响农业景观的结构及其生物多样性.农业景观结构的变化及其生物多样性的丧失,必然引起生态系统服务功能的弱化,不利于实施以保护自然天敌为主的害虫生态控制.农业的集约化经营导致自然生境破碎化,减少了农业景观的复杂性,使得作物和非作物变成一种相对离散化的生境类型和镶嵌的景观格局;破碎化的生境不仅会减少某些物种的丰度,还会影响物种之间的相互关系及生物群落的多样性和稳定性.非作物生境类型如林地、灌木篱墙、田块边缘区、休耕地和草地等,是一种比较稳定的异质化环境.非作物生境较少受到干扰,可以为寄生性和捕食性节肢动物提供适宜的越冬或避难场所以及替代猎物、花粉和花蜜等资源,因此,非作物生境有利于自然天敌的栖息和繁衍,也有利于它们迁入邻近的作物生境中对害虫起到调节和控制作用.景观的格局-过程-尺度影响农田生物群落物种丰富度、多度、多样性以及害虫与天敌之间的相互作用.从区域农业景观系统的角度出发,运用景观生态学的理论和方法来研究作物、害虫、天敌等组分在不同斑块之间的转移过程和变化规律,揭示害虫在较大尺度和具有异质性的空间范围内的灾变机理,可为利用农业景观生物多样性来保护农田自然天敌,实施害虫的区域性生态控制提供新的研究思路和手段.  相似文献   

16.
Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists.  相似文献   

17.
Aim Species richness in itself is not always sufficient to evaluate land management strategies for nature conservation. The exchange of species between local communities may be affected by landscape structure and land‐use intensity. Thus, species turnover, and its inverse, community similarity, may be useful measures of landscape integrity from a diversity perspective. Location A European transect from France to Estonia. Methods We measured the similarity of plant, bird, wild bee, true bug, carabid beetle, hoverfly and spider communities sampled along gradients in landscape composition (e.g. total availability of semi‐natural habitat), landscape configuration (e.g. fragmentation) and land‐use intensity (e.g. pesticide loads). Results Total availability of semi‐natural habitats had little effect on community similarity, except for bird communities, which were more homogeneous in more natural landscapes. Bee communities, in contrast, were less similar in landscapes with higher percentages of semi‐natural habitats. Increased landscape fragmentation decreased similarity of true bug communities, while plant communities showed a nonlinear, U‐shaped response. More intense land use, specifically increased pesticide burden, led to a homogenization of bee, bug and spider communities within sites. In these cases, habitat fragmentation interacted with pesticide load. Hoverfly and carabid beetle community similarity was differentially affected by higher pesticide levels: for carabid beetles similarity decreased, while for hoverflies we observed a U‐shaped relationship. Main conclusions Our study demonstrates the effects of landscape composition, configuration and land‐use intensity on the similarity of communities. It indicates reduced exchange of species between communities in landscapes dominated by agricultural activities. Taxonomic groups differed in their responses to environmental drivers and using but one group as an indicator for ‘biodiversity’ as such would thus not be advisable.  相似文献   

18.
Arthropod communities in fragmented agricultural landscapes depend on local processes and the interactions between communities in the habitat islands. We aimed to study metacommunity structure of spiders, a group that is known for high dispersal power, local niche partitioning and for engaging in species interactions. While living in fragmented habitats could lead to nestedness, other ecological traits of spiders might equally lead to patterns dominated either by species interactions or habitat filtering. We asked, which community pattern will prevail in a typical agricultural landscape with isolated patches of semi-natural habitats. Such a situation was studied by sampling spiders in 28 grassland locations in a Hungarian agricultural landscape. We used the elements of metacommunity structure (EMS) framework to distinguish between alternative patterns that reveal community organization. The EMS analysis indicated coherent species ranges, high turnover and boundary clumping, suggesting Clementsian community organization. The greatest variation in species composition was explained by local habitat characteristics, indicating habitat filtering. The influence of dispersal could be detected by the significant effect of landscape composition, which was strongest at 500 m. We conclude that dispersal allows spiders to respond coherently to the environment, creating similar communities in similar habitats. Consistent habitat differences, such as species rich versus species poor vegetation, lead to recognisably different, recurrent communities. These characteristics make spiders a predictable and diverse source of natural enemies in agricultural landscapes. Sensitivity to habitat composition at medium distances warns us that landscape homogenization may alter these metacommunity processes.  相似文献   

19.
Carabid beetles (Coleoptera: Carabidae) have widely been used to assess biodiversity values of different habitats in cultivated landscapes, but rarely in the humid tropics. This study aimed to investigate effects of land use change on the carabid assemblages in a tributary valley of the Mekong River in tropical southern Yunnan, China. The study area includes habitats of traditional land use systems (rice production and shifting cultivation successions) and was dominated by natural forests until about 30?years ago. Since then, large areas of forest have been, and still are, successively transformed into commercial rubber monoculture plantations. In total, 102 species of Carabidae (including Cicindelinae) were recorded from 13 sites over different seasons, using pitfall traps, Malaise traps and aerial collectors in trees. Cluster analysis and indicator species analysis showed that three types of habitat (rice field fallows, early natural successions and natural forest) possess a degree of uniqueness in species composition. Non-metric multidimensional scaling revealed that the environmental factors explaining 80% of the total variation in carabid assemblage composition are the degree of vegetational openness of a habitat and its plant species diversity. Rice field fallows had significantly higher numbers of species and individuals than any other type of habitat and are probably dominated by species originating from other regions. Carabid assemblages of young rubber plantations (5 and 8?years) were quantitatively similar to those of forests, but without species of significant indicator value. With increasing plantation age (20 and 40?years), the number of carabid species decreased. Increasing age and a further spatial expansion of rubber plantations at the expense of forest areas will have negative impacts on the native forest carabid assemblages with strongest effects on forest specialists and rare species.  相似文献   

20.
Agricultural landscapes generally include not only crop fields but also semi-natural habitats. In Japan, such a mixed rural landscape is called “satoyama.” Although ground beetles are potential predators of pests, the environmental factors that determine their distribution in Japanese rural landscapes have not been fully elucidated. To understand the effects of distance from woodland edges, soil moisture, and weed height on assemblages of carabid beetles, we examined the number of adult beetles in pitfall traps placed in a satoyama landscape in the lowlands of western Honshu, Japan. Our results show that the carabid species could be largely differentiated into woodland, intermediate, and open-land species. The “intermediate species” group includes species that depend on woodland or woodland edges for at least part of their life cycles. Paddy fields must have long provided semi-natural habitats that complement those in natural grasslands and wetlands for open-land beetles that prefer wet conditions. Weeds can also increase the abundance of some intermediate and woodland species; thus, the arrangement of such landscape elements as woodlands and paddies can determine the species richness and abundance of ground beetles in agricultural fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号