首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
植物根系构型原位观测识别技术研究进展   总被引:6,自引:0,他引:6  
根系是植物从土壤中获取养分和水分并输送给植物体的重要器官,由于土壤的不透明属性阻碍了根系的观测,缺乏有效的原位根系观测方法已经构成了对植物根系深入研究的技术瓶颈.本文首先从根系研究的技术需求出发,对破坏性根系研究法、非破坏性根系二维观测法(微根管法)和根系三维构型原位观测方法如X射线计算机层析成像( X-ray computed tomography,XCT)、核磁共振成像法(magnetic resonance imaging,MRI)等进行了综述,并总结了各自的优缺点.其次,重点对XCT和MRI法进行了比较,有研究表明,MRI法不适用于根系三维构型的观测.指出自然土壤介质下,XCT是根系三维构型定量化分析未来的发展趋势.  相似文献   

2.
目的:比较生物电阻抗法与双能X射线吸收法测量健康成人体成分的一致性。方法:采用便携式生物电阻抗仪和双能X射线吸收仪同时测量48名健康受试者去脂体重、脂肪含量和体脂率,配对t检验比较两种方法测量健康成人去脂体重、脂肪含量和体脂率的差异,相关系数和Bland-Altman分析用于评价两种方法测量结果的相关性和一致性。结果:无论是总体还是男性和女性,生物电阻抗法与双能X射线吸收法的体成分测定值之间均呈现明显的正相关,除男性体脂含量(r=0.89)和体脂率(r=0.74)外,两种方法体成分测定值的相关系数r>0.90(P<0.05)。从总体看,与双能X射线吸收法相比,生物电阻抗法低估了身体脂肪含量[(-1.3±1.7)kg,95%一致限:(-4.6~2.1)kg]和体脂率[(-3.0%±2.8%),95%一致限:(-8.4%~2.5%)],高估了去脂体重[(2.7±1.7)kg,95%一致限:(-0.6~6.1)kg]。结论:生物电阻抗法在测量健康成人体成分中具有一定应用价值。同双能X射线吸收法相比,生物电阻抗法低估了体脂量和体脂率,需要进一步优化其体成分模型。  相似文献   

3.
目的:探讨电阻抗法测定血小板聚集功能在冠心病患者中的应用。方法:通过电阻抗法对486名急性冠脉综合征的患者检测,所有患者分别于服药前和服药后第4天抽取肘静脉血,采血后1小时内用全血阻抗法测定三磷酸腺苷(ADP)和花生四烯酸(AA)诱导的血小板聚集率;其中50例患者出现氯吡格雷抵抗,28例患者出现阿司匹林抵抗。结果:通过电阻抗法测定的抗血小板药物抵抗的发生率(10.29%)与文献报道的一致;在原来抗血小板药物基础增加西洛他唑或者增加氯吡格雷的剂量都能明显改善血小板药物抵抗,随着服药时间的增加血小板药物抵抗呈下降趋势;大剂量氯吡格雷组相比西洛他唑组在改善氯吡格雷抵抗更明显,差异有统计学意义(P0.05)。结论:电阻抗法测定血小板聚集功能方便快捷、安全可靠,更方便指导临床用药。  相似文献   

4.
美国Phenotype Screening公司的植物根系X-ray扫描成像分析系统RootViz FS是在美国能源部创新项目资助下研发成功的一套新型、高效率、高精度、非破坏性的测量系统,通过拍摄根系的立体照片,对盆栽植物的根系进行原位成像分析。  相似文献   

5.
植物组织电阻及其应用   总被引:3,自引:0,他引:3  
植物组织可分为质外体和共质体,其中,质外体由细胞壁、细胞间隙和导管组成,共质体由胞间连丝把相邻的原生质贯穿在一起而成。对于一鲜嫩植物组织来说,可将组织中质外体部分和共质体部分分别看作一连续整体,在两者之间有近似绝缘层的高电阻膜存在。此细胞膜的比电阻一般可达10~3—10~4Ω·cm,和5nm厚的油层相近。因此,可以近似地将共质体和质外体看作是电学上相并联的两条支路。其中,共质体电阻由膜电阻、胞内电阻和胞问电阻相互串联而成。由于胞内离子强度较  相似文献   

6.
正美国Phenotype Screening公司的植物根系X-ray扫描成像分析系统RootViz FS是在美国能源部创新项目资助下研发成功的一套新型、高效率、高精度、非破坏性的测量系统,通过拍摄根系的立体照片,对盆栽植物的根系进行原位成像分析。这套系统是植物根系研究领域继根视(rhizotron)系统(如加拿大Regent WinRHIZO根系分析系统)后最激动人心的发明。根视系统需要将根取出清洗后,借助扫描仪进行分析,这个过程往往会折断植物的根尖等脆弱部分,而且这种离体分析,无法完  相似文献   

7.
用具有非破坏性的电导率方法测定土壤水分的廓线 ,与挖掘法 (或打孔法 )获取的根系分布对比 ,研究CO2倍增条件下一年生的长白赤松 (PinussylvestrisLinn .var.sylvestriformis (Takenouchi)ChengetC .D .Chu)幼苗根 土界面的水分运输状态。结果表明 :(1)土壤水分廓线由植物的活性所调制 ,根系分布密集的土层其水分含量也高。(2 )CO2 倍增 ,根系 土壤水分运输的活跃层及根系分布都将向土壤深处位移。研究证明 ,电导率方法能够指示发生于根 土界面上的水分运输状态 ,方法简单 ,且对土壤无破坏  相似文献   

8.
酸度是柑桔质量的重要指标,为了提高柑桔的保鲜效果,应尽可能延缓酸度的降低。对柑桔酸度的测量,目前主要采用化学分析方法。这种方法要浪费不少柑桔、化学药品、人力和时间,为了弥补其不足,可从物理角度考虑。大家知道,柑桔酸度的变化,必然要在电学、热学等性质上反映出来。因此,研究柑桔电学性质的变化规律,既可以寻求检测柑桔酸度的物理方法,  相似文献   

9.
用具有非破坏性的是导率方法测定土壤水分的廓线,与挖掘法(或打孔法)获取的根系分布对比,研究CO2倍增条件下一年生的长白赤松(Pinus sylvestris Linn.var.sylvestriformis(Takenouchi)Cheng et C.D.Chu)幼苗根-土界面的水分运输状态。结果表明:(1)土壤水分廓线由植物的活性所调制,根系分布密集的土层其水分含量也高。(2)CO2倍增,根系-土壤分运输的活跃层及根系分布都将向土壤演算位移。研究证明,电导率方法能够指示发生于根-土界面上的水分支输送,,且对土壤无破坏。  相似文献   

10.
植物表型是基因型与外界环境共同作用的结果。精确测量植物表型对于植物生理特征与功能性状研究具有重要意义。本研究以加拿大一枝黄花(Solidago canadensis)为对象,对20株植株进行3个月室内培养,各月利用地基激光雷达扫描(terrestrial Li DAR scanning,TLS)系统对实验植株进行多站扫描和点云融合,实现对植株生长过程的连续观测。对于扫描获取的离散点云,利用多端点三维坐标重构法获取植株高度,并基于叶片点云的Delaunay三角网重构叶片表面,获得植株的真实高度、叶面积、叶倾角和方位角等结构参量。对比手动测量结果,发现基于点云重构获得的植株高度与真实植株高度对比,二者间相似性的决定系数(R2)为0.991,叶面积、叶倾角、方位角相似性R2分别为0.989、0.949和0.871;基于TLS点云重构法实现了非破坏性的植物表型测量,能够获得高精度的植物表型特征;多时相扫描能精确监测植物生长过程的表型特征变化。  相似文献   

11.
Ephrath  J. E.  Silberbush  M.  Berliner  P. R. 《Plant and Soil》1999,209(2):201-208
The minirhiozotron (MR) root observation method was studied versus root length density (RLD) obtained from soil cores. Two plant species, acacia (Acacia saligna) and wheat (Triticum aestivum L.) were grown in a 1-m3 container on Silt Loam (Typic Torrifluvent) and on fine dune sand (Typic Torripsamment), respectively. Roots of both plants were measured periodically by the two methods. The MR observation tubes (MROT) were inserted, either vertically or at 45°. The correlation between the number of roots obtained by the MR and RLD was significant for the entire profile. However, an appreciable error in root estimation by the MR root observation method at the upper 10-cm soil might occur. No significant difference was obtained from MROT oriented vertically or at 45°. The differences between the correlation coefficients of the two methods were not significant, for both plants and soils, indicating that this correlation expresses the geometry of the two measurement systems, not affected by plant or soil types. We concluded that the MR method may be used as an in situ, non-destructive root measuring method with reasonable confidence. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
One key constraint to further understanding plant root development is the inability to observe root growth in situ due to the opaque nature of soil. Of the present non-destructive techniques, computed tomography (CT) is best able to capture the complexities of the edaphic environment. This study compared the accuracy and impact of X-ray CT measurement of in situ root systems with standard technology (soil core washing and WinRhizo analysis) in the context of treatments that differed in the vertical placement of phosphorus fertilizers within the soil profile. Although root lengths quantified using WinRhizo were 8% higher than that observed in the same plants using CT, measurements of root length by the two methodologies were highly correlated. Comparison of scanned and unscanned plants revealed no effect of repeated scanning on plant growth and CT was not able to detect any changes in roots between phosphorus treatments that was observed using WinRhizo. Overall, the CT technique was found to be fast, safe, and able to detect roots at high spatial resolutions. The potential drawbacks of CT relate to the software to digitally segment roots from soil and air, which will improve significantly as automated segmentation algorithms are developed. The combination of very fast scans and automated segmentation will allow CT methodology to realize its potential as a high-throughput technique for the quantification of roots in soils.  相似文献   

13.
Several electrical methods have been introduced as non-invasive techniques to overcome the limited accessibility to root systems. Among them, the earth impedance method (EIM) represents the most recent development. Applying an electrical field between a cormus and the rooted soil, the EIM measures the absorptive root surface area (ARSA) from grounding resistance patterns. Allometric relationships suggested that this method was a valuable tool. Crucial assumptions for the applicability of the EIM, however, have not been tested experimentally. Focusing on tree root systems, the present study assesses the applicability of the EIM. Six hypotheses, deduced from the EIM approach, were tested in several experiments and the results were compared with conventional methods. None of the hypotheses could be verified and the results allow two major conclusions. First, in terms of an analogue electrical circuit, a tree-root-soil continuum appears as a serial circuit with xylem and soil resistance being the dominant components. Allometric variation in contact resistance, with the latter being the proxy for root surface area, are thus overruled by the spatial and seasonal variation of soil and xylem resistances. Second, in a tree-root-soil continuum, distal roots conduct only a negligible portion of the electric charge. Most of charge carriers leave the root system in the proximal parts of the root-soil interface.  相似文献   

14.
Applications and limitations of the minirhizotron technique (non-destructive) in relation to two frequently used destructive methods (soil coreing and ingrowth cores) is discussed. Sequential coreing provides data on standing crop but it is difficult to obtain data on root biomass production. Ingrowth cores can provide a quick estimate of relative fine-root growth when root growth is rapid. One limitation of the ingrowth core is that no information on the time of ingrowth and mortality is obtained.The minirhizotron method, in contrast to the destructive methods permits simultaneous calculation of fine-root length production and mortality and turnover. The same fine-root segment in the same soil space can be monitored for its life time, and stored in a database for processing. The methodological difficulties of separating excavated fine roots into living and dead vitality classes are avoided, since it is possible to judge directly the successive ageing of individual roots from the images. It is concluded that the minirhizotron technique is capable of quantifying root dynamics (root-length production, mortality and longevity) and fine-root decomposition. Additionally, by combining soil core data (biomass, root length and nutrient content) and minirhizotron data (length production and mortality), biomass production and nutrient input into the soil via root mortality and decomposition can be estimated.  相似文献   

15.
森林生态系统根系生物量研究进展   总被引:90,自引:14,他引:76  
在森林生态系统功能过程研究中,特别是在生产力和生物地化学循环方面,根系的作用不容忽视,但是,由于研究方法和研究者的观念等方面的限制,对于根系的研究还远不及地上部分受到重视。而关于细根生物量,周转率和生产力等方面的是很少有人问津。为推动我国根系生物学研究的发展,本一面地介绍了9种典型的测度细根生物量的方法。包括:收获法、钻土芯法、内生长土芯法、平衡法、根观测实验室法、土壤碳平衡法、挖土块法、间接法和  相似文献   

16.

Key message

A novel non-destructive method is presented for studying the frost hardiness of roots. Principal component analysis from the electrical impedance spectra revealed differences between freezing temperatures, but no clear differences between the mycorrhizal treatments as regards freezing stress.

Abstract

We present a novel non-destructive method for the classification of root systems with different degrees of freezing injuries based on the measurement of electrical impedance spectra (EIS). Roots of Scots pine (Pinus sylvestris L.) seedlings, raised in perlite with nutrient solution, were colonized by Hebeloma sp. or Suillus luteus or left non-mycorrhizal, and exposed to a series of low temperatures (5, ?5, ?12 and ?18 °C) after cultivation with and without cold acclimation regimes. In EIS measurements, we ran a small-amplitude electric current to the root system at 44 frequencies between 5 Hz and 100 kHz through electrodes set in the stem and in perlite at the bottom of the container. The normalized (Euclidian) electrical impedance spectra were classified using the CLAFIC-method (CLAss-Featuring Information Compression) that is based on a subspace method with two variants where the longest projection vector defines the sample class. The current delivery through the root system was affected by freezing injuries in the roots. The most remarkable change, indicating the threshold for cold tolerance, took place between ?5 and ?12 °C for non-acclimated and between ?12 and ?18 °C for cold acclimated roots. No difference was found between the mycorrhizal treatments in the response to the freezing temperatures. The results on the effects of both the low-temperature exposure and mycorrhizas agree with freezing damage assessments done by other methods.
  相似文献   

17.
New methods using different physical principles have been successfully applied in studies of root systems of large trees. The ground-penetrating radar technique provides 3D images of coarse roots (starting with a diameter of about 20 mm) from the soil surface down to a depth of several metres. This can even be done under layers of undisturbed materials such as concrete, asphalt and water. Fine roots cannot be visualized by this method, but the total rooted volume of soil can be determined. The differential electric conductance method has been used for fast measurement of conducting (absorbing) root surfaces. However, more testing is needed. Both these methods are non-invasive. The results can be verified by an almost harmless excavation of whole root systems, including fine roots, using the ultrasonic air-stream (air-spade) method. This method is suitable for all studies, as well as practical operations on roots or objects in their vicinity, where a gentle approach is required. Sap flow measurements on their own or in tandem with soil moisture monitoring play a leading role in studying root function and hydraulic redistribution of flow in the soil. The water absorption function of roots can be studied by measuring sap flow on individual root branches directly (as on crown branches) and also indirectly, by measuring the radial pattern of sap flow in different sapwood depths at the base of a stem. Root zone architecture can also be estimated indirectly by studying its functionality. The heat field deformation method with multi-point sensors has been found to be very convenient for this purpose. A combination of several such methods is recommended whenever possible, in order to obtain detailed information about the root systems of trees.  相似文献   

18.

Background

Studying root biomass, root system distribution and belowground interactions is essential for understanding the composition of plant communities, the impact of global change, and terrestrial biogeochemistry. Most soil samples and minirhizotron pictures hold roots of more than one species or plant individual. The identification of taxa by their roots would allow species-specific questions to be posed; information about root affiliation to plant individuals could be used to determine intra-specific competition.

Scope

Researchers need to be able to discern plant taxa by roots as well as to quantify abundances in mixed root samples. However, roots show less distinctive features that permit identification than aboveground organs. This review discusses the primary use of available methods, outlining applications, shortcomings and future developments.

Conclusion

Methods are either non-destructive, e.g. visual examination of root morphological criteria in situ, or require excavated and excised root samples. Among the destructive methods are anatomical keys, chemotaxonomic approaches and molecular markers. While some methods allow for discerning the root systems of individual plants, others can distinguish roots on the functional group or plant taxa level; methods such as IR spectroscopy and qPCR allow for quantifying the root biomass proportion of species without manual sorting.  相似文献   

19.
Saving water for crop production is an old, but ongoing, challenge which requires a better understanding of the in situ functioning of root systems. In particular, this requires a better quantification and understanding of the spatial and temporal variability of the root water uptake at the field scale. Electrical Resistivity Tomography (ERT) is a non-destructive soil imaging technique, related to water content, which could help in spatializing active zones of water uptake. In this article, we evaluate ERT as an alternative method for quantifying and spatializing root water uptake at the field scale. To this aim, an experimental field study with maize and sorghum submitted to different water supply levels (Fully, Moderately or Poorly Irrigated treatments—FI, MI, PI zones) was conducted for 3 months with concomitant conventional, local, water balance measurements and 2D ERT imaging. ERT images showed an heterogeneous depletion of soil water by the crops, particularly, in the MI and PI zones with patches of high/low electrical resistivity (and thus water content) variations. This heterogeneity was greatest in the MI zone and points to spatial variations in rooting pattern and/or root efficiency. The 5-days difference in electrical resistivity could be quantitatively related to root uptake in the surface layer (down to 60 cm) but the relationship depends on the mean soil water content. At greater soil depth, in the water stressed zones, the water extraction front progressing downwards could not be assessed with the ERT surface setting used in this study. As a conclusion, ERT can be a useful, unique, technique for monitoring and estimating field water uptake by plant roots and its variability if combined water content measurements are available for in situ calibration and if the sensitivity/resolution of the technique is improved for estimation over the whole root zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号