首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
MOTIVATION: In our previous approach, we proposed a hybrid method for protein secondary structure prediction called HYPROSP, which combined our proposed knowledge-based prediction algorithm PROSP and PSIPRED. The knowledge base constructed for PROSP contains small peptides together with their secondary structural information. The hybrid strategy of HYPROSP uses a global quantitative measure, match rate, to determine whether PROSP or PSIPRED is to be used for the prediction of a target protein. HYPROSP made slight improvement of Q(3) over PSIPRED because PROSP predicted well for proteins with match rate >80%. As the portion of proteins with match rate >80% is quite small and as the performance of PSIPRED also improves, the advantage of HYPROSP is diluted. To overcome this limitation and further improve the hybrid prediction method, we present in this paper a new hybrid strategy HYPROSP II that is based on a new quantitative measure called local match rate. RESULTS: Local match rate indicates the amount of structural information that each amino acid can extract from the knowledge base. With the local match rate, we are able to define a confidence level of the PROSP prediction results for each amino acid. Our new hybrid approach, HYPROSP II, is proposed as follows: for each amino acid in a target protein, we combine the prediction results of PROSP and PSIPRED using a hybrid function defined on their respective confidence levels. Two datasets in nrDSSP and EVA are used to perform a 10-fold cross validation. The average Q(3) of HYPROSP II is 81.8% and 80.7% on nrDSSP and EVA datasets, respectively, which is 2.0% and 1.1% better than that of PSIPRED. For local structures with match rate >80%, the average Q(3) improvement is 4.4% on the nrDSSP dataset. The use of local match rate improves the accuracy better than global match rate. There has been a long history of attempts to improve secondary structure prediction. We believe that HYPROSP II has greatly utilized the power of peptide knowledge base and raised the prediction accuracy to a new high. The method we developed in this paper could have a profound effect on the general use of knowledge base techniques for various predictionalgorithms. AVAILABILITY: The Linux executable file of HYPROSP II, as well as both nrDSSP and EVA datasets can be downloaded from http://bioinformatics.iis.sinica.edu.tw/HYPROSPII/.  相似文献   

2.
J M Chandonia  M Karplus 《Proteins》1999,35(3):293-306
A primary and a secondary neural network are applied to secondary structure and structural class prediction for a database of 681 non-homologous protein chains. A new method of decoding the outputs of the secondary structure prediction network is used to produce an estimate of the probability of finding each type of secondary structure at every position in the sequence. In addition to providing a reliable estimate of the accuracy of the predictions, this method gives a more accurate Q3 (74.6%) than the cutoff method which is commonly used. Use of these predictions in jury methods improves the Q3 to 74.8%, the best available at present. On a database of 126 proteins commonly used for comparison of prediction methods, the jury predictions are 76.6% accurate. An estimate of the overall Q3 for a given sequence is made by averaging the estimated accuracy of the prediction over all residues in the sequence. As an example, the analysis is applied to the target beta-cryptogein, which was a difficult target for ab initio predictions in the CASP2 study; it shows that the prediction made with the present method (62% of residues correct) is close to the expected accuracy (66%) for this protein. The larger database and use of a new network training protocol also improve structural class prediction accuracy to 86%, relative to 80% obtained previously. Secondary structure content is predicted with accuracy comparable to that obtained with spectroscopic methods, such as vibrational or electronic circular dichroism and Fourier transform infrared spectroscopy.  相似文献   

3.
A neural network-based method has been developed for the prediction of beta-turns in proteins by using multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are used where the first-sequence structure network is trained with the multiple sequence alignment in the form of PSI-BLAST-generated position-specific scoring matrices. The initial predictions from the first network and PSIPRED-predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. A significant improvement in prediction accuracy has been achieved by using evolutionary information contained in the multiple sequence alignment. The final network yields an overall prediction accuracy of 75.5% when tested by sevenfold cross-validation on a set of 426 nonhomologous protein chains. The corresponding Q(pred), Q(obs), and Matthews correlation coefficient values are 49.8%, 72.3%, and 0.43, respectively, and are the best among all the previously published beta-turn prediction methods. The Web server BetaTPred2 (http://www.imtech.res.in/raghava/betatpred2/) has been developed based on this approach.  相似文献   

4.
Wu KP  Lin HN  Chang JM  Sung TY  Hsu WL 《Nucleic acids research》2004,32(17):5059-5065
We develop a knowledge-based approach (called PROSP) for protein secondary structure prediction. The knowledge base contains small peptide fragments together with their secondary structural information. A quantitative measure M, called match rate, is defined to measure the amount of structural information that a target protein can extract from the knowledge base. Our experimental results show that proteins with a higher match rate will likely be predicted more accurately based on PROSP. That is, there is roughly a monotone correlation between the prediction accuracy and the amount of structure matching with the knowledge base. To fully utilize the strength of our knowledge base, a hybrid prediction method is proposed as follows: if the match rate of a target protein is at least 80%, we use the extracted information to make the prediction; otherwise, we adopt a popular machine-learning approach. This comprises our hybrid protein structure prediction (HYPROSP) approach. We use the DSSP and EVA data as our datasets and PSIPRED as our underlying machine-learning algorithm. For target proteins with match rate at least 80%, the average Q3 of PROSP is 3.96 and 7.2 better than that of PSIPRED on DSSP and EVA data, respectively.  相似文献   

5.
MOTIVATION: As protein structure database expands, protein loop modeling remains an important and yet challenging problem. Knowledge-based protein loop prediction methods have met with two challenges in methodology development: (1) loop boundaries in protein structures are frequently problematic in constructing length-dependent loop databases for protein loop predictions; (2) knowledge-based modeling of loops of unknown structure requires both aligning a query loop sequence to loop templates and ranking the loop sequence-template matches. RESULTS: We developed a knowledge-based loop prediction method that circumvents the need of constructing hierarchically clustered length-dependent loop libraries. The method first predicts local structural fragments of a query loop sequence and then structurally aligns the predicted structural fragments to a set of non-redundant loop structural templates regardless of the loop length. The sequence-template alignments are then quantitatively evaluated with an artificial neural network model trained on a set of predictions with known outcomes. Prediction accuracy benchmarks indicated that the novel procedure provided an alternative approach overcoming the challenges of knowledge-based loop prediction. AVAILABILITY: http://cmb.genomics.sinica.edu.tw  相似文献   

6.
We demonstrate the applicability of our previously developed Bayesian probabilistic approach for predicting residue solvent accessibility to the problem of predicting secondary structure. Using only single-sequence data, this method achieves a three-state accuracy of 67% over a database of 473 non-homologous proteins. This approach is more amenable to inspection and less likely to overlearn specifics of a dataset than "black box" methods such as neural networks. It is also conceptually simpler and less computationally costly. We also introduce a novel method for representing and incorporating multiple-sequence alignment information within the prediction algorithm, achieving 72% accuracy over a dataset of 304 non-homologous proteins. This is accomplished by creating a statistical model of the evolutionarily derived correlations between patterns of amino acid substitution and local protein structure. This model consists of parameter vectors, termed "substitution schemata," which probabilistically encode the structure-based heterogeneity in the distributions of amino acid substitutions found in alignments of homologous proteins. The model is optimized for structure prediction by maximizing the mutual information between the set of schemata and the database of secondary structures. Unlike "expert heuristic" methods, this approach has been demonstrated to work well over large datasets. Unlike the opaque neural network algorithms, this approach is physicochemically intelligible. Moreover, the model optimization procedure, the formalism for predicting one-dimensional structural features and our previously developed method for tertiary structure recognition all share a common Bayesian probabilistic basis. This consistency starkly contrasts with the hybrid and ad hoc nature of methods that have dominated this field in recent years.  相似文献   

7.
Kuhn M  Meiler J  Baker D 《Proteins》2004,54(2):282-288
Beta-sheet proteins have been particularly challenging for de novo structure prediction methods, which tend to pair adjacent beta-strands into beta-hairpins and produce overly local topologies. To remedy this problem and facilitate de novo prediction of beta-sheet protein structures, we have developed a neural network that classifies strand-loop-strand motifs by local hairpins and nonlocal diverging turns by using the amino acid sequence as input. The neural network is trained with a representative subset of the Protein Data Bank and achieves a prediction accuracy of 75.9 +/- 4.4% compared to a baseline prediction rate of 59.1%. Hairpins are predicted with an accuracy of 77.3 +/- 6.1%, diverging turns with an accuracy of 73.9 +/- 6.0%. Incorporation of the beta-hairpin/diverging turn classification into the ROSETTA de novo structure prediction method led to higher contact order models and somewhat improved tertiary structure predictions for a test set of 11 all-beta-proteins and 3 alphabeta-proteins. The beta-hairpin/diverging turn classification from amino acid sequences is available online for academic use (Meiler and Kuhn, 2003; www.jens-meiler.de/turnpred.html).  相似文献   

8.
Using evolutionary information contained in multiple sequence alignments as input to neural networks, secondary structure can be predicted at significantly increased accuracy. Here, we extend our previous three-level system of neural networks by using additional input information derived from multiple alignments. Using a position-specific conservation weight as part of the input increases performance. Using the number of insertions and deletions reduces the tendency for overprediction and increases overall accuracy. Addition of the global amino acid content yields a further improvement, mainly in predicting structural class. The final network system has a sustained overall accuracy of 71.6% in a multiple cross-validation test on 126 unique protein chains. A test on a new set of 124 recently solved protein structures that have no significant sequence similarity to the learning set confirms the high level of accuracy. The average cross-validated accuracy for all 250 sequence-unique chains is above 72%. Using various data sets, the method is compared to alternative prediction methods, some of which also use multiple alignments: the performance advantage of the network system is at least 6 percentage points in three-state accuracy. In addition, the network estimates secondary structure content from multiple sequence alignments about as well as circular dichroism spectroscopy on a single protein and classifies 75% of the 250 proteins correctly into one of four protein structural classes. Of particular practical importance is the definition of a position-specific reliability index. For 40% of all residues the method has a sustained three-state accuracy of 88%, as high as the overall average for homology modelling. A further strength of the method is greatly increased accuracy in predicting the placement of secondary structure segments. © 1994 Wiley-Liss, Inc.  相似文献   

9.
10.
Computational neural networks have recently been used to predict the mapping between protein sequence and secondary structure. They have proven adequate for determining the first-order dependence between these two sets, but have, until now, been unable to garner higher-order information that helps determine secondary structure. By adding neural network units that detect periodicities in the input sequence, we have modestly increased the secondary structure prediction accuracy. The use of tertiary structural class causes a marked increase in accuracy. The best case prediction was 79% for the class of all-alpha proteins. A scheme for employing neural networks to validate and refine structural hypotheses is proposed. The operational difficulties of applying a learning algorithm to a dataset where sequence heterogeneity is under-represented and where local and global effects are inadequately partitioned are discussed.  相似文献   

11.
Numerous studies have been performed for analysis and prediction of β‐turns in a protein. This study focuses on analyzing, predicting, and designing of β‐turns to understand the preference of amino acids in β‐turn formation. We analyzed around 20,000 PDB chains to understand the preference of residues or pair of residues at different positions in β‐turns. Based on the results, a propensity‐based method has been developed for predicting β‐turns with an accuracy of 82%. We introduced a new approach entitled “Turn level prediction method,” which predicts the complete β‐turn rather than focusing on the residues in a β‐turn. Finally, we developed BetaTPred3, a Random forest based method for predicting β‐turns by utilizing various features of four residues present in β‐turns. The BetaTPred3 achieved an accuracy of 79% with 0.51 MCC that is comparable or better than existing methods on BT426 dataset. Additionally, models were developed to predict β‐turn types with better performance than other methods available in the literature. In order to improve the quality of prediction of turns, we developed prediction models on a large and latest dataset of 6376 nonredundant protein chains. Based on this study, a web server has been developed for prediction of β‐turns and their types in proteins. This web server also predicts minimum number of mutations required to initiate or break a β‐turn in a protein at specified location of a protein. Proteins 2015; 83:910–921. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Cuff JA  Barton GJ 《Proteins》1999,34(4):508-519
A new dataset of 396 protein domains is developed and used to evaluate the performance of the protein secondary structure prediction algorithms DSC, PHD, NNSSP, and PREDATOR. The maximum theoretical Q3 accuracy for combination of these methods is shown to be 78%. A simple consensus prediction on the 396 domains, with automatically generated multiple sequence alignments gives an average Q3 prediction accuracy of 72.9%. This is a 1% improvement over PHD, which was the best single method evaluated. Segment Overlap Accuracy (SOV) is 75.4% for the consensus method on the 396-protein set. The secondary structure definition method DSSP defines 8 states, but these are reduced by most authors to 3 for prediction. Application of the different published 8- to 3-state reduction methods shows variation of over 3% on apparent prediction accuracy. This suggests that care should be taken to compare methods by the same reduction method. Two new sequence datasets (CB513 and CB251) are derived which are suitable for cross-validation of secondary structure prediction methods without artifacts due to internal homology. A fully automatic World Wide Web service that predicts protein secondary structure by a combination of methods is available via http://barton.ebi.ac.uk/.  相似文献   

13.
Three-dimensional protein structures can be described with a library of 3D fragments that define a structural alphabet. We have previously proposed such an alphabet, composed of 16 patterns of five consecutive amino acids, called Protein Blocks (PBs). These PBs have been used to describe protein backbones and to predict local structures from protein sequences. The Q16 prediction rate reaches 40.7% with an optimization procedure. This article examines two aspects of PBs. First, we determine the effect of the enlargement of databanks on their definition. The results show that the geometrical features of the different PBs are preserved (local RMSD value equal to 0.41 A on average) and sequence-structure specificities reinforced when databanks are enlarged. Second, we improve the methods for optimizing PB predictions from sequences, revisiting the optimization procedure and exploring different local prediction strategies. Use of a statistical optimization procedure for the sequence-local structure relation improves prediction accuracy by 8% (Q16 = 48.7%). Better recognition of repetitive structures occurs without losing the prediction efficiency of the other local folds. Adding secondary structure prediction improved the accuracy of Q16 by only 1%. An entropy index (Neq), strongly related to the RMSD value of the difference between predicted PBs and true local structures, is proposed to estimate prediction quality. The Neq is linearly correlated with the Q16 prediction rate distributions, computed for a large set of proteins. An "expected" prediction rate QE16 is deduced with a mean error of 5%.  相似文献   

14.
Bondugula R  Xu D 《Proteins》2007,66(3):664-670
Predicting secondary structures from a protein sequence is an important step for characterizing the structural properties of a protein. Existing methods for protein secondary structure prediction can be broadly classified into template based or sequence profile based methods. We propose a novel framework that bridges the gap between the two fundamentally different approaches. Our framework integrates the information from the fuzzy k-nearest neighbor algorithm and position-specific scoring matrices using a neural network. It combines the strengths of the two methods and has a better potential to use the information in both the sequence and structure databases than existing methods. We implemented the framework into a software system MUPRED. MUPRED has achieved three-state prediction accuracy (Q3) ranging from 79.2 to 80.14%, depending on which benchmark dataset is used. A higher Q3 can be achieved if a query protein has a significant sequence identity (>25%) to a template in PDB. MUPRED also estimates the prediction accuracy at the individual residue level more quantitatively than existing methods. The MUPRED web server and executables are freely available at http://digbio.missouri.edu/mupred.  相似文献   

15.
We propose a binary word encoding to improve the protein secondary structure prediction. A binary word encoding encodes a local amino acid sequence to a binary word, which consists of 0 or 1. We use an encoding function to map an amino acid to 0 or 1. Using the binary word encoding, we can statistically extract the multiresidue information, which depends on more than one residue. We combine the binary word encoding with the GOR method, its modified version, which shows better accuracy, and the neural network method. The binary word encoding improves the accuracy of GOR by 2.8%. We obtain similar improvement when we combine this with the modified GOR method and the neural network method. When we use multiple sequence alignment data, the binary word encoding similarly improves the accuracy. The accuracy of our best combined method is 68.2%. In this paper, we only show improvement of the GOR and neural network method, we cannot say that the encoding improves the other methods. But the improvement by the encoding suggests that the multiresidue interaction affects the formation of secondary structure. In addition, we find that the optimal encoding function obtained by the simulated annealing method relates to non-polarity. This means that nonpolarity is important to the multiresidue interaction. Proteins 27:36–46 © 1997 Wiley-Liss, Inc.  相似文献   

16.
We present a new method for predicting the secondary structure of globular proteins based on non-linear neural network models. Network models learn from existing protein structures how to predict the secondary structure of local sequences of amino acids. The average success rate of our method on a testing set of proteins non-homologous with the corresponding training set was 64.3% on three types of secondary structure (alpha-helix, beta-sheet, and coil), with correlation coefficients of C alpha = 0.41, C beta = 0.31 and Ccoil = 0.41. These quality indices are all higher than those of previous methods. The prediction accuracy for the first 25 residues of the N-terminal sequence was significantly better. We conclude from computational experiments on real and artificial structures that no method based solely on local information in the protein sequence is likely to produce significantly better results for non-homologous proteins. The performance of our method of homologous proteins is much better than for non-homologous proteins, but is not as good as simply assuming that homologous sequences have identical structures.  相似文献   

17.
In this paper we present a novel approach to membrane protein secondary structure prediction based on the statistical stepwise discriminant analysis method. A new aspect of our approach is the possibility to derive physical-chemical properties that may affect the formation of membrane protein secondary structure. The certain physical-chemical properties of protein chains can be used to clarify the formation of the secondary structure types under consideration. Another aspect of our approach is that the results of multiple sequence alignment, or the other kinds of sequence alignment, are not used in the frame of the method. Using our approach, we predicted the formation of three main secondary structure types (alpha-helix, beta-structure and coil) with high accuracy, that is Q(3) = 76%. Predicting the formation of alpha-helix and non-alpha-helix states we reached the accuracy which was measured as Q(2) = 86%. Also we have identified certain protein chain properties that affect the formation of membrane protein secondary structure. These protein properties include hydrophobic properties of amino acid residues, presence of Gly, Ala and Val amino acids, and the location of protein chain end.  相似文献   

18.
Zhu Y  Li T  Li D  Zhang Y  Xiong W  Sun J  Tang Z  Chen G 《Amino acids》2012,42(5):1749-1755
Numerous methods for predicting γ-turns in proteins have been developed. However, the results they generally provided are not very good, with a Matthews correlation coefficient (MCC) ≤0.18. Here, an attempt has been made to develop a method to improve the accuracy of γ-turn prediction. First, we employ the geometric mean metric as optimal criterion to evaluate the performance of support vector machine for the highly imbalanced γ-turn dataset. This metric tries to maximize both the sensitivity and the specificity while keeping them balanced. Second, a predictor to generate protein shape string by structure alignment against the protein structure database has been designed and the predicted shape string is introduced as new variable for γ-turn prediction. Based on this perception, we have developed a new method for γ-turn prediction. After training and testing the benchmark dataset of 320 non-homologous protein chains using a fivefold cross-validation technique, the present method achieves excellent performance. The overall prediction accuracy Q total can achieve 92.2% and the MCC is 0.38, which outperform the existing γ-turn prediction methods. Our results indicate that the protein shape string is useful for predicting protein tight turns and it is reasonable to use the dihedral angle information as a variable for machine learning to predict protein folding. The dataset used in this work and the software to generate predicted shape string from structure database can be obtained from anonymous ftp site freely.  相似文献   

19.
Sun S  Zhao Y  Jiao Y  Yin Y  Cai L  Zhang Y  Lu H  Chen R  Bu D 《FEBS letters》2006,580(7):1891-1896
MOTIVATION: Predicting protein function accurately is an important issue in the post-genomic era. To achieve this goal, several approaches have been proposed deduce the function of unclassified proteins through sequence similarity, co-expression profiles, and other information. Among these methods, the global optimization method (GOM) is an interesting and powerful tool that assigns functions to unclassified proteins based on their positions in a physical interactions network [Vazquez, A., Flammini, A., Maritan, A. and Vespignani, A. (2003) Global protein function prediction from protein-protein interaction networks, Nat. Biotechnol., 21, 697-700]. To boost both the accuracy and speed of GOM, a new prediction method, MFGO (modified and faster global optimization) is presented in this paper, which employs local optimal repetition method to reduce calculation time, and takes account of topological structure information to achieve a more accurate prediction. CONCLUSION: On four proteins interaction datasets, including Vazquez dataset, YP dataset, DIP-core dataset, and SPK dataset, MFGO was tested and compared with the popular MR (majority rule) and GOM methods. Experimental results confirm MFGO's improvement on both speed and accuracy. Especially, MFGO method has a distinctive advantage in accurately predicting functions for proteins with few neighbors. Moreover, the robustness of the approach was validated both in a dataset containing a high percentage of unknown proteins and a disturbed dataset through random insertion and deletion. The analysis shows that a moderate amount of misplaced interactions do not preclude a reliable function assignment.  相似文献   

20.
Fuchs A  Kirschner A  Frishman D 《Proteins》2009,74(4):857-871
Despite rapidly increasing numbers of available 3D structures, membrane proteins still account for less than 1% of all structures in the Protein Data Bank. Recent high-resolution structures indicate a clearly broader structural diversity of membrane proteins than initially anticipated, motivating the development of reliable structure prediction methods specifically tailored for this class of molecules. One important prediction target capturing all major aspects of a protein's 3D structure is its contact map. Our analysis shows that computational methods trained to predict residue contacts in globular proteins perform poorly when applied to membrane proteins. We have recently published a method to identify interacting alpha-helices in membrane proteins based on the analysis of coevolving residues in predicted transmembrane regions. Here, we present a substantially improved algorithm for the same problem, which uses a newly developed neural network approach to predict helix-helix contacts. In addition to the input features commonly used for contact prediction of soluble proteins, such as windowed residue profiles and residue distance in the sequence, our network also incorporates features that apply to membrane proteins only, such as residue position within the transmembrane segment and its orientation toward the lipophilic environment. The obtained neural network can predict contacts between residues in transmembrane segments with nearly 26% accuracy. It is therefore the first published contact predictor developed specifically for membrane proteins performing with equal accuracy to state-of-the-art contact predictors available for soluble proteins. The predicted helix-helix contacts were employed in a second step to identify interacting helices. For our dataset consisting of 62 membrane proteins of solved structure, we gained an accuracy of 78.1%. Because the reliable prediction of helix interaction patterns is an important step in the classification and prediction of membrane protein folds, our method will be a helpful tool in compiling a structural census of membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号