首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
The complete amino acid sequence of barley trypsin inhibitor   总被引:5,自引:0,他引:5  
The amino acid sequence of barley trypsin inhibitor has been determined. The protein is a single polypeptide consisting of 121 amino acid residues and has Mr = 13,305. No free sulfhydryl groups were detected by Ellman's reagent, which indicates the presence of five disulfide bridges in the molecule. The primary site of interaction with trypsin was tentatively assigned to the arginyl-leucyl residues at positions 33 and 34. On comparison of the sequence of this inhibitor with those of other proteinase inhibitors, we found that the barley trypsin inhibitor could not be classified into any of the established families of proteinase inhibitors (Laskowski, M., Jr., and Kato, I. (1980) Annu. Rev. Biochem. 49, 593-626) and that this inhibitor should represent a new inhibitor family. On the other hand, this trypsin inhibitor showed a considerable similarity to wheat alpha-amylase inhibitor (Kashlan, N., and Richardson, M. (1981) Phytochemistry (Oxf.) 20, 1781-1784) throughout the whole sequence, suggesting a common ancestry for both proteins. This is the first case of a possible evolutionary relationship between two inhibitors directed to totally different enzymes, a proteinase and a glycosidase.  相似文献   

2.
Li R  Wang H  Jiang Y  Yu Y  Wang L  Zhou M  Zhang Y  Chen T  Shaw C 《Biochimie》2012,94(6):1376-1381
The chemical complexity of the defensive skin secretion of the red-eyed leaf frog, (Agalychnis callidryas), has not been elucidated in detail. During a systematic study of the skin secretion peptidomes of phyllomedusine frogs, we discovered a novel Kazal-type protein with potent trypsin inhibitory activity (Ki = 1.9 nM) that displays the highest degree of structural similarity with Kazal proteins from bony fishes. The protein was located in reverse-phase HPLC fractions following a screen of such for trypsin inhibition and subsequent partial Edman degradation of the peak active fraction derived the sequence: ATKPR-QYIVL-PRILRPV-GT. The molecular mass of the major component in this fraction was established by MALDI-TOF MS as 5893.09 Da. This partial sequence (assuming blank cycles to be Cys residues) was used to design a degenerate primer pool that was employed successfully in RACE-PCR to clone homologous precursor-encoding cDNA that encoded a mature Kazal protein of 52 amino acid residues with a computed molecular mass of 5892.82 Da. The protein was named A. callidryas Kazal trypsin inhibitor (ACKTI). BLAST analysis revealed that ACKTI contained a canonical Kazal motif (C-x(7)-C-x(6)-Y-x(3)-C-x(2,3)-C). This novel amphibian skin Kazal trypsin inhibitor adds to the spectrum of trypsin inhibitors of Kunitz- and Bowman Birk-type reported from this amphibian source.  相似文献   

3.
The turkey reproductive tract and seminal plasma contain a serine proteinase inhibitor that seems to be unique for the reproductive tract. Our experimental objective was to isolate, characterize and cDNA sequence the Kazal family proteinase inhibitor from turkey seminal plasma and testis. Seminal plasma contains two forms of a Kazal family inhibitor: virgin (Ia) represented by an inhibitor of moderate electrophoretic migration rate (present also in the testis) and modified (Ib, a split peptide bond) represented by an inhibitor with a fast migration rate. The inhibitor from the seminal plasma was purified by affinity, ion-exchange and reverse phase chromatography. The testis inhibitor was purified by affinity and ion-exchange chromatography. N-terminal Edman sequencing of the two seminal plasma inhibitors and testis inhibitor were identical. This sequence was used to construct primers and obtain a cDNA sequence from the testis. Analysis of a cDNA sequence indicated that turkey proteinase inhibitor belongs to Kazal family inhibitors (pancreatic secretory trypsin inhibitors, mammalian acrosin inhibitors) and caltrin. The turkey seminal plasma Kazal inhibitor belongs to low molecular mass inhibitors and is characterized by a high value of the equilibrium association constant for inhibitor/trypsin complexes.  相似文献   

4.
The synthesis of the protected duopentacontapeptide corresponding to the entire amino acid sequence I-52 of porcine pancreatic secretory trypsin inhibitor II (Kazal type) is described. The benzyloxycarbonyltetradecapeptide tert-butyloxycarbonylhydrazide (sequence 1-14) was selectively deblocked with trifluoroacetic acid and used to acylate, by the azide procedure, the peptide free base corresponding to the sequence 15-52. The isolated material was purified by ion exchange chromatography and the protecting groups were removed by successive treatments with anhydrous hydrogen fluoride, 1 M piperidine and mercuric acetate. F02M phosphate buffer, pH8. Determination of the inhibitory capacity indicated that the synthetic material is about 50% effective, at 30:1 inhibitor:trypsin molar ratio in inhibiting the tryptic hydrolysis of Nalpha-benzoyl-DL-arginine-4-nitroanilide. Full inhibition was achieved at a higher inhibitor:trypsin molar ratio. The stability constants and the standard free energy of binding of the complex between trypsin and the synthetic inhibitor have been determined.  相似文献   

5.
The primary structure of the broad specificity proteinase inhibitor from dog submandibular glands was elucidated. The inhibitor consists of a single polypeptide chain of 117 amino acids which is folded into two domains (heads) connected by a peptide of three amino acid residues. Both domains I and II show a clear structural homology to each other as well as to the single-headed pancreatic secretory trypsin inhibitors (Kazal type). The trypsin reactive site (-Cys-Pro-Arg-Leu-His-Glx-Pro-Ile-Cys-) is located in domain I and the chymotrypsin reactive center (-Cys-Thr-Met-Asp-Tyr-Asx-Arg-Pro-Leu-Tyr-Cys-) in domain II, cf. the Figure. The inhibitor is thus double-headed with two independent reactive sites. Whereas head I is responsible for the inhibition of trypsin and plasmin, head II is responsible for the inhibition of chymotrypsin, subtilisin, elastase and probably also Aspergillus oryzae protease and pronase. Remarkably, the structural homology exists also to the single-headed acrosin-trypsin inhibitors from seminal plasma[12] and the Japanese quail inhibitor composed of three domains[13].  相似文献   

6.
S Odani  T Koide  T Ono    K Ohnishi 《The Biochemical journal》1983,213(2):543-545
A significant sequence homology was found between barley (Hordeum vulgare) trypsin inhibitor and castor-bean (Ricinus communis) seed glutamine-rich storage protein. This appears to suggest a divergent evolution of the two different classes of seed proteins and to support a view that plant proteinase inhibitors may also act as storage proteins.  相似文献   

7.
The trypsin-sensitive cholecystokinin-releasing peptide is a peptide purified from rat pancreatic juice on the basis of its stimulatory activity toward pancreatic enzyme secretion. We postulate that the peptide acts as a mediator of pancreatic enzyme secretion in response to dietary protein intake and that it (designated as "monitor peptide" from its role in the intestine) could be responsible for the feedback regulation of pancreatic enzyme secretion. About 20 nmol of the highly purified peptide were obtained from 800 ml of rat pancreatic juice by reverse-phase high performance liquid chromatography. It was then sequenced. The peptide comprises 61 amino acid residues (Table I). It has a sequence that closely resembles that of a highly conserved region in pancreatic secretory trypsin inhibitors (PSTIs, Kazal type inhibitor): -Ile-Tyr-Asx-Pro-Val-Cys-Gly-Thr-Asx-Gly-. However, the peptide is less related to other mammalian PSTIs than they are to each other. The additional 5 residues at the NH2 terminus make the peptide larger than the common 56-residue PSTIs. The trypsin-sensitive cholecystokinin-releasing peptide is to be classified as a Kazal-type inhibitor and may be one of the rat PSTIs or a related peptide. The present results and increasing evidence from other laboratories and ours suggest that Kazal-type inhibitors play previously unrecognized multiple physiological roles.  相似文献   

8.
The trypsin inhibitor DE-3 from Erythrina caffra (ETI) belongs to the Kunitz-type soybean trypsin inhibitor (STI) family and consists of 172 amino acid residues with two disulphide bridges. The amino acid sequence of ETI shows high homology to other trypsin inhibitors from the same family but ETI has the unique ability to bind and inhibit tissue plasminogen activator. The crystal structure of ETI has been determined using the method of isomorphous replacement and refined using a combination of simulated annealing and conventional restrained least-squares crystallographic refinement. The refined model includes 60 water molecules and 166 amino acid residues, with a root-mean-square deviation in bond lengths from ideal values of 0.016 A. The crystallographic R-factor is 20.8% for 7770 independent reflections between 10.0 and 2.5 A. The three-dimensional structure of ETI consists of 12 antiparallel beta-strands joined by long loops. Six of the strands form a short antiparallel beta-barrel that is closed at one end by a "lid" consisting of the other six strands coupled in pairs. The molecule shows approximate 3-fold symmetry about the axis of the barrel, with the repeating unit consisting of four sequential beta-strands and the connecting loops. Although there is no sequence homology, this same fold is present in the structure of interleukin-1 alpha and interleukin-1 beta. When the structure of ETI and interleukin-1 beta are superposed, the close agreement between the alpha-carbon positions for the beta-strands is striking. The scissile bond (Arg63-Ser64) is located on an external loop that protrudes from the surface of the molecule and whose architecture is not constrained by secondary structure elements, disulphide bridges or strong electrostatic interactions. The hydrogen bonds made by the side-chain amide group of Asn12 play a key role in maintaining the three-dimensional structure of the loop. This residue is in a position corresponding to that of a conserved asparagine in the Kazal inhibitor family. Although the overall structure of ETI is similar to the partial structure of STI, the scissile bond loop is displaced by about 4 A. This displacement probably arises from the fact that the structure of STI has been determined in a complex with trypsin but could possibly be a consequence of the close molecular contact between Arg63 and an adjacent molecule in the crystal lattice.  相似文献   

9.
10.
D Kowalski  M Laskowski 《Biochemistry》1976,15(6):1309-1315
Modified (Arg63-Ile64 reactive-site peptide bond hydrolyzed) soybean trypsin inhibitor (Kunitz) with all reactive amino groups, except that of Ile64, protected was described in the preceding paper (Kowalski, D., and Laskowski, M., Jr. (1976), Biochemistry, preceding paper in this issue). Treatment of this inhibitor with tert-butyloxycarbonyl-Ala- and tert-butyloxycarbonyl-Ile-N-hydroxy-succinimide esters yields inactive endo-tert-butyloxycarbonyl-Ala63A-and endo-tert-butyloxycarbonyl-Ile63A-modified inhibitors. The tert-butyloxycarbonyl groups were removed by treatment of the proteins with trifluoroacetic acid. After renaturation and purification, the resultant endo-Ala63A- and endo-Ile63A-modified inhibitors co-electrophorese with modified inhibitor both on disc gels (pH 9.4) and sodium dodecyl sulfate gels (after reduction of disulfide bonds) and show end groups corresponding to the 63A residue. These derivatives fail to form stable complexes with trypsin, extending the previous observation (Kowalski, D., and Laskowski, M., Jr. (1972), Biochemistry 11, 3451) that acylation of the P1' residue in modified inhibitors leads to inactivation. However, the incubation of endo-Ala63A- and endo-Ile63A-modified inhibitors with trypsin at pH 6.5 leads to the synthesis of the Arg63-Ala63A and Arg63-Ile63A peptide bonds in 4% yield. This is very close to the yield anticipated from a semiquantitative theory for the value of the equilibrium constant for reactive-site peptide bond. An alternative chemical method of insertion is also described. Controlled treatment of modified inhibitor with the N-carboxyanhydride of Glu produced inactive endo-Glu63A-modified inhibitor. Incubation of this inactive derivative with trypsin at pH 6.5 leads to 16% synthesis of the Arg63-Glu63A peptide bond. The higher yield of single chain protein in this case is attributed to the influence of the negative charge of the Glu63A side chain. Thus, the insertion of an amino acid residue between the P1 and P1' residues in soybean trypsin inhibitor (Kunitz) converts a trypsin inhibitor into a trypsin substrate.  相似文献   

11.
A trypsin inhibitor from Ciona intestinalis, present throughout the animal, was purified by ion-exchange chromatography followed by four HPLC steps. By MS the molecular mass of the native form was determined to be 6675 Da. The N-terminal amino acid sequence was determined by protein sequencing, but appeared to be partial because the theoretical molecular mass of the protein was 1101 Da too low. Thermolysin treatment gave rise to several fragments each containing a single disulphide bridge. By sequence analysis and MS intramolecular disulphide bridges could unequivocally be assigned to connect the pairs Cys4-Cys37, Cys8-Cys30 and Cys16-Cys51. The structure of the inhibitor is homologous to Kazal-type trypsin inhibitors. The inhibitor constant, KI, for trypsin inhibition was 0.05 nM whereas chymotrypsin and elastase were not inhibited. To reveal the complete sequence the cDNA encoding the trypsin inhibitor was isolated. This cDNA of 454 bp predicts a protein of 82 amino acid residues including a 20 amino acid signal peptide. Moreover, the cDNA predicts a C-terminal extension of 11 amino acids compared to the part identified by protein sequencing. The molecular mass calculated for this predicted protein is in accordance with the measured value. This C-terminal sequence is unusual for Kazal-type trypsin inhibitors and has apparently been lost early in evolution. The high degree of conservation around the active site strongly supports the importance of the Kazal-type inhibitors.  相似文献   

12.
Backbone-cyclized proteins are becoming increasingly well known, although the mechanism by which they are processed from linear precursors is poorly understood. In this report the sequence and structure of the linear precursor of a cyclic trypsin inhibitor, sunflower trypsin inhibitor 1 (SFTI-1) from sunflower seeds, is described. The structure indicates that the major elements of the reactive site loop of SFTI-1 are present before processing. This may have importance for a protease-mediated cyclizing reaction as the rigidity of SFTI-1 may drive the equilibrium of the reaction catalyzed by proteolytic enzymes toward the formation of a peptide bond rather than the normal cleavage reaction. The occurrence of residues in the SFTI-1 precursor susceptible to cleavage by asparaginyl proteases strengthens theories that involve this enzyme in the processing of SFTI-1 and further implicates it in the processing of another family of plant cyclic proteins, the cyclotides. The precursor reported here also indicates that despite strong active site sequence homology, SFTI-1 has no other similarities with the Bowman-Birk trypsin inhibitors, presenting interesting evolutionary questions.  相似文献   

13.
Soybean trypsin inhibitor, a protein of Mr = 20,000, has been used to assess the degree of inaccessibility of porcine trypsin within the alpha 2-macroglobulin-trypsin complex. The interaction between alpha 2-macroglobulin-bound trypsin and the inhibitor was demonstrated by affinity chromatography and trypsin inhibition. Whereas the free trypsin-inhibitor association is very fast (k = 1.2 X 10(7) M-1 s-1), the reaction between complexed trypsin and inhibitor takes 10 h to reach equilibrium. In addition, alpha 2-macroglobulin reduces, by several orders of magnitude, the affinity of trypsin for the inhibitor. Only one of the two trypsin molecules of the ternary (trypsin)2-alpha 2-macroglobulin complex is readily accessible to soybean inhibitor. It is postulated that the recently discovered proximity of the alpha 2-macroglobulin binding sites (Pochon, F., Favaudon, V., Tourbez-Perrin, M., and Bieth, J. (1981) J. Biol. Chem. 256, 547-550) accounts for this behavior. In the light of these results it is concluded that the proteinase binding sites are localized on the alpha 2-macroglobulin surface and that the two subunits of this protein are either not identical or not symmetrically arranged.  相似文献   

14.
Synthesis is described of the protected undecapeptide tert-butyloxycarbonylisoleucyl-threonyltyrosylserylasparaginyl-gamma-tert-butylglutamyl-S-acetamidomethylcysteinyl-valylleucyl-S-acetamidomethylcysteinylseriny hydrazide corresponding to positions 25-35 of the amino acid sequence of porcine pancreatic secretory trypsin inhibitor II (Kazal). The hepatapeptide free base methyl asparaginyl-gamma-tert-butylglutamyl-S-acetamidomethylcysteinylvalylleucyl-S-acetamidomethylcysteinylserinate (sequency 29-35) was acylated, by the azide procedure, with the tetrapeptide tert-butyloxycarbonl-isoleucylthreonyltyrosylserine hydrazide /sequence 25-28) and the resulting tert-butyloxycarbonylundecapeptide methyl ester was transformed into the corresponding hydrazide by hydrazinolysis. The stereochemical homogeneity of the final product was assessed, after partial deprotection with aqueous 90% trifuoroacetic acid, by digestion with papain and aminopeptidase M followed by quantitative amino acid analysis.  相似文献   

15.
The general strategy for the synthesis, by conventional procedures, of the entire sequence of porcine pancreatic secretory trypsin inhibitor II (Kazal) is discussed. The synthesis of two protected peptides corresponding to positions 2-10 and 1-10 of the proposed primary structure of the inhibitor is described. The heptapeptide free base threonyl-S-acetamidomethylcysteinylthreonylseryl-gamma-tert-butylglutamylvalylserine tert-butyloxycarbonylhydrazide (sequence 4-10) was acylated, by the azide procedure, with either the dipeptide benzyloxycarbonyl-gamma-tert-butylglutamylalanine hydrazide (sequence 2-3) or the tripeptide Nalpha-benzyloxycarbonyl-Nomega-nitroarginylglutamylala-nine hydrazide (sequence 1-3). The stereochemical homogeneity of the resulting peptides, benzyloxycarbonyl-gamma-tert-butylglutamylalanylthreonyl-S-acetamidomethyl-cysteinylthreonylseryl-gamma-tert-butylglutamylvalylserine tert-butyloxycarbonylhydrazide and Nalpha-benzyloxycarbonyl-Nomega-nitroarginylglutamylalanylthreonyl-S-acetamido-methylcysteinylthreonylseryl-gamma-tert-butylglutamylvalylserine tert-butyloxycarbonyl-hydrazide, was assessed, after partial deprotection with liquid hydrogen fluoride, by digestion with aminopeptidase M followed by quantitative amino acid analysis.  相似文献   

16.
A novel serine proteinase inhibitor, DgTI, was purified from Dioclea glabra seeds by acetone precipitation, and ion-exchange and reverse phase chromatography. The inhibitor belongs to the Bowman-Birk family, and its primary sequence, determined by Edman degradation and mass spectrometry, of 67 amino acids is: SSGPCCDRCRCTKSEPPQCQCQDVRLNSCHSACEACVCSHSMPGLCSCLDITHFCHEPCKSSGDDED++ +. Although two reactive sites were determined by susceptibility to trypsin (Lys(13) and His(40)), the inhibitory function was assigned only to the first site. The inhibitor forms a 1:1 complex with trypsin, and Ki is 0.5 x 10(-9) M. Elastase, chymotrypsin, kallikreins, factor Xa, thrombin, and plasmin were not inhibited. By its properties, DgTI is a Bowman-Birk inhibitor with structural and inhibitory properties between the class of Bowman-Birk type I (with a fully active second reactive site), and Bowman-Birk type II (devoid of second reactive site).  相似文献   

17.
A low-molecular-mass serine protease inhibitor was purified from hepatocytes and liver of rats. It was found to be a single polypeptide of 56 amino acid residues corresponding to Mr = 6224, a value that is in agreement with the molecular mass determined by gel chromatography. The inhibitor formed a complex in a molar ratio of 1:1 with trypsin. Its complete amino acid sequence was identical with that of pancreatic secretory trypsin inhibitor II (PSTI-II) in pancreatic juice, but not with that of PSTI-I [Uda, K., Ogawa, M., Shibata, T., Murata, A., Mori, T., Kikuchi, N., Yoshida, N., Tsunasawa, S. & Sakiyama, F. (1988) Biol. Chem. Hoppe-Seyler 369, 55-61]. PSTIs have been reported to be primarily pancreatic secretory products, but in have been reported to be primarily pancreatic secretory products, but in patients immunoreactive PSTI was found in the plasma and urine during acute inflammatory disease and shown to be produced ectopically in cancer tissues. Here we report for the first time that PSTI-II is present in other normal tissues besides the pancreas.  相似文献   

18.
The sequence of a trypsin inhibitor, isolated from wheat endosperm, is reported. The primary structure was obtained by automatic sequence analysis of the S-alkylated protein and of purified peptides derived from chemical cleavage by cyanogen bromide and digestion withStaphylococcus aureus V8 protease. This protein, named wheat trypsin inhibitor (WTI), which is comprised of a total of 71 amino acid residues, has 12 cysteines, all involved in disulfide bridges. The primary site of interaction (reactive site) with bovine trypsin has been identified as the dipeptide arginyl-methionyl at positions 19 and 20. WTI has a high degree of sequence identity with a number of serine proteinase inhibitors isolated from both cereal and leguminous plants. On the basis of the findings presented, this protein has been classified as a single-headed trypsin inhibitor of Bowman-Birk type.  相似文献   

19.
The synthesis of the amino-protected decapeptide tert-butyloxycarbonylhydrazide corresponding to positions 15-24 of the amino acid sequence of porcine pancreatic secretory trypsin inhibitor II (Kazal inhibitor) is described. The tripeptide free base threonyl-beta-tert-butylaspartylglycine tert-butyloxycarbonylhydrazide (sequence 22-24) was acylated with 1-succinimidyl o-nitrophenylsulfenylvalyl-S-acetamidomethylcysteinylglycinate (sequence 19-21). Removal of the amino protecting group from the resulting hexapeptide followed by acylation of the free base with either benzyloxycarbonylisoleucyl-O-tert-butyltyrosylasparaginylproline or O-nitrophenylsulfenylisoleucyl-O-tert-butyltyrosylasparaginylproline, via the pyrazoline active ester method, yielded the decapeptide tert-butyloxycarbonylhydrazide (sequence 15-24) in the form of Nalpha-benzyloxycarbonyl or Nalpha-O-nitrophenylsulfenyl derivative. The stereochemical homogeneity of the two decapeptides was assessed, after partial deprotection with liquid hydrogen fluoride, or thioacetamide and aqueous 90% trifluoroacetic acid, by digestion with papain and aminopeptidase M followed by quantitative amino acid analysis.  相似文献   

20.
The effect of Ile-Val concentration (up to 2.0 M) on the thermodynamic parameters for the binding of the porcine pancreatic secretory trypsin inhibitor (Kazal inhibitor) to trypsinogen has been investigated at pH 5.5 between 7 degrees C and 42 degrees C. Thermodynamic parameters for Kazal inhibitor binding to the Ile-Val:zymogen adduct are more favorable than those observed for inhibitor association to the free proenzyme, but less so than those reported for beta-trypsin:Kazal inhibitor adduct formation (even under saturating dipeptide concentrations), suggesting that the effector dipeptide does not induce a complete rigidification of the proenzyme's activation domain. Considering the dependence of the association equilibrium constant for Kazal inhibitor binding to trypsinogen from Ile-Val concentration, thermodynamic parameters for the effector dipeptide binding to the free proenzyme and to its binary complex with Kazal inhibitor have been obtained. Differences in affinity for Ile-Val binding to the free zymogen and its binary complexes with inhibitors and substrates are indicative of the presence of different activation levels of the proenzyme, none of them exactly coincident with that of beta-trypsin. Such different discrete states should correspond to those involved in the zymogen-to-active-enzyme transition which should not be considered as an all-or-nothing process, but as a multistep event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号