首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 977 毫秒
1.
A cytoplasmic male sterility (CMS) system for Brassica napus (2n = 38; AACC) was developed by backcross substitution of its nucleus into the cytoplasm of a wild crucifer, Enarthrocarpus lyratus. Male sterility was complete, stable, and expressed in small flowers with rudimentary anthers. Since the B. napus germplasm lines were complete or partial maintainers of male sterility, the required fertility restorer gene (Rfl) was introgressed from the cytoplasm donor species. Inheritance studies carried out on F1 and F2 populations derived from hybridizing cytoplasmic male sterile and male fertile near-isogenic (PNILs) lines of B. napus 'Westar', revealed a monogenic dominant control for fertility restoration. Bulked segregant analysis with 215 RAPD primers helped in the identification of putative primers associated with fertility restoration. Co-segregation analysis of eight such primers with Rfl gene revealed two markers, OPK 15700 and OPZ 061300, which flank the Rfl locus on either side at a distance of 8.2 and 2.5 cM, respectively. These DNA markers will be useful in marker-assisted selection for improving the commercial potential of this newly developed CMS-fertility-restorer system for hybrid seed production programs in rapeseed.  相似文献   

2.
Wild abortive cytoplasmic male sterility has been extensively used in hybrid seed production in the tropics. Using protoplast fusion between cytoplasmic male sterile and fertile maintainer lines; we report here, transfer of wild abortive cytoplasmic male sterility to the nuclear background of RCPL1-2C, an advance breeding line which also served as maintainer of this cytoplasm. In total, 27 putative cybrids between V20A and RCPL1-2C and 23 lines between V20A and V20B were recovered and all of them were sterile. DNA blots prepared from the mitochondrial DNA of the cybrid lines from both the sets were probed with orf155 that is known to exhibit polymorphism between the mitochondrial DNA of the male-sterile and fertile maintainer lines. Hybridization of orf155 to 1.3 kb HindIII-digested mitochondrial DNA fragment of the cybrids showed transfer of mitochondrial DNA from wild abortive cytoplasmic male-sterile line to the maintainers, viz. RCPL 1-2C and V20B. Expression of male sterility was confirmed by the presence of sterile pollen grains and the lack of seed setting due to selfing in all the cybrid lines. These cybrids, on crossing with respective fertile maintainers set seeds that in turn, produced sterile BC1 plants. DNA blots from HindIII-digested mitochondrial DNA of these BC1 plants when probed with orf155 again exhibited localization of orf155 in wild abortive cytoplasm-specific 1.3 kb HindIII-digested mitochondrial DNA fragments. This demonstrated that the cytoplasmic male sterility transferred through protoplast fusion retained intact female fertility and was inherited and expressed in BC1 plants. Fusion-derived CMS lines, on pollination with pollen grains from restorer, showed restoration of fertility in all the lines. The results demonstrate that protoplasts fusion can be used for transferring maternally inherited traits like cytoplasmic male sterility to the desired nuclear background which can, in turn, be used in hybrid seed production programme of rice in the tropical world.  相似文献   

3.
Three cytoplasmic-nuclear male-sterile (CMS) lines, one each derived from Cajanus sericeus (A(1) cytoplasm), Cajanus scarabaeoides (A(2) cytoplasm), and Cajanus cajanifolius (A(4) cytoplasm), were crossed to 7 pigeonpea (Cajanus cajan (L.) Millsp.) cultivars in a line x tester mating scheme to study the fertility restoration of the CMS lines. Twenty-one F(1) hybrid combinations were planted in unreplicated 3-row plots in 3 environments. There was no effect of environments on the expression of fertility restoration. Pigeonpea cultivar ICPL 129-3 restored fertility in A(1) cytoplasm and maintained male sterility in the other 2 (A(2) and A(4)) cytoplasms. Among crosses involving CMS line (of A(4) cytoplasm) ICPA 2039 one hybrid combination was male-sterile and another male fertile. The remaining 5 combinations segregated for male-fertility (66-84% fertility restoration). Such testers can easily be purified for use in hybrid breeding programs by selfing and single-plant selection for 2-3 generations.  相似文献   

4.
A new cytoplasmic male sterility (CMS) source in Brassica juncea (2n = 36; AABB) was developed by substituting its nucleus into the cytoplasm of Enarthrocarpus lyratus (2n = 20; E(l)E(l)). Male sterility was complete, stable and manifested in either petaloid- or rudimentary-anthers which were devoid of fertile pollen grains. Male sterile plants resembled the euplasmic B. juncea except for slight leaf yellowing and delayed maturity. Leaf yellowing was due mainly to higher level of carotenoids rather than a reduction in chlorophyll pigments. Female fertility in male-sterile plants varied; it was normal in lines having rudimentary anthers but poor in those with petaloid anthers. Each of the 62 evaluated germplasm lines of B. juncea was a functional maintainer of male sterility. The gene(s) for male-fertility restoration ( Rf) were introgressed from the cytoplasm donor species through homoeologous pairing between A and E(l) chromosomes in monosomic addition plants (2n = 18II+1E(l)). The percent pollen fertility of restored F(1) ( lyr CMS x putative restorer) plants ranged from 60 to 80%. This, however, was sufficient to ensure complete seed set upon by bag selfing. The CMS ( lyr) B. juncea compared favourably with the existing CMS systems for various productivity related characteristics. However, the reduced transmission frequency of the Rf gene(s) through pollen grains, which was evident from the sporadic occurrence of male-sterile plants in restored F(1) hybrids, remains a limitation.  相似文献   

5.
6.
 A spontaneously derived fertile plant was recovered from a petaloid cytoplasmic male-sterile (CMS) carrot inbred line. Genetic analysis indicated a single nuclear gene was responsible for the restoration to fertility. Within a family segregating for the nuclear restorer in combination with the sterility-inducing cytoplasm, fertile plants were recovered that could not restore fertility when crossed to sterile genotypes. Genetic analysis indicated cytoplasmic reversion for fertility, and Southern analysis, comparing mtDNA organization of the fertile revertant and its CMS progenitor, identified mitochondrial genome rearrangements. Hybridization of cosmids representing a 108-kb subgenomic circle of the sterile line to DNA of a fertile maintainer and fertile revertant lines indicated a similar mtDNA organization for these genotypes that was distinct from that of the sterile line. Six restriction fragments totalling 43.2 kb were common to the fertile maintainer and revertant and absent in the sterile; other restriction fragments totalling 38.2 kb were present only for the sterile line. Unique fragments of low stoichiometry, two for the fertile maintainer and three for the revertant, distinguished these lines. The reversion to fertility in the sterile line could have resulted from the amplification of a mitochondrial submolar genome highly homologous to that found in the fertile maintainer line. Received: 4 October 1997/Accepted: 12 December 1997  相似文献   

7.
通过不育细胞质为选择背景,在田间事先鉴定出杂种后代的优异完全不育株,用花药培养或诱导孤雌生殖使其纯合,测定其配合力,可以筛选到优良的目标不育系。以下3种方法则可能通过目标不育系而获得其同型保持系:一是通过体细胞变异(花药培养)产生;二是在不育系孕穗期高温或低温处理使其转换成可育,选择仍具有不育保持能力的作为保持系,或作为轮回亲本,将其细胞核换到可育细胞质中;三是用原生质体融合的方式向不育系导入已杀死细胞核的可育细胞质而获得配套保持系。它可以使杂种优势利用变得有预见性,可能提高现有杂种优势水平。在创造雄性不育新质源,排除微效可育基因,进行不育系的定向改造,选育高配合力不育系,以及加速育种进程等方面具有重要价值。  相似文献   

8.
Three pairs of isonuclear lines of cytoplasmic male sterile (CMS) and fertile Petunia cells (Petunia hybrida [Hook] Vilm. and Petunia parodii L.S.M.) grown in suspension culture were examined for sensitivity to inhibitors of respiratory electron transport at time-points after transfer into fresh media. Cells from CMS lines differed from cells of fertile lines in their utilization of the cyanide-insensitive oxidase pathway. Under our culture regime, after approximately 3 days of culture cells from the CMS lines exhibited much lower cyanide-insensitive, salicylhydroxamic acid-sensitive respiration than cells from the fertile lines. This respiratory difference was shown to be specific to the mitochondrial alternative oxidase pathway by using other characteristic inhibitors of mitochondrial electron transport in experiments with isolated mitochondria. Immature anthers from CMS plants also showed lower alternative oxidase activity relative to anthers from male fertile plants, but no such difference was detected in leaf tissue, ovary or perianth tissue, or anthers collected just prior to anthesis. A cell line from a fertile plant carrying a nuclear fertility restorer gene and the CMS cytoplasm exhibited increased activity of the alternative pathway compared with the CMS lines.  相似文献   

9.
Models of the evolution of gynodioecy assume that inbreeding affects male and female fertility equally and ignore quantitative variation in sex expression. The objectives of this study were to assess inbreeding effects, genetic background, and plant maturity on male and female fertility and the mechanism of male sterility inheritance for Nemophila menziesii (Hydrophyllaceae). Frequency of male-sterile flowers, number of anthers and ovules, and percentage of viable pollen were measured on plants from different pedigrees and five inbreeding levels (F = 0, 0.0625, 0.25, 0.5, and 0.75). Quantitative variation in male sterility was evident. As inbreeding increased, anther and ovule number decreased; the effect on anther number was greater than on ovule number. Pedigrees varied in number of male-sterile flowers and inbreeding effects. Frequency of male-sterile flowers was greatest among first flowers. No trade-off between male and female fertility was detected. A model attributing male sterility to a cytoplasmic locus and restoration to male fertility to a nuclear locus accounted for the distribution of complete sterility and hermaphroditism over the pedigrees. This study suggests that models of the evolution and maintenance of gynodioecy should allow for quantitative variation in male and female fertility components due to inbreeding, pedigree, and plant maturity.  相似文献   

10.

Background and Aims

Expression of the mitochondrial gene orf138 causes Ogura cytoplasmic male sterility (CMS) in Raphanus sativus, but little is known about the mechanism by which CMS takes place. A preliminary microarray experiment revealed that several nuclear genes concerned with flavonoid biosynthesis were inhibited in the male-sterile phenotype. In particular, a gene for one of the key enzymes for flavonoid biosynthesis, chalcone synthase (CHS), was strongly inhibited. A few reports have suggested that the inhibition of CHS causes nuclear-dependent male sterile expression; however, there do not appear to be any reports elucidating the effect of CHS on CMS expression. In this study, the expression patterns of the early genes in the flavonoid biosynthesis pathway, including CHS, were investigated in normal and male-sterile lines.

Methods

In order to determine the aberrant stage for CMS expression, the characteristics of male-sterile anthers are observed using light and transmission electron microscopy for several stages of flower buds. The expression of CHS and the other flavonoid biosynthetic genes in the anthers were compared between normal and male-sterile types using real time RT-PCR.

Key Results

Among the flavonoid biosynthetic genes analysed, the expression of CHS was strongly inhibited in the later stages of anther development in sterility cytoplasm; accumulation of putative naringenin derivatives was also inhibited.

Conclusions

These results show that flavonoids play an important role in the development of functional pollen, not only in nuclear-dependent male sterility, but also in CMS.Key words: Chalcone Synthase, flavonoids, Ogura cytoplasmic male sterility, CMS, pollen, Raphanus sativus  相似文献   

11.
Summary Using an HPLC method it has proved possible to follow the levels of adenine and pyridine nucleotides in the anthers of normal and cytoplasmically male sterile (CMS) lines of Petunia hybrida. Well before the appearance of any structural differences, anthers of CMS plants begin to show lower ATP/ADP ratios. In anthers, as in other non-photosynthetic plant tissues, there is a strong correlation between the ATP/ADP ratio and levels of NADPH and, when NADPH was assayed in fertile and CMS anthers, very dramatic differences were discovered. In male fertile plants, the NADPH/NADP ratio differs strikingly between somatic and reproductive tissues and reaches a peak in anthers at the early prophase of meiosis. The ratio in male sterile anthers remains largely unchanged from that normally seen in somatic tissues over this period. A cytochemical localisation technique revealed that, at the stage of development in question, the major reserves of anther NADPH are held within the tapetal cells and that levels within CMS tapeta are strikingly lower than those of normal plants. These findings are discussed in the perspective of theories proposed to explain the operation of CMS, and also in terms of the now conclusive evidence that the genetical basis of CMS lies in changes in the organisation of the mitochondrial genome.  相似文献   

12.
Cytoplasmic male sterility (CMS) represents an important agricultural trait in pearl millet [Pennisetum glaucum (L.) R. Br.] with a value to the seed industry in facilitating economical hybrid seed production. Among the CMS systems available in millet, the A1 source is the most commonly used for hybrid production, but it can undergo low frequency reversion to fertility. Plant mitochondrial genomes are highly recombinogenic, becoming unstable and prone to ectopic recombination under conditions of tissue culture, somatic hybridization, or interspecific crossing. Similarly, CMS systems prone to spontaneous fertility reversion experience sporadic mitochondrial genome instability. We compared mitochondrial genome configurations between the male-sterile A1 line and fertile revertants of pearl millet to develop a model for millet mitochondrial genome reorganization upon reversion. Relative copy number of a subgenomic molecule containing the CoxI-1-2 junction region, a component of the recombination process for reversion, is amplified tenfold following reversion, relative to the CMS A1 line. We propose that increased copy number of this molecule in a small number of cells or at low frequency triggers a recombination cascade, likely during reproductive development. The proposed recombination process initiates with ectopic recombination through a 7-bp repeat to produce a novel CoxI-3-2 junction molecule and an unstable recombination intermediate. Subsequent intra-molecular recombination stabilizes the intermediate to form a new copy of CoxI accompanied by a deletion. This study furthers the argument that substoichiometric shifting within the plant mitochondrial genome plays an important role in the evolution of the mitochondrial genome and plant reproductive dynamics.  相似文献   

13.
植物细胞质雄性不育系育种的反向核置换技术分析   总被引:6,自引:0,他引:6  
通过不育细胞质为选择背景,在田间事先鉴定出杂种后代的优异完全不育株,用花药培养或诱导孤雌生殖使其纯合,测定其配合力,可以筛选到优良的目标不育系.以下3种方法则可能通过目标不育系而获得其同型保持系:一是通过体细胞变异(花药培养)产生;二是在不育系孕穗期高温或低温处理使其转换成可育,选择仍具有不育保持能力的作为保持系,或作为轮回亲本,将其细胞核换到可育细胞质中;三是用原生质体融合的方式向不育系导入已杀死细胞核的可育细胞质而获得配套保持系.它可以使杂种优势利用变得有预见性,可能提高现有杂种优势水平.在创造雄性不育新质源,排除微效可育基因,进行不育系的定向改造,选育高配合力不育系,以及加速育种进程等方面具有重要价值.  相似文献   

14.
The donor-recipient protoplast fusion method was used to produce cybrid plants and to transfer cytoplasmic male sterility (CMS) from two cytoplasmic male-sterile lines MTC-5A and MTC-9A into a fertile japonica cultivar, Sasanishiki. The CMS was expressed in the cybrid plants and was stably transmitted to their progenies. Only cytoplasmic traits of the male-sterile lines, especially the mitochondrial DNAs, were introduced into the cells of the fertile rice cultivar. More than 80% of the cybrid plants did not set any seeds upon selfing. Sterile cybrid plants set seeds only when they were fertilized with normal pollen by hand and yielded only sterile progenies. This maternally inherited sterility of the cybrid plants showed that they were characterized by CMS. The CMS of cybrid plants could be restored completely by crossing with MTC-10R which had the single dominant gene Rf-1 for restoring fertility. These results indicated that CMS was caused by the mitochondrial genome introduced through protoplast fusion. The introduced CMS was stably transmitted to their progenies during at least eight backcross generations. These results demonstrate that cybrids generated by the donor-recipient protoplast fusion technique can be used in hybrid rice breeding for the creation of new cytoplasmic male-sterile rice lines.  相似文献   

15.
Summary Development of anthers in cytoplasmic male sterile (CMS) Petunia diverges from the normal sequence of events early in meiosis. Quantitative and qualitative changes in morphology, proteins and free amino acid contents correlate with this divergence. In anthers of the fertile line (5719), total protein content increases, and SDS-PAGE protein patterns change as the anthers mature. Enhanced levels of three polypeptides with molecular weights of 64,000, 63,000 and 45,000 daltons characterize premeiosis in fertile anthers. Protein levels and patterns from anthers of the CMS line (5707) show little alteration during anther development. Protein synthesis seems to be at least partially blocked in the CMS microspore. The 63,000 and 45,000 dalton proteins are not present, and the absence of any unique protein(s) in the CMS line argues against a virus as the causal agent of CMS in Petunia. Analysis of free amino acids from anthers of the fertile line shows levels of proline and pipecolic acid 2–3 and 10–20 fold higher, respectively, than in the CMS line. The amino acids incorporated into proteins show no such differences; analysis of protein hydrolysates shows similar levels of each amino acid in both fertile and CMS lines at every developmental stage examined.  相似文献   

16.
17.
Efforts were made to study microsporogenesis and genetics of fertility restoration of A(4) cytoplasmic-nuclear male-sterility (CMS) system in pigeonpea. The process of microsporogenesis in the male-sterile (ICPA 2039) and its maintainer (ICPB 2039) plants was normal up to the tetrad formation stage. The tapetal cells in the male-sterile anthers degenerated soon after tetrad formation, resulting in shriveled and degenerated microspores. In the maintainer plants, the tapetal cells were normal and microspores were functional. The breakdown of the tapetum before the completion of microsporogenesis was the major cause for the expression of male sterility in A(4) CMS system. The studies on the inheritance of fertility restoration showed that in 3 crosses, a single dominant gene; in 1 cross, 2 duplicate genes; and in another cross, 2 complimentary genes governed the fertility restoration.  相似文献   

18.
To clarify the time and cause of pollen abortion, differences on the microsporogenesis and tapetum development in the anthers of male fertile maintainer line and cytoplasmic male sterile (CMS) line pepper were studied using transmission electron microscopy. The results showed that CMS line anthers appeared to have much greater variability in developmental pattern than male fertile maintainer line ones. The earliest deviation from normal anther development occurred in CMS line anthers at prophase I was cytomixis in some microspore mother cells (MMCs), and vacuolisation in tapetal cells. Then, MMCs in CMS line anthers developed asynchronously and a small part of ones at the different stage degenerated in advance appearing to have typical morphological features of programmed cell death (PCD). Most MMCs could complete the meiosis, but formed non-tetrahedral tetrad microspores with irregular shape and different size and uncertain number of nuclei, and some degenerated ahead of time as well. Tapetal cells in CMS line anther degenerated during meiosis, and were crushed at the tetrad stage, which paralleled the collapse of pollens. Pollen abortion in CMS line anthers happened by PCD themselves, and the premature PCD of tapetal cells were closely associated with male sterility.  相似文献   

19.
Endonuclease restriction fragment patterns of Pennisetum americanum L. mitochondrial DNAs (mtDNAs) from a cytoplasmic male-sterile (CMS-A1), fertile revertants and a normal fertile cytoplasm were variable, while chloroplast DNA from those lines lacked variation. Comparisons between mtDNAs of CMS-A1 (parental) and fertile revertant lines revealed the presence of a unique 4.7 kbp PstI fragment in the sterile line that was not detected in any of the revertant lines. A 9.7 kbp PstI fragment was found in all of the revertants, but not in the CMS-A1. Neither of those fragments was found in the normal cytoplasm mtDNA. Hybridization studies revealed two sets of multiple homologies: 1) the 4.7 kbp fragment had homology with a 10.9 kbp and a 13.6 kbp fragment; and 2) the 9.7 kbp fragment was homologous with the 13.6 kbp fragment. The presence of those two repeated mitochondrial sequences on the altered fragments suggests that they may be involved in the recombinational associated events with reversion from CMS to fertility in P. americanum.Florida Agricultural Experiment Station Journal Series No.7797.  相似文献   

20.
Cytoplasmic male sterility (CMS) is associated with a mitochondrial mutation that causes an inability to produce fertile pollen. The fertility of CMS plants is restored in the presence of a nuclear-encoded fertility restorer (Rf) gene. In Lead Rice-type CMS, discovered in the indica variety 'Lead Rice', fertility of the CMS plant is restored by the single nuclear-encoded gene Rf2 in a gametophytic manner. We performed map-based cloning of Rf2, and proved that it encodes a protein consisting of 152 amino acids with a glycine-rich domain. Expression of Rf2 mRNA was detected in developing and mature anthers. An RF2-GFP fusion was shown to be targeted to mitochondria. Replacement of isoleucine by threonine at amino acid 78 of the RF2 protein was considered to be the cause of functional loss in the rf2 allele. As Rf2 does not encode a pentatricopeptide repeat protein, unlike a majority of previously identified Rf genes, the data from this study provide new insights into the mechanism for restoring fertility in CMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号