首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As an effective COX-2 inhibitor, celecoxib is widely used in anti-inflammation therapy. However, it may cause cardiovascular risks and renal adverse effects. In the present study, we aimed to construct a celecoxib prodrug with enhanced anti-inflammatory efficacy and reduced adverse effects using folate in order to target activated macrophages. Folate-glycine-celecoxib was synthesized and identified by 1H-NMR, MS, and FTIR analyses. The cytotoxicity of folate-glycine-celecoxib was tested on murine macrophage cells (RAW264.7) using thiazolyl blue tetrazolium bromide. Cellular uptake studies were employed to determine targeting ability toward folate receptors via flow cytometry and confocal microscopy. Anti-inflammatory efficacy of folate-glycine-celecoxib was investigated by measuring the concentration of LPS-induced nitric oxide (NO). Folate-glycine-celecoxib exhibited lower cytotoxicity than conventional celecoxib, and this conjugate could be targetedly transported into RAW264.7 cells through binding with folate receptors on cell surface. Through targeting to RAW264.7 cells, folate-glycine-celecoxib exhibited better effects than equimolar celecoxib in NO inhibition, suggesting greater anti-inflammatory activity. These findings demonstrated that the prodrug folate-glycine-celecoxib had potential to treat inflammatory disease with low cytotoxicity and high targeting ability.  相似文献   

2.
The cyclooxygenase 2 (COX-2) inhibitor celecoxib (also called celebrex), approved for the treatment of colon carcinogenesis, rheumatoid arthritis, and other inflammatory diseases, has been shown to induce apoptosis and inhibit angiogenesis. Because NF-kappa B plays a major role in regulation of apoptosis, angiogenesis, carcinogenesis, and inflammation, we postulated that celecoxib modulates NF-kappa B. In the present study, we investigated the effect of this drug on the activation of NF-kappa B by a wide variety of agents. We found that celecoxib suppressed NF-kappa B activation induced by various carcinogens, including TNF, phorbol ester, okadaic acid, LPS, and IL-1 beta. Celecoxib inhibited TNF-induced I kappa B alpha kinase activation, leading to suppression of I kappa B alpha phosphorylation and degradation. Celecoxib suppressed both inducible and constitutive NF-kappa B without cell type specificity. Celecoxib also suppressed p65 phosphorylation and nuclear translocation. Akt activation, which is required for TNF-induced NF-kappa B activation, was also suppressed by this drug. Celecoxib also inhibited the TNF-induced interaction of Akt with I kappa B alpha kinase (IKK). Celecoxib abrogated the NF-kappa B-dependent reporter gene expression activated by TNF, TNF receptor, TNF receptor-associated death domain, TNF receptor-associated factor 2, NF-kappa B-inducing kinase, and IKK, but not that activated by p65. The COX-2 promoter, which is regulated by NF-kappa B, was also inhibited by celecoxib, and this inhibition correlated with suppression of TNF-induced COX-2 expression. Besides NF-kappa B, celecoxib also suppressed TNF-induced JNK, p38 MAPK, and ERK activation. Thus, overall, our results indicate that celecoxib inhibits NF-kappa B activation through inhibition of IKK and Akt activation, leading to down-regulation of synthesis of COX-2 and other genes needed for inflammation, proliferation, and carcinogenesis.  相似文献   

3.
Two series of 4-benzylideneamino- and 4-phenyliminomethyl-benzenesulfonamide derivatives were designed and synthesized for the evaluation as selective cyclooxygenase-2 (COX-2) inhibitors in a cellular assay using human whole blood (HWB). Extensive structure-activity relationships (SAR) were studied within these series. Several compounds were found to be novel and selective COX-2 inhibitors. Among them, the most potent and selective was 4-(3-carboxy-4-hydroxy-benzylideneamino)benzenesulfonamide (20, LA2135), (IC(50)'s for COX-1: 85.13 microM; COX-2: 0.74 microM; SI: 114.5), being more active COX-2 selective than celecoxib.  相似文献   

4.
Celecoxib is a COX-2 inhibitor drug that can be used to reduce the risk of colorectal adenocarcinoma. Glucocorticoids are used in the treatment of inflammatory bowel disease. A limitation to the use of both drug types is that they undergo absorption from the intestinal tract with serious side effects. The prodrug systems introduced here involve forming a nitro-substituted acylsulfonamide group in the case of celecoxib and a nitro-substituted 21-ester for the glucocorticoids. Drug release is triggered by the nitro reductase action of the colonic microflora, liberating a cyclization competent species. The release of the active parent drugs was evaluated in vitro using Clostridium perfringens and epithelial transport through Caco-2 monolayer evaluation was carried out to estimate the absorption properties of the prodrugs compared to the parental drugs.  相似文献   

5.
Although the influence of selective cyclooxygenase (COX)-2 inhibitors on the proliferation of colon adenocarcinoma cells have been the subject of much investigation, relatively little research has compared the effects of different COX-2 inhibitors. Celecoxib strongly suppressed the proliferation of COX-2 expressing HT-29 cells at 10-40 microM. NS-398 and nimesulide also inhibited cell proliferation, whereas rofecoxib, meloxicam, and etodolac did not. Only celecoxib induced apoptosis of HT-29 cells, as detected on the basis of DNA fragmentation, TUNEL positivity, and caspase-3/7 activation. DNA fragmentation was also increasd in COX-2 non-expressing cell lines (SW-480 and HCT-116) by exposure to celecoxib for 6-24 h. All six COX-2 inhibitors suppressed the production of prostaglandin E(2) by HT-29 cells, suggesting that the pro-apoptotic effect of celecoxib was unrelated to inhibition of COX-2. Inactivation of Akt might explain the differential pro-apoptotic effect of these selective COX-2 inhibitors on colon adenocarcinoma cells.  相似文献   

6.
A series of phenylazobenzenesulfonamide derivatives were designed and synthesized for the evaluation as selective cyclooxygenase-2 (COX-2) inhibitors in a cellular assay using human whole blood (HWB) and an enzymatic assay using purified ovine enzymes. Extensive structure-activity relationships (SAR) were studied within this series, and several of selective COX-2 inhibitors have been identified. Among them, compound 8, 4-(4-amino-2-methylsulfanyl-phenylazo)benzenesulfonamide, showed a potent inhibitory activity to the cyclooxygenase enzymes (IC(50)'s for COX-1: 23.28 microM; COX-2: 2.04 microM), being active but less COX-2 selective than celecoxib.  相似文献   

7.
Synthesis of [18F]4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide ([18F]celecoxib), a selective COX-2 inhibitor, is achieved via a bromide to [18F]F- exchange reaction. Synthesis of the precursor for radiolabeling was achieved from 4'-methylacetophenone in four steps with 22% overall yield. Under non-radioactive conditions, fluorination was achieved using TBAF in DMSO at 135 degrees C in 80% yield. Synthesis of [18F]celecoxib was achieved using [18F]TBAF in DMSO at 135 degrees C in 10+/-2% yield (EOS) with >99% chemical and radiochemical purities. The specific activity was 120+/-40 mCi/micromol (EOB). [18F]celecoxib was found to be stable in ethanol, however, de[18F]fluorination (6.5%) was observed after 4 h in 10% ethanol-saline solution. Rodent PET studies show bone labeling indicating in vivo de[18F]fluorination of [18F]celecoxib. PET studies in baboon indicated a lower rate of de[18F]fluorination than rat and retention of radioactivity in brain regions consistent with the known distribution of COX-2. A radiolabeling method that can generate consistent high specific activity is needed for routine human use.  相似文献   

8.
Nonselective cyclooxygenase (COX) inhibitors are potent tocolytic agents; however, they also have adverse fetal effects such as constriction of the fetal ductus arteriosus. Recently, selective COX-2 inhibitors have been used in the management of preterm labor in the hope of avoiding fetal complications. However, both COX-1 and -2 are expressed by cells of the ductus arteriosus. We used fetal lambs (0.88 gestation) to assess the ability of selective COX-2 inhibitors celecoxib and NS398 to affect the ductus arteriosus. Both selective COX-2 inhibitors decreased PGE(2) and 6ketoPGF(1alpha) production in vitro; both inhibitors constricted the isolated ductus in vitro. The nonselective COX-1/COX-2 inhibitor indomethacin produced a further reduction in PG release and an additional increase in ductus tension in vitro. We used a prodrug of celecoxib to achieve 1.4 +/- 0.6 microg/ml, mean +/- standard deviation, of the active drug in vivo. This concentration of celecoxib produced both an increase in pressure gradient and resistance across the ductus; celecoxib also decreased fetal plasma concentrations of PGE(2) and 6ketoPGF(1alpha). Indomethacin (0.7 +/- 0.2 microg/ml) produced a significantly greater fall in ductus blood flow than celecoxib and tended to have a greater effect on ductus resistence in vivo. We conclude that caution should be used when recommending COX-2 inhibitors for use in pregnant women, because COX-2 appears to play a significant role in maintaining patency of the fetal ductus arteriosus.  相似文献   

9.
Retinoid resistance has limited the clinical application of retinoids as differentiation-inducing and apoptosis-inducing drugs. This study was designed to investigate whether celecoxib, a selective COX-2 inhibitor, has effects on retinoid sensitivity in human colon cancer cell lines, and to determine the possible mechanism of said effects. Cell viability was measured using the MTT assay. Apoptosis was detected via Annexin-V/PI staining and the flow cytometry assay. PGE2 production was measured with the ELISA assay. The expression of RARβ was assayed via western blotting. The results showed that celecoxib enhanced the inhibitory effect of ATRA in both COX-2 high-expressing HT-29 and COX-2 low-expressing SW480 cell lines. Further study showed the ATRA and celecoxib combination induced greater apoptosis, but that the addition of PGE2 did not affect the enhanced growth-inhibitory and apoptosis-inducing effects of the combination. Moreover, NS398 (another selective COX-2 inhibitor) did not affect the inhibitory effects of ATRA in the two cell lines. Western blotting showed that the expression of RARβ in HT-29 cell lines was increased by celecoxib, but not by NS398, and that the addition of PGE2 did not affect the celecoxib-induced expression of the retinoic acid receptor beta. In conclusion, celecoxib increased the expression of RARβ and the level of cellular ATRA sensitivity through COX-2-independent mechanisms. This finding may provide a potential strategy for combination therapy.  相似文献   

10.
Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, has anticancer effect on many cancers associated with chronic inflammation by both COX-2-dependent and COX-2-independent mechanisms. The non-COX-2 targets of celecoxib, however, are still a matter of research. Leukotriene B4 (LTB4) has been implicated in prostate and colon carcinogenesis, but little is known about the potential role of LTB4 in celecoxib-mediated anticancer effect. In this study, we evaluated whether LTB4 was involved in celecoxib-mediated inhibitory effect on human colon cancer HT-29 cells and human prostate cancer PC-3 cells. Our data showed that survival of both cell lines was obviously suppressed after celecoxib treatment for 72 h in a concentration-dependent manner. However, only in HT-29 cells, this inhibitory effect could be reversed by LTB4, which promoted survival of HT-29 cells rather than PC-3 cells. Consistent with these results, lioxygenase (LOX) potent inhibitor nordihydroguaiaretic acid (NDGA) had a higher inhibitory effect on HT-29 cells than PC-3 cells. Additionally, ELISA results showed that celecoxib could suppress expression of LTB4 in both cell lines, whereas, inhibition of PGE2 was only detected in HT-29 cells. These results indicate that the anticancer effect of celecoxib is COX-2-independent in HT-29 and PC-3 cells and in HT-29 cells primarily via down-regulating LTB4 production.  相似文献   

11.
Colon cancer is second leading cause of cancer-related deaths in Western countries. Diet and smoking, which contain aromatic and heterocyclic amines, are major risk factors for colon cancer. Colorectal cancers have a natural history of long latency and therefore provide ample opportunities for effective chemoprevention. 3,2'-Dimethyl-4-aminobiphenyl (DMABP) is an experimental aromatic amine that causes cancer in rat colon and serves as an experimental model for arylamine and heterocyclic amine mutagens derived from diet and smoking. In this study, we investigated the effects of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor on DMABP-induced DNA adduct formation in rat liver and colon. Male F-344 rats (5-week old) were provided free access to modified AIN-76A rat chow containing 0 (control), 500, 1000, or 1500 ppm celecoxib. Two weeks later, the rats received a subcutaneous injection of 100mg/kg DMABP in peanut oil. Two days after DMABP treatment, the rats were killed and DMABP-derived adducts were analyzed in colon and liver DNA by butanol extraction-mediated (32)P-postlabeling. Two major DNA adducts, identified as dG-C8-DMABP and dG-N(2)-DMABP, were detected in liver and colon of rats treated with DMABP. These DNA adducts were diminished approximately 35-40% with 500 ppm and 65-70% with 1,000 ppm celecoxib. In the colon, no further decline in DNA adducts was observed at 1500 ppm. The same DMABP-DNA adducts also were detected in the liver and were also diminished by celecoxib treatment. The reduction in DMABP-DNA adduct levels in celecoxib-treated animals provides further support for celecoxib as a chemopreventive agent for colorectal cancer.  相似文献   

12.
A group of regioisomeric phenylethynylbenzenesulfonamides possessing a COX-2 SO2NH2 pharmacophore at the para-, meta- or ortho-position of the C-1 phenyl ring, in conjunction with a C-2 substituted-phenyl (H, OMe, OH, Me, F) group, were synthesized and evaluated as inhibitors of the cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) isozymes. The target 1,2-diphenylacetylenes were synthesized via a palladium-catalyzed Sonogashira cross-coupling reaction. In vitro COX-1/-2 isozyme inhibition structure-activity data showed that COX-1/-2 inhibition and the COX selectivity index (SI) are sensitive to the regioisomeric placement of the COX-2 SO2NH2 pharmacophore where the COX-2 potency order for the benzenesulfonamide regioisomers was generally meta>para and ortho. Among this group of compounds, the in vitro COX-1/-2 isozyme inhibition studies identified 3-(2-phenylethynyl)benzenesulfonamide (10a) as a COX-2 inhibitor (COX-2 IC50=0.45 microM) with a good COX-2 selectivity (COX-2 SI=70). In contrast, 2-[2-(3-fluorophenyl)ethynyl]benzenesulfonamide (11c) possessing a SO2NH2 COX-2 pharmacophore at the ortho-position of the C-1 phenyl ring exhibited COX-1 inhibition and selectivity (COX-1 IC50=3.6 microM). A molecular modeling study where 10a was docked in the binding site of COX-2 shows that the meta-SO2NH2 COX-2 pharmacophore was inserted inside the COX-2 secondary pocket (Arg513, Phe518, Val523, and His90). Similar docking of 10a within the COX-1 binding site shows that the meta-SO2NH2 pharmacophore is unable to interact with the respective amino acid residues in COX-1 that correspond to those near the secondary pocket in COX-2 due to the presence of the larger Ile523 in COX-1 that replaces Val523 in COX-2.  相似文献   

13.
A novel linker system based on 3-aminoxypropionate was designed and evaluated for drug release using proteolysis as an activation trigger followed by intramolecular cyclization. The hydroxylamine moiety present in the linker system enabled faster release of the parent drug from the linker–drug conjugate at lower pH as compared to an aliphatic amine moiety. Introduction of two methyl groups strategically at the α position to the carboxylate in the linker further improved the rate of cyclization by nearly 2-fold. The 3-aminoxypropionate linker was successfully applied to a model prodrug for protease activation using α-chymotrypsin as the activating enzyme; the activation of the model prodrug bearing the 3-aminoxypropionate linker was 136 times faster than the corresponding model prodrug bearing an amine linker.  相似文献   

14.
In an attempt to prepare a new water-soluble, parenteral COX-2 inhibitor, rofecoxib (9) and celecoxib (13) analogues were designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors with in vivo anti-inflammatory activity. In this experiment, respective SO(2)Me and SO(2)NH(2) hydrogen-bonding pharmacophores were replaced by a tetrazole ring. Molecular modeling (docking) studies showed that the tetrazole ring of these two analogues (9 and 13) was inserted deep into the secondary pocket of the human COX-2 binding site where it undergoes electrostatic interaction with Arg(513). The rofecoxib (9) and celecoxib (13) analogues exhibited a high in vitro selectivity (9, COX-1 IC(50) = 3.8 nM; COX-2 IC(50) = 1.8 nM; SI = 2.11; 13, COX-1 IC(50) = 4.1 nM; COX-2 IC(50) = 1.9 nM; SI = 2.16) relative to the reference drug celecoxib (COX-1 IC(50) = 3.7 nM; COX-2 IC(50) = .2 nM; SI=1.68) and also showed high aqueous solubility at pH higher than 7 and good anti-inflammatory activity in a carrageenan-induced rat paw edema assay. However, 9 and 13 had no significant damage on gastric mucosa.  相似文献   

15.
A group of N-acetyl-2-(or 3-)carboxymethylbenzenesulfonamides, possessing either a F or a substituted-phenyl ring substituent (4-F, 2,4-F2, 4-SO2Me, 4-OCHMe2) attached to its C-4 or C-6 position, was prepared using a palladium-catalyzed Suzuki cross-coupling reaction for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. Although N-acetyl-3-carboxymethyl-6-fluorobenzenesulfonamide [14, COX-1 IC50 = 2.26 microM; COX-2 IC50 = 0.012 microM; COX-2 selectivity index (SI) = 188] and N-acetyl-3-carboxymethyl-6-(4-isopropoxyphenyl)benzenesulfonamide (20c, COX-1 IC50 >100 microM; COX-2 IC50 = 0.15 microM; COX-2 SI >667) exhibited potent in vitro COX-2 inhibitory activity and high COX-2 selectivity, both compounds were inactive anti-inflammatory agents in a carrageenan-induced rat paw edema assay. In contrast, the less potent and less selective COX-2 inhibitors N-acetyl-2-carboxymethyl-4-fluorobenzenesulfonamide (12, COX-1 IC50 = 4.25 microM; COX-2 IC50 = 0.978 microM; COX-2 SI = 4.3), N-acetyl-2-carboxymethyl-4-(2,4-difluorophenyl)benzenesulfonamide (17c, COX-1 IC50 = 1.02 microM; COX-2 IC50 = 1.00 microM; COX-2 SI = 1.02), and N-acetyl-3-carboxymethyl-6-(4-methanesulfonylphenyl)benzenesulfonamide (20e, COX-1 IC50 = 0.109 microM; COX-2 IC50 = 1.14 microM; COX-2 SI = 0.095) exhibited moderate anti-inflammatory activity where a 75 mg/kg oral dose reduced inflammation 26%, 14%, and 20%, respectively, at 3 h postdrug administration relative to the reference drug aspirin where a 50 mg/kg oral dose reduced inflammation by 25% at 3 h postdrug administration.  相似文献   

16.
Nociception evoked prostaglandin (PG) release in the spinal cord considerably contributes to the induction of hyperalgesia and allodynia. To evaluate the relative contribution of cyclooxygenase-1 (COX-1) and COX-2 in this process we assessed the effects of the selective COX-1 inhibitor SC560 and the selective COX-2 inhibitor celecoxib on formalin-evoked nociceptive behaviour and spinal PGE(2) release. SC560 (10 and 20 mg/kg) significantly reduced the nociceptive response and completely abolished the formalin-evoked PGE(2) raise. In contrast, celecoxib (10 and 20 mg/kg) was ineffective in both regards, i.e. the flinching behaviour was largely unaltered and the formalin-induced PGE(2) raise as assessed using microdialysis was only slightly, not significantly reduced. This suggests that the formalin-evoked rapid PG release was primarily caused by COX-1 and was independent of COX-2. Mean free spinal cord concentrations of celecoxib during the formalin assay were 32.0 +/- 4.5 nM, thus considerably higher than the reported IC50 for COX-2 (3-7 nM). Therefore, the lack of efficacy of celecoxib is most likely not to be a result of poor tissue distribution. COX-2 mRNA and protein expression in the spinal cord were not affected by microdialysis alone but the mRNA rapidly increased following formalin injection and reached a maximum at 2 h. COX-2 protein was unaltered up to 4 h after formalin injection. The time course of COX-2 up-regulation suggests that the formalin-induced nociceptive response precedes COX-2 protein de novo synthesis and may therefore be unresponsive to COX-2 inhibition. Considering the results obtained with the formalin model it may be hypothesized that the efficacy of celecoxib in early injury evoked pain may be less than that of unselective NSAIDs.  相似文献   

17.
A novel hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrug (NONO-coxib 14) wherein an O2-acetoxymethyl 1-(2-carboxypyrrolidin-1-yl)diazen-1-ium-1,2-diolate (O2-acetoxymethyl PROLI/NO) NO-donor moiety was covalently coupled to the CH2OH group of 3-(4-hydroxymethylphenyl)-4-(4-methylsulfonylphenyl)-5H-furan-2-one (12), was synthesized. The prodrug 14 released a low amount of NO (4.2%) upon incubation with phosphate buffer (PBS) at pH 7.4 which was significantly higher (34.8% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) upon incubation in the presence of rat serum. These incubation studies suggest that both NO and the parent compound 12 would be released from the prodrug 14 upon in vivo cleavage by non-specific serum esterases. The prodrug ester 14 is a selective COX-2 inhibitor that exhibited AI activity (ED50 = 72.2 mmol/kg po) between that of the reference drugs celecoxib (ED50 = 30.9 μmol/kg po) and ibuprofen (ED50 = 327 μmol/kg po). The NO donor compound 14 exhibited enhanced inhibition of phenylephrine-induced vasoconstriction of isolated mesenteric arteries compared with that observed under control conditions. These studies indicate hybrid ester AI/NO donor prodrugs (NONO-coxibs) constitutes a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

18.
Nineteen new 2-pyrazoline bearing benzenesulfonamide derivatives were synthesized by condensing chalcones with 4-hydrazinonbenzenesulfonamide hydrochloride. Their chemical structures were proved by means of IR, 1H NMR, 13C NMR, mass spectroscopic and elemental analyses data. These compounds were tested at dose of 20 mg/kg for their anti-inflammatory activity in carrageenan-induced rat paw edema model and volume of paw edema was measured at 0, 3 and 5 h. Two compounds 3k and 3l were found to be more active than celecoxib throughout the study (at 3 and 5 h). While two other compounds 3m and 3n showed more potent activity than celecoxib at 5 h. They are devoid of ulcerogenic potential when administered orally at a dose of 60 mg/kg. Compounds (3km) showed COX-1 and COX-2 inhibitory activity at 0.05 μM.  相似文献   

19.
20.
The peripheral antinociceptive effect of the selective COX-2 inhibitor celecoxib in the formalin-induced inflammatory pain was compared with that of resveratrol (COX-1 inhibitor) and diclofenac (non-selective COX inhibitor). Rats received local pretreatment with saline, celecoxib, diclofenac or resveratrol followed by 50 microl of either 1% or 5% formalin. Peripheral administration of celecoxib did not produce antinociception at either formalin concentration. In contrast, diclofenac and resveratrol produced a dose-dependent antinociceptive effect in the second phase of both 1% and 5% formalin test. The peripheral antinociception produced by diclofenac or resveratrol was due to a local action, as drug administration in the contralateral paw was ineffective. Results indicate that the selective COX-2 inhibitor celecoxib does not produce peripheral antinociception in formalin-induced inflammatory pain. In contrast, selective COX-1 and non-selective COX inhibitors (resveratrol and diclofenac, respectively) are effective drugs in this model of pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号