首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Tobacco hornworm larvae parasitized by the gregarious larval endoparasitoid Cotesia congregata exhibited an inhibition in testicular growth and development, the extent of which was determined by the age and developmental stage of the host at the time of parasitization. The degree of parasitic castration, as assessed by measurements of testicular volume, was correlated with the stadium in which parasitization occurred. A mathematical formula requiring the measurement of testicular length, width and depth was used to calculate testicular volume. The use of the depth parameter revealed a negative correlation between host weight and testicular volume in parasitized larvae. Testicular volumes of fifth instar hosts, which had been parasitized in the first stadium, were significantly smaller than those originally parasitized as fourth or fifth instar larvae and were not correlated with parasitoid load. Effects of natural parasitism were not duplicated by injections of C. congregata polydnavirus and venom, topical treatment with the juvenile hormone analog methoprene, or starvation of nonparasitized larvae. Larvae receiving virus plus venom or methoprene grew larger due to delayed wandering and had larger testes than controls. Deleterious effects on host testes may be due to the effects of nutrient competition between the developing parasitoid progeny and the gonads, combined with the juvenilizing effects believed to be caused by the polydnavirus.  相似文献   

2.
ABSTRACT. Previously we have shown that the number of Apanteles congregatus Say (Hymenoptera, Braconidae) larvae developing in Manduca sexta (L.) (Lepidoptera, Sphingidae) larvae that are parasitized in the first instar determines the timing of emergence of the parasites from the host. Here we show that the first larval ecdysis of the wasps occurs after the host ecdyses to the terminal stage, regardless of whether that stage is the host's fourth, fifth or supernumerary sixth instar. Starvation of newly ecdysed terminal stage host larvae prevents emergence of the parasites. When starvation is begun at progressively later times, then an increasing proportion of the hosts have parasites that emerge, suggesting a period of indispensable host nutrition exists during which the host must feed to satisfy the developmental requirements of the parasites. In hosts fed ad libitum , the weight of the host plus its parasites at the time of emergence is positively correlated with the number of parasites developing in the host. When the weight of the parasites alone is subtracted from the weight of the host—parasite complex, the data show that heavily parasitized hosts have a larger host mass than lightly parasitized larvae. In contrast, the wasp larvae, and the adult males and females that develop from them, have lower individual weights after development in heavily parasitized hosts.  相似文献   

3.
To successfully complete its development, the gregarious ectoparasitoid Eulophus pennicornis must inhibit the moult of its host, Lacanobia oleracea. In the present study, we examined the possibility that moult- and metamorphosis-associated endocrine events may be disrupted in caterpillars parasitized as newly moulted last (sixth) instars. Juvenile hormone (JH) titres on days 2 and 5 of the final stadium were significantly higher (> 100 fold) in parasitized than in non-parasitized hosts, in which JH was essentially absent. Elevated JH levels were associated with reduced haemolymph JH esterase (JHE) activity (down by 99.8%) and enhanced in vitro JH biosynthesis by the corpora allata (CA) (up to 4.5 fold). Wasp adults and/or larvae, in which we measured high levels of JH III (up to 2.7 ng/g), but little or no JH I or JH II, were not seen as likely sources of JH in parasitized hosts, in which we found mostly JH I and JH II. In addition, removal of parasitoid eggs or larvae after oviposition did not prevent the rise in JH titres seen in parasitoid-laden hosts, suggesting that wasp venom may be responsible for the observed hormonal dysfunction. Host haemolymph 20-hydroxyecdysone (20-E) levels were largely unaffected by parasitism during the final stadium although they were observed to increase earlier and decrease more rapidly in parasitized insects. We compare these results with those reported earlier for L. oleracea larvae parasitized by E. pennicornis as penultimate (fifth) instars, which display significantly depressed 20-E titres relative to control larvae. We conclude that E. pennicornis employs host endocrine-disruption strategies that differ according to whether the host is parasitized as a penultimate or final-stadium larva.  相似文献   

4.
Superparasitism refers to the oviposition behavior of parasitoid females who lay their eggs in an already parasitized host. Recent studies have shown that allocation of additional eggs to an already parasitized host may be beneficial under certain conditions. In the present work, mortality of Microplitis rufiventris wasps was significantly influenced by both host instar of Spodoptera littoralis larvae at parasitism and level of parasitism. In single parasitization, all host instars (first through sixth) were not equally suitable. Percentage of emergence success of wasp larvae was very high in parasitized first through third (highly suitable hosts), fell to 60% in the fourth instar (moderate suitable) and sharply decreased in the penultimate (5th) instars (marginally suitable). Singly parasitized sixth (last) instar hosts produced no wasp larvae (entirely unsuitable), pupated and eclosed to apparently normal adult moths. The scenario was different under superparasitism, whereas supernumerary individuals in the highly suitable hosts were almost always killed as first instars, superparasitization in unsuitable hosts (4th through 6th) had significant increase in number of emergence success of wasp larvae. Also, significantly greater number of parasitoid larvae successfully developed in unsuitable hosts containing three wasp eggs than counterparts containing two wasp eggs. Moreover, the development of surplus wasp larvae was siblicidal in earlier instars and nonsiblicidal gregarious one in the penultimate and last “sixth” instars. It is suggested that the optimal way for M. rufiventris to deal with high quality hosts (early instars) is to lay a single egg, while the optimal way to deal with low quality hosts (late instars) might be to superparasitize these hosts.  相似文献   

5.
Microplitis kewleyi Muesebeck is a gregarious internal parasite of larvae of the black cutworm Agrotis ipsilon (Hufnagel). Studies of the biology of the parasite revealed that there was an inverse relationship between host instar and parasite preference. Duration of development from egg to pupa ranged from 18 days at 27°C to 68.7 days at 16°C. Development from egg to pupa took 13.5–21.6 days when fourth and first instar host larvae, respectively, were parasitized. A larger number of parasites emerged from hosts parasitized in the fourth instar (22.4) than the first instar (11.5). Parasite pupation occurred when the host was in the fifth/sixth instar, depending on the instar parasitized. Thirty‐nine per cent of host larvae exposed as first instars to parasites died before parasite emergence. This decreased to 0% for host larvae exposed as fourth instars. The sex ratio was 1:1.2 (M:F). Thirty‐seven per cent of hosts exposed diurnally were stung, compared to 24% exposed nocturnally. Mean daily progeny was highest (12) on the first day, decreasing to zero after 20 days. Percent host parasitism was also highest on the first day (35%) decreasing to nearly 0% after 18 days. There appear to be three parasite larval instars. Host larvae often remained alive after parasite emergence.  相似文献   

6.
Abstract:  Earlier research has shown that the koinobiont parasitoid, Microplitis rufiventris , attacks and can develop on early instars of Spodoptera littoralis larvae with preference to third instars. However, the present study was carried out using the newly moulted sixth instar larvae at two different temperatures (20 ± 1 and 27 ± 1°C) to study the developmental interaction between the parasitoid and the last instar host larvae. Parasitoid eggs laid in singly parasitized host larvae invariably died. As the number of parasitoid eggs/host larvae increased, the proportion of eggs that hatched and number of viable parasitoid larvae successfully reached to their final instar increased. The effect of superparasitization seems to be dose (no. of eggs + parasitoid factors)-temperature-dependent. The results demonstrate a kind of 'Allee effect' suggesting that superparasitized last instar S. littoralis larvae provide a better host environment than singly parasitized hosts for the parasitoid, M. rufiventris . This may be due to host's hormone and/or low dose of factors injected with parasitoid eggs. The supernumerary individuals of wasp larvae developed normally to the point of emergence but most did not successfully emerge from the host. The improvement of both hatchability and post-embryonic development of parasitoid wasp was significantly (P < 0.01) greater at 20°C than at 27°C. The results of the present study are useful in understanding the evolution of life-history strategies and host range in parasitic hymenoptera.  相似文献   

7.
As shown earlier, parasitization by the egg-larval parasitoid C. inanitus causes in its host the precocious onset of metamorphosis in the 5th instar followed by developmental arrest in the prepupal stage. Polydnavirus/venom were shown to be responsible for the developmental arrest. We investigated how polydnavirus/venom affect growth of the host larvae and found that head capsule widths were smaller from the 4th to 6th stadium and weights were lower in the 6th stadium in polydnavirus/venom-containing larvae than in non-parasitized larvae. In an attempt to identify endocrine parameters that are modified by polydnavirus/venom and might be responsible for the developmental arrest in the prepupa, we compared juvenile hormones, juvenile hormone esterase and ecdysteroids between non-parasitized and polydnavirus/venom-containing larvae from the 4th instar until pupation or developmental arrest, respectively. Obvious differences became manifest only in the 6th instar at the pupal cell formation stage, i.e. 12 days after entry of polydnavirus/venom into the host egg. Then, prothoracic glands of polydnavirus/venom-containing larvae released less ecdysteroids and ecdysteroid titres were lower than in non-parasitized larvae; this was followed by a delayed, reduced and desynchronized increase in prepupal juvenile hormones and juvenile hormone esterase and a slightly modified metabolism of ecdysone. This indicates that polydnavirus/venom affects the endocrine system of the host only after pupal commitment and that inhibition of prothoracic gland activity is the first detectable effect.  相似文献   

8.
The solitary endoparasitoid, Microplitis rufiventris, attacks and can develop in earlier instars of Spodoptera littoralis larvae with preference to third‐instar larvae. We used the last stadium (sixth instar), a stage which is not naturally parasitized. The newly moulted larvae (0–3 h old) of this stadium were more acceptable for parasitization by the wasp females than the older ones (24 h old). Parasitization by M. rufiventris wasp of last instar S. littoralis larvae leads to dose (no. of eggs + parasitoid factors)‐dependent effects which were more pronounced at 20°C than at 27°C. A single oviposition into a sixth instar host larva resulted in normal development of the host. However, superparasitization increased the proportions of developmentally arrested hosts and number of live wasp larvae. Development of supernumerary individuals of the parasitoid in the host larva leads to dose‐related adverse effects on host growth and development. The present study may provide interesting opportunities for studying the physiological bases of host–parasitoid interactions and parasitoid intra‐specific competition in the biological system considered.  相似文献   

9.
Campoletis sonorensis calyx fluid arrests the development of last-instar Heliothis virescens larvae and is associated with the gross degeneration of the host's prothoracic glands. Through manipulations of ovary supernatant, Campoletis sonorensis polydnavirus (CsV) was found to be the only component of calyx fluid responsible for causing host developmental arrest. Venom from C. sonorensis had no effect on host development. Suspensions of CsV were quantified, and various doses were injected into last-instar hosts. The percentage of larvae developmentally arrested was dose dependent. In addition, larvae not arrested by injection with CsV suspensions were developmentally delayed in a dose-dependent manner. Hosts were delayed in the stage in which they were injected and, after recovery, developed at normal rates. Measurements by radioimmunoassay indicated that developmental delay was due to a suppression of ecdysteroid titers. After a dose-dependent period of suppression, hemolymph ecdysteroid titers recovered and reached titers comparable to those observed in saline-injected controls. Examination of prothoracic glands from developmentally delayed larvae revealed that partial degeneration occurred. Comparisons of the number and mean size of surviving gland cells and the length of developmental delay suggested that surviving gland cells may compensate for degenerated cells by increasing their ecdysone production.  相似文献   

10.
To evaluate the relationship between immune suppression and host range six lepidopteran species were parasitized by the ichneumonid parasitoid Campoletis sonorensis. Parasitism inhibited the growth of permissive hosts (Heliothis virescens, Helicoverpa zea, and Trichoplusia ni), whereas growth of semi-permissive (Spodoptera exigua, Agrotis ipsilon) and non-permissive hosts (Manduca sexta) was not significantly affected. The 29-36 kDa ovarian protein (OP), responsible for transient immunosuppression in the permissive host H. virescens, bound to and was endocytosed by hemocytes of permissive and non-permissive hosts. Expression of the cysteine-rich polydnavirus gene, VHv1.4, was detected in all the hosts, but declined only in semi- and non-permissive hosts at later times after parasitization. The VHv1.4 protein bound to hemocytes of permissive and semi-permissive hosts, but did not bind to hemocytes of the non-permissive host, M. sexta. Melanization of larval hemolymph was severely inhibited by parasitism in permissive hosts, but was unaffected in M. sexta. In the semi-permissive host, A. ipsilon, hemolymph melanization was transiently inhibited while viral genes were expressed. In conclusion, C. sonorensis OP transiently inhibits encapsulation in all hosts that were tested. The host range of C. sonorensis seems to be determined by whether or not the C. sonorensis ichnovirus (CsIV) is able to establish persistent infections of parasitized larvae to provide long-term suppression of host immunity.  相似文献   

11.
Effects of parasitism, polydnavirus, and venom of the endoparasitoid Glyptapanteles liparidis on Lymantria dispar larvae infected with the microsporidium Vairimorpha sp. and uninfected hosts were studied. We tested the impact on growth and development of hosts, as well as on microsporidian infection. Both parasitism and polydnavirus/venom treatment alone caused a slight increase in growth rate and relative growth rate in uninfected fourth instar hosts. This effect was more pronounced with the addition of Vairimorpha infection. With no parasitism, however, infection reduced host growth markedly. Microsporidiosis delayed larval molts of L. dispar, and additional polydnavirus/venom treatment or parasitization induced significantly earlier molting. Polydnavirus/venom treatment of uninfected L. dispar resulted in prolonged larval development due to supernumerary molts and in higher pupal mortality. Infected larvae treated with polydnavirus/venom died earlier than infected larvae that were not treated and produced more Vairimorpha spores per unit fresh mass of the host.  相似文献   

12.
Heliothis virescens (F.) Larvae parasitized by the endophagous braconid Cardiochiles nigriceps Viereck fail to attain the pupal stage. This developmental alteration is caused by both an inactivation of prothoracic glands of last-instar larvae and an altered ecdysone metabolism. Decrease in ecdysteroidogenesis in vitro was already evident in glands explanted from larvae that have attained the early cell formation stage (day 4 of fifth instar), 6 h after parasitoid oviposition. Ecdysteroidogenesis nearly ceased by 24 h after parasitoid oviposition. The degree of this biosynthetic depression increased as the time between parasitization and gland dissection increased. A time-course study allowed us to determine if both the degree of phosphorylation of regulatory target proteins, the rate of general protein synthesis and ecdysteroidogenesis decreased in concert over time. The results provide further evidence in support of the hypothesis that these cellular activities in prothoracic gland cells are functionally correlated in steroidogenic responses. Treatment with calyx fluid and venom of C. nigriceps duplicates the parasitism-induced inactivation of host prothoracic glands. A 6-h conditioning in vitro of pupally committed host prothoracic glands with these parasitoid female reproductive secretions resulted in a significant depression of their ecdysteroid production. However, glands lost their sensitivity to calyx fluid and venom treatment when explanted from hosts that had already attained the cell formation stage. This was further supported by the fact that nearly all the host larvae parasitized on day 4 of fifth instar (cell formation stage) pupated, while parasitization on day 3 resulted in only 11% pupation. The coupled trioxsalen/UV irradiation treatment of C. nigriceps calyx fluid and venom eliminated their negative effect on biosynthetic activity in vitro by host prothoracic glands. This result indirectly demonstrates that C. nigriceps polydnavirus is the major regulating factor involved in the host prothoracic gland inactivation. Arch. Insect Biochem. Physiol. 38:1–10, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Abstract.  The age of Lacanobia oleracea (L.) in the final (sixth) larval stadium influences host choice and developmental success significantly in the gregarious ectoparasitoid Eulophus pennicornis (Nees). In choice tests, parasitoids with prior oviposition experience parasitize hosts in the second day of the sixth stadium most frequently. Parasitoid brood survival on normally-reared (i.e. fed) hosts declines monotonically with age such that mean progeny survival (egg–adult) is less than 20% for wasps developing on hosts parasitized on day 5 of the sixth stadium, as opposed to almost 50% when developing on those parasitized on day 1. Neck ligation of hosts increases the survival of wasp larvae developing on older hosts (days 4 and 5), whereas starved hosts produce progeny in similar numbers to fed hosts on most days during the final larval stadium. Hosts parasitized early in the stadium (days 1–3), although continuing to grow, do not exhibit the characteristic physical changes that non-parasitized larvae exhibit prior to pupation. However, hosts parasitized on days 4 and 5 form prepupae in appreciable numbers, particularly on day 5 where, regardless of treatment, over 80% of hosts attain this stage. Envenomated hosts behave similarly, an observation that suggests that it is the wasp's inability to arrest completely development in older hosts that is the significant factor in reducing the developmental success of the wasp. The findings are discussed in the light of the known endocrinological events in the host, and in relation to previously reported host manipulations induced by this wasp.  相似文献   

14.
Heliothis virescens (F.) last instar larvae parasitized by the endophagous braconid Cardiochiles nigriceps Viereck fail to attain the pupal stage, due to a parasitoid-induced alteration of ecdysteroid biosynthesis and metabolism. Currently available information on host prothoracic gland inactivation in this host-parasitoid system is reported here. Prothoracic glands of H. virescens mature larvae show a depressed biosynthetic activity, without undergoing gross morphological disruption. The ultrastructure of gland cells is characterized by minor parasitoid-induced changes, with the rough endoplasmic reticulum appearing more developed and electrondense than in nonparasitized controls. Eventually, the cells of prothoracic glands of parasitized host last instar larvae die but maintain their structural integrity. The inactivation of pupally committed host prothoracic glands is achieved through the disruption of the PTTH signal transduction pathway. The second messenger cAMP appears to be normally produced in response to PTTH stimulation of glands explanted from parasitized host larvae, however the downstream activation of the cAMP-dependent protein kinase does not appear to occur. In fact, a marked underphosphorylation of regulatory target proteins is observed. This underphosphorylation is associated with a significant reduction in general protein synthesis, which appears to be blocked at the translational level, to a redirection of specific protein synthesis and to a drastic suppression of ecdysteroidogenesis. These parameters appeared to be correlated in a kinetic time-course study, confirming their functional link. C. nigriceps polydnavirus (CnPDV) plays a major role in the inactivation of pupally committed host prothoracic glands, while putative factors occurring in the host haemolymph do not seem to be of particular importance at that developmental stage. Southern blot hybridization indicates the occurrence of PKI(protein kinase inhibitor)-like genes in the C. nigriceps genome, which, in contrast, are undetectable in H. virescens.  相似文献   

15.
It was previously demonstrated that parasitization by Cotesia kariyai caused a decrease in weight gain and food consumption in host larvae, resulting in a lower final weight for parasitized hosts. It is predicted that C. kariyai regulates the physiological condition of the host to obtain maximum food under restricted nutritional conditions. Approximate digestibility (AD) was higher following parasitization but the efficiency of conversion of digested food (ECD) of the parasitized hosts was lower. This suggests that resources available to the parasitoid larvae are enhanced in the parasitized hosts. We evaluated the physiological changes caused by injection of calyx fluid (polydnavirus) plus venom (C+V) in nonparasitized hosts. Injection of C+V into the nonparasitized hosts duplicated the effects of parasitism, namely it increased the AD and decreased the ECD. Furthermore, C+V injections elevated trehalose concentrations in nonparasitized host 7 to 10 d after injection (2nd stadium of the parasitoid larva). Protein content also increased on days 9 and 10 after C+V injection. These results suggest that the nutrients that parasitoid larvae require for their growth increase in the hemolymph of the host during the 2nd stadium of the parasitoid larva.  相似文献   

16.
In this study we examined interactions between two solitary endoparasitoids, the braconid Chelonus insularis and the ichneumonid Campoletis sonorensis, and a multiple-enveloped nucleopolyhedrovirus infecting Spodoptera frugiperda larvae. We examined whether ovipositing females minimize interference by discriminating amongst hosts and examined the outcome of within-host competition between parasitoid species and between the parasitoids and the virus. The egg–larval parasitoid Ch. insularis did not discriminate between virus-contaminated and uncontaminated S. frugiperda eggs; all S. frugiperda larvae that emerged from surface-contaminated eggs died of viral infection prior to parasitoid emergence. The larval parasitoid C. sonorensis also failed to discriminate between healthy and virus-infected S. frugiperda larvae or between larvae unparasitized or parasitized by Ch. insularis. Host larvae parasitized in the egg stage by Ch. insularis were suitable for the development of C. sonorensis when they were multiparasitized by C. sonorensis as first, second, third, and fourth instars, whereas emergence of Ch. insularis was dramatically reduced (by 85 to 100%) in multiparasitized hosts. Nonspecific host mortality was significantly higher in multiparasitized hosts than in singly parasitized hosts. The development time and sex ratio of C. sonorensis in multiparasitized host larvae were unaffected by the presence of Ch. insularis larval stages. Both Ch. insularis parasitized and nonparasitized larvae of the same instar (second, third, or fourth instars) had a similar quantitative response to a challenge of virus inoculum. All host larvae that ingested a lethal dose of virus were unsuitable for Ch. insularis development. In contrast, C. sonorensis did not survive in hosts that ingested a lethal virus dose immediately after parasitism, but parasitoid survival was possible with a 2-day delay between parasitism and viral infection and the percentage of parasitoid emergence increased significantly as the interval between parasitism and viral infection increased. The development time of C. sonorensis was significantly reduced in virus-infected hosts compared to conspecifics that developed in healthy hosts. C. sonorensis females that oviposited in virus-infected hosts did not transmit the virus to healthy hosts that were parasitized subsequently. Field applications of virus for biocontrol of S. frugiperda may lead to substantial mortality of immature parasitoids, although field experiments have not yet demonstrated such an effect.  相似文献   

17.
ABSTRACT. Larval Trichoplusia ni (Hübner) (Noctuidae) parasitized by Chelonus sp. (near curvimaculatus ) (Braconidae) precociously initiated pupation during the penultimate fourth instar. The temporal sequence of developmental markers exhibited by parasitized T. ni closely matched the temporal sequence in normal, pupating larvae. The parasitized larvae did not complete pupation, but consistently stopped development at a stage recognizable by a certain set of markers. This halt was observed in hosts from which parasites emerged and from hosts which had been stung but from which no parasites emerged. Weight gain and food consumption by parasitized hosts were significantly lower than normal, although most reached the fourth instar at the same time as normal larvae. Measurement of head capsule widths indicated that the width in precociously pupating larvae was less than the critical width associated with attainment of the pupation instar of normal larvae.  相似文献   

18.
The effects of infection by a microsporidium, Vairimorpha necatrix (Kramer), on the endogenous levels of juvenile hormones in tomato moth (Lacanobia oleracea L.) larvae were investigated. Levels of juvenile hormone II (JH II) were 10-fold greater in the infected larvae on day two of the sixth stadium but no significant difference was observed on day seven. Juvenile hormone I (JH I) was also detected in day two and day seven sixth instar infected larvae but was not detected in non-infected larvae. The duration of the fifth and sixth stadia was significantly longer for infected larvae when compared with non-infected larvae. No evidence was found to suggest that supernumerary moults are a feature of infection by V. necatrix in L. oleracea larvae. Experiments were performed to determine whether the elevation in JH levels, which probably prevents pupation, is an adaptive mechanism of the microsporidium for extending the growth phase of the host, thereby allowing increased spore production. A proportion of infected larvae were collected on days 9 and 24 of the sixth stadium and spore extracts prepared from each larva. These days represent the average duration of the sixth stadium required for uninfected larvae to reach pupation, and the average number of days that V. necatrix-infected larvae survive in the sixth stadium before dying from infection. The mean spore yields from infected larvae 24 days into the sixth stadium were significantly higher than the spore yields obtained from day nine sixth instar larvae. The hypothesis that V. necatrix manipulates host endocrinology (i.e. prolong the host larval state to maximise spore yield) is discussed in context with the results obtained.  相似文献   

19.
Apophua simplicipes (Cresson) (Hymenoptera: Ichneumonidae) is a common parasitoid of the oblique banded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae) in organically managed apple orchards in the southern interior of British Columbia, Canada. The biological characteristics of a laboratory colony of A. simplicipes were studied. When held at 15 and 25°C and provided with honey water, individual females survived an average of 60.6±6.1 and 29.8±4.7 days, oviposited 196.7±50.7 and 326.6±51.3 eggs and parasitized a total of 163.4±40.4 and 229.4±35.8 hosts, respectively. Females oviposited into first through fourth instar oblique banded leafrollers, with significantly more parasitism occurring in the first two instars compared to the third and fourth instars. No parasitoid larvae survived past the first larval stage in parasitized fourth instar hosts. Apophua simplicipes did not parasitize larvae of three-lined leafroller, Pandemis limitata (Robinson) (Lepidoptera: Tortricidae) which is sympatric with oblique banded leafrollers in orchards in the southern interior of British Columbia. Female predation and host feeding from wounds on early instars of both leafroller species was observed under laboratory conditions. In addition, early instar hosts exited diet feeding sites in response to the probing activity of the ovipositing wasps. A similar escape reaction in the orchard may cause a leafroller larva to move away from its feeding site, making it more vulnerable to predation or movement off the tree. Apophua simplicipes larvae emerged from fifth and sixth instar hosts. Parasitized oblique banded leafroller hosts consumed significantly less meridic diet than unparasitized female larvae from fifth instar through to parasitoid emergence or leafroller pupation. Our laboratory results suggest that A. simplicipes may reduce field populations of oblique banded leafroller and decrease pest feeding damage.  相似文献   

20.
The histology and cytology of Trichoplusia ni larvae were studied for evidence of abnormality or pathology induced by the solitary ichneumonid endoparasitoid, Hyposoter exiguae. Sample control and parasitized larvae were fixed every other day, and sections of these larvae were stained with mercuric-bromophenol blue. The fat body of parasitized larvae failed to show many of the changes characteristic of normally developing controls and, on the last day of parasitism, revealed extensive pathological changes. Spermatogenesis continued normally until the end of the association in parasitized hosts even though their development was halted in the fifth larval stadium. Parasitoid larvae seemed to secrete a proteinaceous material from their salivary and rectal glands into the host hemocoel. This material may be responsible for the pathological changes reported here. The parasitoids apparently fed on hemolymph alone until about 24 hr before emergence and pupation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号