首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
PurposeNo direct evidence exists to support the validity of using surface electrodes to record muscle activity from serratus anterior, an important and commonly investigated shoulder muscle. The aims of this study were to determine the validity of examining muscle activation patterns in serratus anterior using surface electromyography and to determine whether intramuscular electromyography is representative of serratus anterior muscle activity.MethodsSeven asymptomatic subjects performed dynamic and isometric shoulder flexion, extension, abduction, adduction and dynamic bench press plus tests. Surface electrodes were placed over serratus anterior and around intramuscular electrodes in serratus anterior. Load was ramped during isometric tests from 0% to 100% maximum load and dynamic tests were performed at 70% maximum load. EMG signals were normalised using five standard maximum voluntary contraction tests.ResultsSurface electrodes significantly underestimated serratus anterior muscle activity compared with the intramuscular electrodes during dynamic flexion, dynamic abduction, isometric flexion, isometric abduction and bench press plus tests. All other test conditions showed no significant differences including the flexion normalisation test where maximum activation was recorded from both electrode types. Low correlation between signals was recorded using surface and intramuscular electrodes during concentric phases of dynamic abduction and flexion.ConclusionsIt is not valid to use surface electromyography to assess muscle activation levels in serratus anterior during isometric exercises where the electrodes are not placed at the angle of testing and dynamic exercises. Intramuscular electrodes are as representative of the serratus anterior muscle activity as surface electrodes.  相似文献   

2.
Transcutaneous stimulation of the human lumbosacral spinal cord is used to evoke spinal reflexes and to neuromodulate altered sensorimotor function following spinal cord injury. Both applications require the reliable stimulation of afferent posterior root fibers. Yet under certain circumstances, efferent anterior root fibers can be co-activated. We hypothesized that body position influences the preferential stimulation of sensory or motor fibers. Stimulus-triggered responses to transcutaneous spinal cord stimulation were recorded using surface-electromyography from quadriceps, hamstrings, tibialis anterior, and triceps surae muscles in 10 individuals with intact nervous systems in the supine, standing and prone positions. Single and paired (30-ms inter-stimulus intervals) biphasic stimulation pulses were applied through surface electrodes placed on the skin between the T11 and T12 inter-spinous processes referenced to electrodes on the abdomen. The paired stimulation was applied to evaluate the origin of the evoked electromyographic response; trans-synaptic responses would be suppressed whereas direct efferent responses would almost retain their amplitude. We found that responses to the second stimulus were decreased to 14%±5% of the amplitude of the response to the initial pulse in the supine position across muscles, to 30%±5% in the standing, and to only 80%±5% in the prone position. Response thresholds were lowest during standing and highest in the prone position and response amplitudes were largest in the supine and smallest in the prone position. The responses obtained in the supine and standing positions likely resulted from selective stimulation of sensory fibers while concomitant motor-fiber stimulation occurred in the prone position. We assume that changes of root-fiber paths within the generated electric field when in the prone position increase the stimulation thresholds of posterior above those of anterior root fibers. Thus, we recommend conducting spinal reflex or neuromodulation studies with subjects lying supine or in an upright position, as in standing or stepping.  相似文献   

3.
The integrity of the central efferent motor pathways to the diaphragm can be assessed by using transcranial magnetic stimulation to measure the latency of the corresponding motor evoked potentials with surface electrodes. Because transcranial magnetic stimulation does not activate the diaphragm alone, signal contamination is a potential problem. To evaluate this issue, surface diaphragmatic motor-evoked potential latencies were compared with latencies recorded from diaphragm needle in 9 healthy volunteers. Surface latencies of muscles likely to contaminate the diaphragm signals (serratus anterior, pectoralis major, and tranversus abdominis) were also recorded. The latencies in response to nonfocal transcranial stimulation from surface electrodes were not significantly different from the needle ones (17 +/- 1.3 vs. 17.2 +/- 1.1 ms, respectively) but were significantly different from the latencies of the other muscles. In two cases, signal contamination appeared likely (serratus anterior in 1 case, abdominal muscles in 1 case). It is possible to reliably measure the latency of the diaphragm response to transcranial magnetic stimulation with adequately positioned surface electrodes.  相似文献   

4.
We describe methods of localizing functional regions of the mesial wall, based on 47 patients studied intraoperatively or following chronic implantation of subdural electrodes. Somatosensory evoked potentials were recorded to stimulation of posterior tibial, dorsal pudendal, median, and trigeminal nerves. Bipolar cortical stimulation was performed, and in 4 cases movement-related potentials were recorded.The cingulate and marginal sulci formed the inferior and posterior borders of the sensorimotor areas and the supplementary motor area (SMA). The foot sensory area occupied the posterior paracentral lobule, while the genitalia were represented anterior to the foot sensory area, near the cingulate sulcus. The foot motor area was anterior and superior to the sensory areas, but there was overlap in these representations. There was a rough somatotopic organization within the SMA, with the face represented anterior to the hand. However, there was little evidence of the “pre-SMA” region described in monkeys. Complex movements involving more than one extremity were elicited by stimulation of much of the SMA. The region comprising the supplementary sensory area was not clearly identified, but may involve much of the precuneus. Movement-related potentials did not provide additional localizing information, although in some recordings readiness potentials were recorded from the SMA that appeared to be locally generated.  相似文献   

5.
Young Korean women with prominent zygoma may experience stress in daily life because the Oriental physiognomy often associates prominent zygoma with bad luck. Moreover, prominent zygoma in a wide Oriental face has the effect of making a person appear older and stubborn. Zygomatic reduction is often necessary to relieve stress from self-consciousness about facial appearance and to obtain younger and softer features. As such, most zygomatic procedures are cosmetic; therefore, an entirely intraoral approach with no skin incision is desirable. The current operative method of zygomatic reduction consists of two steps. The zygomatic body and arch are exposed through a mucoperiosteal incision from the maxillary canine to the first molar area. The first step is to grind and file the zygomatic body. The second step is made on the zygomatic arch. Using an oscillating saw, a partial-thickness osteotomy is made just posterior to the orbital rim, and a full-thickness osteotomy is made just anterior to the articular tubercle of the zygomatic arch. Light pressure on the posterior part of the arch produces a greenstick fracture of the anterior osteotomy site and a complete fracture of the posterior osteotomy site, resulting in inward repositioning of the zygomatic arch. This method of zygomatic reduction is simple, easy, effective, and leaves no conspicuous scars on the face.  相似文献   

6.
Following craniofacial procedures that involve stripping of the periosteum and soft tissue over the zygomatic maxillary complex, descent of soft tissue with a decrease in anterior projection over the malar area and increase in fullness in the nasolabial fold have been seen to be a problem by these authors. Simple repositioning of the soft tissues to their normal anatomic position may be used to alleviate this problem.  相似文献   

7.
The aim of the study was to assess the variability of EMG signal envelope with electrode location during gait. Surface EMG signals were recorded from 10 healthy subjects from the tibialis anterior (TA), peroneus longus (PL), gastrocnemius medialis (GM), gastrocnemius lateralis (GL), and soleus (SO) muscles. From TA, PL, GL and GM, signals were acquired using a two-dimensional grid of 4 x 3 electrodes (10 x 15 mm in size, as used in most gait laboratories) with 20-mm interelectrode distance in both directions. A similar grid of 3 x 3 electrodes was used for SO. EMG envelope was characterized by its peak value, area after normalization by the peak value, and time instant corresponding to the maximum. The maximum relative change in peak value with electrode location, expressed as a percentage of the peak value in the central location, was (mean+/-SD) 31+/-18% for TA, 29+/-13% for PL, 25+/-15% for GL, 14+/-8% for GM, and 26+/-14% for SO. The maximum relative change in area was 29+/-13% for TA, 73+/-40% for PL, 31+/-23% for GL, 35+/-20% for GM, 20+/-13% for SO, and in the position of maximum, computed as distance from the maximum position in the central channel, it was 5+/-10% of the gait cycle for TA, 26+/-16% for PL, 3+/-2% for GL, 3+/-1% for GM, 3+/-3% for SO. A crosstalk index, defined on the basis of the expected intervals of muscle activation for healthy subjects, indicated that estimated crosstalk was present between TA and PL, in an amount which depended on electrode location. It was concluded that the estimate of muscle activation intensity during gait from surface EMG is variable with location of the electrodes while timing of muscle activity is more robust to electrode displacement and can be reliably extracted in those cases in which crosstalk is limited. These results are valid for healthy subjects, where the level of muscular activity during gait is much lower than maximum.  相似文献   

8.
Superimposition of serial Cone Beam Computed Tomography (CBCT) scans has become a valuable tool for three dimensional (3D) assessment of treatment effects and stability. Voxel based image registration is a newly developed semi-automated technique for superimposition and comparison of two CBCT scans. The accuracy and reproducibility of CBCT superimposition on the anterior cranial base or the zygomatic arches using voxel based image registration was tested in this study. 16 pairs of 3D CBCT models were constructed from pre and post treatment CBCT scans of 16 adult dysgnathic patients. Each pair was registered on the anterior cranial base three times and on the left zygomatic arch twice. Following each superimposition, the mean absolute distances between the 2 models were calculated at 4 regions: anterior cranial base, forehead, left and right zygomatic arches. The mean distances between the models ranged from 0.2 to 0.37 mm (SD 0.08-0.16) for the anterior cranial base registration and from 0.2 to 0.45 mm (SD 0.09-0.27) for the zygomatic arch registration. The mean differences between the two registration zones ranged between 0.12 to 0.19 mm at the 4 regions. Voxel based image registration on both zones could be considered as an accurate and a reproducible method for CBCT superimposition. The left zygomatic arch could be used as a stable structure for the superimposition of smaller field of view CBCT scans where the anterior cranial base is not visible.  相似文献   

9.
The main purpose of this study was to evaluate the reproducibility of electromyographic (EMG) measurements and specifically to test a calibration procedure with submaximal test contractions. Bipolar surface electrodes (20 mm fixed distance) were repositioned by a tracing sheet on both trapezius muscles, halfway between acromion and processus prominens. Submaximal test contractions were performed by keeping both arms straight abducted 90 degrees and forward flexed 10 degrees for 15-s periods. The arm position could be precisely reproduced in the frontal plane, but deviated forwards by 4 degrees in the horizontal plane, where the sensitivity of the EMG response to arm position was lowest. The electrodes were repositioned within a radius of 3 mm with a probability of 90%. Large deviations in the EMG response were found within this radius and a significant depression of the EMG response was recorded over the middle part of the muscle (the innervation zone?). This change in sensitivity of the EMG response with electrode position occurred in parallel for the test and maximal contractions. The total coefficient of variation was estimated to be 23% for recurrent EMG measurements using the calibration procedure described.  相似文献   

10.
A juvenile Australopithecus boisei specimen from the Omo basin, southern Ethiopia, is found to exhibit and extraordinarily large overlap of the temporal squama on the parietal, a phenomenon shared with at least two adult specimens of A. boisei. An attempt is made to interpret the overlap as a structural (bony/ligamentous) adaptation necessitated by the unique combination of certain components of the masticatory system of A. boisei. These are: (1) the massiveness and strength of the temporalis muscle, (2) its relatively anterior location, and (3) the lateral position of the masseter muscle due to the flaring of the zygomatic arches. The effect of the temporalis muscle is to create excessive pressure on the portion of the squamosal suture along the parietal, while the lateral placement of the masseter and the resultant increase of pressure on the temporal squama via the zygomatic arch tend to "loosen" the contact between the temporal and parietal bones.  相似文献   

11.
The recruitment characteristics of muscle selective nerve stimulation by a multi-contact nerve cuff electrode, as predicted by computer modeling, have been investigated in acute experiments on rabbits. A nerve cuff containing five or six dot electrodes was placed around the sciatic nerve in five rabbits. M-waves were recorded with wire electrodes from the lateral gastrocnemius, soleus, tibialis anterior, and extensor digitorum longus muscles. The muscle recruitment performances of three contact configurations (monopole, transverse bipole, transverse tripole) were compared. The selectivity was quantified by the recruitment of two muscles (one extensor and one flexor) in response to a particular stimulus. The results showed that only in a few cases, transverse bi- and tripolar stimulation provided a better selectivity than monopolar stimulation. Neither of the two extensors, nor of the two flexors could be stimulated separately. In accordance with the results of the modeling studies, bi- and tripolar stimulation required higher stimulus currents than monopolar stimulation, whereas maximum recruitment and slopes of recruitment curves were lower. The rabbit sciatic nerve appears to be a less suitable preparation for reproducible selectivity experiments, due to the variability in the number and size of the fascicles and their position in this nerve.  相似文献   

12.
The study analyses the two-dimensional distribution of surface mechanomyographic (MMG) signal generated by the activation of single motor units located in three transverse positions in the tibialis anterior muscle. In 12 healthy volunteers, surface MMG signals were recorded from the tibialis anterior muscle with a 3x4 grid of accelerometers spaced by 20 and 30mm in the transverse and longitudinal direction. Three intramuscular electromyographic (EMG) signals were recorded with wire electrodes inserted 20-mm apart, between the first and second most proximal accelerometers of each column of the grid. The subject was asked to activate three different motor units (target motor units) in three contractions with visual feedback from each of the three intramuscular recordings (three locations). The MMG signals from the 12 accelerometers were averaged using the intramuscular single motor unit action potentials as trigger in order to obtain surface motor unit acceleration maps (MUAMs). The peak-to-peak value of the averaged MMG depended on motor unit location (P<0.001) and on the transverse position of the accelerometer in the grid (P<0.05). Moreover, MUAM amplitude depended on the interaction between motor unit location and transverse accelerometer position (P<0.05), demonstrating an influence of motor unit location on the generated MUAM. The observed dependency of MUAMs on motor unit location provides a quantitative analysis of the effect of the volume conductor on the recorded surface MMG signal.  相似文献   

13.
The purpose of the study was to record dynamic and muscular modifications during push-up exercise variants (EV). Eight healthy men performed 6 EV of push-ups: normal, abducted, adducted, posterior, anterior, and on knees. Ground-reaction forces were recorded with a force plate while surface muscular activity with electrodes on triceps and pectoralis major. Significant differences (p < 0.05) existed for most vertical force variables but not for anteroposterior force and time variables. The initial load relative to body weight was 66.4% at the normal position, while only 52.9% at the on-knees EV. Muscle activity was less during the on-knees EV for both muscles. At the posterior EV, pectoralis major was activated higher than normal; however, triceps were activated lower than normal. Dynamic behavior and muscle activity were significantly altered between push-up EV. Instructions for push-up exercises should be followed carefully because dynamic and muscular challenge is altered when hands are differently positioned.  相似文献   

14.
Based on the current literature, it remains unclear whether electromyographic onset of the deep fibers of the multifidus (DM) is dependent on the direction of shoulder movement and the position of the center of foot pressure (CFP). In the present study, we re-examined the electromyographic onset of the DM during shoulder flexion and extension and investigated the influence of the CFP position before arm movement. Intramuscular and surface electrodes recorded the electromyographic onset of the DM, superficial fibers of the multifidus (SM), rectus abdominis, and anterior and posterior deltoid. Eleven healthy participants performed rapid, unilateral shoulder flexion and extension in response to audio stimuli at three CFP positions: quiet standing, extreme forward leaning, and extreme backward leaning. It was found that the electromyographic onset of the DM and SM relative to the deltoid was dependent on the direction of arm movement. Additionally, of all electromyographic onsets recorded, only that of the DM occurred earlier in the extreme forward leaning position than in the extreme backward leaning position during shoulder flexion. These results suggest that the electromyographic onset of DM was influenced by the biomechanical disturbance such as shoulder movement and CFP position.  相似文献   

15.
Collapse of the zygomatic arch following trauma results in inadequate anteroposterior projection of the zygomatic body and an increase in facial width. Accurate assessment of the position of the zygomatic arch in relation to the cranial base posteriorly and the midface anteriorly is the key to the acute repair of complex midfacial fractures and the secondary reconstruction of posttraumatic deformities of the orbitozygomaticomaxillary complex. Loss of projection of the zygomatic arch may occur with injuries confined to the orbitozygomaticomaxillary region or in association with complex midfacial fractures. A safe anatomic approach to the zygomatic arch allows exact anatomic restoration of the zygomatic arch using miniplates and screws and results in the reconstruction of an outer facial frame with a correct anteroposterior projection and facial width. The zygomatic arch injury is diagnosed using axial CT scanning. Three-hundred and seventeen arches have been exposed through a coronal incision following acute trauma and 47 arches have been exposed in patients requiring late correction of a posttraumatic orbitozygomaticomaxillary deformity. Permanent palsy to the frontal branch of the facial nerve has occurred in one patient following the exact definition of the anatomy of this region.  相似文献   

16.
PurposeWe compared electromyography (EMG) recorded from the shoulder joint muscles in the same position for different movement directions.MethodsFifteen healthy subjects participated. They performed shoulder elevation from 0° to 120°, shoulder depression from 120° to 0°, shoulder horizontal adduction from ?15° to 105°, and shoulder horizontal abduction from 105° to ?15°. The target positions were 90° shoulder elevation in the 0°, 30°, 60°, and 90° planes (0°, 30°, 60°, and 90° positions). EMG signals were recorded from the supraspinatus (SSP) muscle by fine-wire electrodes. EMG signals from the infraspinatus (ISP), anterior deltoid, middle deltoid, and posterior deltoid muscles were recorded using active surface electrodes.ResultsDuring elevation and horizontal abduction, the SSP showed significantly higher activity than that shown during depression and during horizontal adduction in the 0°, 30°, and 60° positions. During elevation, the ISP showed significantly higher activity than during depression and during horizontal adduction in the 90° position. During horizontal abduction, the ISP showed significantly higher activity than during depression in the 90° position.ConclusionsWhen the movement tasks were performed in different movement directions at the same speed, each muscle showed characteristic activity.  相似文献   

17.
Through the dissection and localization of the cutaneous zygomatic branch, as previously described by the authors, a vessel is available that plays an important role in reconstructive surgery. The performance of this anatomical study has enabled designing of the so-called zygomatic flap, which can be considered as a further possibility in the reconstruction of soft-tissue defects of the upper lip and nose. This new island axial pattern flap provides a reliable source of skin, with color match for facial resurfacing, and leaves a well-hidden donor site similar to that of the nasolabial flap. The flap must be carefully raised, and when properly designed, it can follow naturally existing contour lines, thus respecting and preserving the normal facial topography and leaving the patient with minimal surgical deformity. In this article, the authors report the clinical application of the zygomatic flap and the outcome of 10 cases. In a follow-up period from 1998 to the end of 2002, there was no flap loss, and in all cases, the aesthetic results were excellent and highly acceptable to the patients. The authors' experience with this new island axial pattern flap has been good, and they recommend this technique.  相似文献   

18.
The evolution in impedance at the electrode-skin interface of Beckman and Red Dot electrodes was assessed during long-term recordings. Impedance was measured between each pair of electrodes, arranged in a bipolar configuration on tibialis anterior (n=13). A waveform constructed of sinusoids of known frequencies, evenly distributed on a log scale from 1-16,384 Hz, was applied through the electrodes, and the result recorded by a DAQ system. SEMG signals were recorded at 1000 Hz during isometric dorsiflexion contractions of 30 s, performed every 15 min for 2 h. Impedance data were acquired at 65,536 Hz immediately before and after SEMG recordings. Large individual differences in impedance levels were observed at low frequencies. At high frequencies, impedance values depended only on the electrode type. Impedance decreased steadily with time for Beckman electrodes (p < 0.05), but did not decrease significantly for Red Dot electrodes. The magnitude of the reduction over time varied widely between individuals, and was related to the initial impedance values. The impedance-bandwidth product remained constant for each electrode type (95% confidence intervals 146.2-148.2 and 126.1-127.8 for Beckman and Red Dot electrodes respectively). When skin impedance is electrically modelled with a simple network containing a resistor and a capacitor, the capacitance varies with the properties of the electrode used, whereas resistance is dependent on the subject. Furthermore, the EMG spectrum is unaffected by impedance provided skin preparation is sufficient to reduce the impedance below 55 komega.  相似文献   

19.
The purpose of this study was to determine the reliability of investigating electromyography (EMG) of selected leg muscles during walking. Tibialis posterior and peroneus longus EMG activity were recorded via intramuscular electrodes. Tibialis anterior and medial gastrocnemius EMG activity were recorded with surface electrodes. Twenty-eight young adults attended two test-sessions approximately 15 days apart. Relative and absolute measures of reliability were calculated for EMG timing and amplitude parameters during specific phases of the gait cycle. Maximum contractions and sub-maximal contractions were obtained via maximum isometric voluntary contractions and a very fast walking speed, respectively. Time of peak EMG amplitude for all muscles displayed relatively narrow limits of random error. However, reliability of peak and root mean square amplitude parameters for tibialis posterior and peroneus longus displayed unacceptably wide limits of random error, regardless of the normalisation reference technique. Whilst some amplitude parameters for tibialis anterior and medial gastrocnemius displayed good to excellent relative reliability, the corresponding values for absolute error were generally large.Timing and amplitude EMG parameters for all muscles displayed low to moderate coefficient of variation within each test session (range: 7–25%). Overall, between-participant variability was minimised with sub-maximal normalisation values. These results demonstrate that re-application of electrodes results in large random error between sessions, particularly with tibialis posterior and peroneus longus. Researchers planning studies of these muscles with a repeated-test design (e.g. to evaluate the effect of an intervention) must consider whether this level of error is acceptable.  相似文献   

20.
The collector is an adaptive algorithm for pattern recognition. It proposes new in-line fully-automatic technique to learn and recognize effective patterns of input data stream. Evoked potentials (EP) were recorded by ADDA 100 KHz, 4 channels, and described by 200 points per each EP. The collector recognized different studies of conditioned response (CR) by patterns of EPs in amygdalar central nucleus. In dogs with implanted into the limbic structures concentric electrodes an instrumental CR was elaborated to electrical stimulation of the dorsal hippocampus. Generalization or transfer of this CR was tested by means of electrostimulation of amygdalar basal nucleus. The generalization in the first experiment took place approximately in 86% of cases, in the second one in 52% of cases. In the first experiment the amplitudes of initial negativity and of late positive waves were smaller than those in the second one and in the experiments before conditioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号