首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Citrullinemia is an autosomal recessive disorder caused by a genetic deficiency of argininosuccinate synthetase (ASS). So far 20 mutations in ASS mRNA have been identified in human classical citrullinemia, including 14 single base changes causing missense mutations in the coding sequence of the enzyme, 4 mutations associated with an absence of exons 5, 6, 7, or 13 in mRNA, 1 mutation with a deletion of the first 7 bases in exon 16 (which is caused by abnormal splicing), and 1 mutation with an insertion of 37 bases between the exon 15 and 16 regions in mRNA. In order to identify the abnormality in the ASS gene causing the exon 7 and 13 deletion mutations and the 37-base insertion mutation between exons 15 and 16 in mRNA, and to establish a DNA diagnostic test, we isolated and sequenced the genomic DNA surrounding each exon. The absence of exon 7 or 13 in ASS mRNA resulted from abnormal splicing caused by a single base change in the intron region: IVS-6–2 (a transition of A to G at the second nucleotide position within the 3 splice cleavage site of intron 6) and IVS-13+5 (a transition of G to A at the fifth nucleotide position within the 5 splice cleavage site of intron 13), respectively. The IVS-6–2 mutation resulted in the creation of an MspI restriction site. DNA diagnostic analysis of 33 Japanese alleles with classical citrullinemia showed that 19 alleles had the IVS-6–2 mutation (over 50% of the mutated alleles in Japanese patients). It was thus confirmed that one mutation is predominant in Japan. This differs from the situation in the USA where there is far greater heterogeneity. The insertion mutation in mRNA on the other hand resulted from abnormal splicing caused by a 13-bp deletion at the splice-junction between exon 15 and intron 15. The deletion had a short direct repeat (CTCAGG) at the breakpoint junction and presumably resulted from slipped mispairing.  相似文献   

2.
Citrullinemia is an autosomal recessive disease caused by deficiency of argininosuccinate synthetase. In order to characterize mutations, RNA was isolated from cultured fibroblasts from 13 unrelated patients with neonatal citrullinemia. Ten mutations were identified by sequencing of amplified cDNA. Seven single base missense mutations were identified: Gly14----Ser, Ser180----Asn, Arg157----His, Arg304----Trp, Gly324----Ser, Arg363----Trp, and Gly390----Arg. Six of these missense mutations involved conversion of a CpG dinucleotide in the sense strand to TpG or CpA, and six of the seven mutations alter a restriction enzyme site in the cDNA. Two mutations were observed in which the sequences encoded by a single exon (exon 7 or 13) were absent from the cDNA. One mutation is a G----C substitution in the last position of intron 15 resulting in splicing to a cryptic splice site within exon 16. There is extreme heterogeneity of mutations causing citrulinemia. This heterogeneity may prove typical for less common autosomal recessive human genetic diseases.  相似文献   

3.
Citrullinemia is an autosomal recessive disease due to the mutations in the argininosuccinate synthetase (ASS) gene. Mutation analysis was performed on three Korean patients with citrullinemia. All of the three patients had the splicing mutation previously reported as IVS6-2A>G mutation. Two had Gly324Ser mutation and the other patient had a 67-bp insertion mutation in exon 15. The IVS6-2A>G mutation was reported to be found frequently in Japanese patients with citrullinemia, but Caucasian patients showed the extreme mutational heterogeneity. Although a limited number of Korean patients were studied, the IVS6-2A>G mutation appears to be one of the most frequent mutant alleles in Korean patients with citrullinemia. The Gly324Ser mutation identified in two patients also suggests the possible high frequency of this mutation in Korean patients as well.  相似文献   

4.
Human pyruvate dehydrogenase (PDH)-complex deficiency is an inborn error of metabolism that is extremely heterogeneous in its presentation and clinical course. In a study of 14 patients (7 females and 7 males), we have found a mutation in the coding region of the E1 alpha gene in all 14 patients. Two female patients had the same 7-bp deletion at nt 927; another female patient had a 3-bp deletion at nt 931. Another female patient was found to have a deletion of exon 6 in her cDNA. Two other female patients were found to have insertions, one of 13 bp at nt 981 and one of 46 bp at nucleotide 1078. Two male patients were found to have a 4-bp insertion at nucleotide 1163. The remaining six patients all had missense mutations. A male patient and a female patient both had an A1133G mutation. The other missense mutations were C214T, C615A, and C787G (two patients). Five of these mutations are novel mutations, five have been previously reported in other patients, and two were published observations in other patients in an E1 alpha-mutation summary. In the four cases where parent DNA was available, only one mother was found to be a carrier of the same mutation as her child.  相似文献   

5.
Propionyl-CoA carboxylase (PCC) is a mitochondrial biotin-dependent enzyme composed of an equal number of alpha and beta subunits. Mutations in the PCCA (alpha subunit) or PCCB (beta subunit) gene can cause the inherited metabolic disease propionic acidemia (PA), which can be life threatening in the neonatal period. Lack of data on the genomic structure of PCCB has been a significant impediment to full characterization of PCCB mutant chromosomes. In this study, we describe the genomic organization of the coding sequence of the human PCCB gene and the characterization of mutations causing PA in a total of 29 unrelated patients-21 from Spain and 8 from Latin America. The implementation of long-distance PCR has allowed us to amplify the regions encompassing the exon/intron boundaries and all the exons. The gene consists of 15 exons of 57-183 bp in size. All splice sites are consistent with the gt/ag rule. The availability of the intron sequences flanking each exon has provided the basis for implementation of screening for mutations in the PCCB gene. A total of 56/58 mutant chromosomes studied have been defined, with a total of 16 different mutations detected. The mutation spectrum includes one insertion/deletion, two insertions, 10 missense mutations, one nonsense mutation, and two splicing defects. Thirteen of these mutations correspond to those not described yet in other populations. The mutation profile found in the chromosomes from the Latin American patients basically resembles that of the Spanish patients.  相似文献   

6.
7.
Autosomal dominant polycystic kidney disease (ADPKD) is a widespread genetic disease that causes renal failure. One of the genes that is responsible for this disease, PKD1, has been identified and characterized. Many mutations of the PKD1 gene have been identified in the Caucasian population. We investigated the occurrence of mutations in this gene in the Japanese population. We analyzed each exon in the 3' single copy region of the gene between exons 35 and 46 in genomic DNA obtained from 69 patients, using a PCR-based direct sequencing method. Four missense mutations (T3509M, G3559R, R3718Q, R3752W), one deletion mutation (11307del61bp) and one polymorphism (L3753L) were identified, and their presence confirmed by allele-specific oligonucleotide (ASO) hybridization. These were novel mutations, except for R3752W, and three of them were identified in more than two families. Mutation analysis of the PKD1 gene in the Japanese population is being reported for the first time.  相似文献   

8.
Maple syrup urine disease (MSUD) is an autosomal recessive disease caused by a deficiency in subunits of the branched-chain α-keto-acid dehydrogenase complex (BCKDH). To characterize the mutations present in five patients with MSUD (four classic and one intermediate), three-step analyses were established: (1) identification of the involved subunit by complementation analysis using three different cell lines derived from homozygotes having E1α, E2β or the E2 mutant gene; (2), screening for a mutation site in cDNA of the corresponding subunit by RT-PCR-SSCP and (3), mutant analysis by sequencing the amplified cDNA fragment. Four single-base missense mutations, R115W, Q1556K, A209T and I282T, were detected in the E1α subunit. A single-base missense mutation H156R and three frame-shift mutations to generate stop codons downstream, including an 11-bp deletion of the tandem repeat in exon 1, a single-base (T) deletion and a single-base (G) insertion, were identified in the E1β subunit gene. All except one (11-bp deletion in E1β (Nobukini, Y., Mitsubuchi, H., Akaboshi, I., Indo, Y., Endo, F., Yoshioka, A. and Matsuda, I. (1991) J. Clin. Invest. 87, 1862–1866)) were novel mutations. The sites of amino-acid substitution were all conserved in other species. Thus, mutations causing MSUD are heterogeneous.  相似文献   

9.
Mutations of two enzyme genes, HPRT1 encoding hypoxanthine guanine phosphoribosyltransferase (HPRT) and PRPS1 encoding a catalytic subunit (PRS-I) of phosphoribosylpyrophosphate synthetase, cause X-linked inborn errors of purine metabolism. Analyzing these two genes, we have identified three HPRT1 mutations in Lesch-Nyhan families following our last report. One of them, a new mutation involving the deletion of 4224 bp from intron 4 to intron 5 and the insertion of an unknown 28 bp, has been identified. This mutation resulted in an enzyme polypeptide with six amino acids deleted due to abnormal mRNA skipping exon 5. The other HPRT1 mutations, a single base deletion (548delT, 183fs189X), and a point mutation causing a splicing error (532+1G>A, 163fs165X) were detected first in Japanese patients but have been reported in European families. On the other hand, in the analysis of PRPS1, no mutation was identified in any patient.  相似文献   

10.
Mutations identified in the hypoxanthine phosphoribosyltransferase (HPRT) gene of patients with Lesch-Nyhan (LN) syndrome are dominated by simple base substitutions. Few hotspot positions have been identified, and only three large genomic rearrangements have been characterized at the molecular level. We have identified one novel mutation, two tentative hot spot mutations, and two deletions by direct sequencing of HPRT cDNA or genomic DNA from fibroblasts or T-lymphocytes from LN patients in five unrelated families. One is a missense mutation caused by a 610C→T transition of the first base of HPRT exon 9. This mutation has not been described previously in an LN patient. A nonsense mutation caused by a 508C→T transition at a CpG site in HPRT exon 7 in the second patient and his younger brother is the fifth mutation of this kind among LN patients. Another tentative hotspot mutation in the third patient, a frame shift caused by a G nucleotide insertion in a monotonous repeat of six Gs in HPRT exon 3, has been reported previously in three other LN patients. The fourth patient had a tandem deletion: a 57-bp deletion in an internally repeated Alu-sequence of intron 1 was separated by 14 bp from a 627-bp deletion that included HPRT exon 2 and was flanked by a 4-bp repeat. This complex mutation is probably caused by a combination of homologous recombination and replication slippage. Another large genomic deletion of 2969 bp in the fifth patient extended from one Alu-sequence in the promoter region to another Alu-sequence of intron 1, deleting the whole of HPRT exon 1. The breakpoints were located within two 39-bp homologous sequences, one of which overlapped with a well-conserved 26-bp Alu-core sequence previously suggested as promoting recombination. These results contribute to the establishment of a molecular spectrum of LN mutations, support previous data indicating possible mutational hotspots, and provide evidence for the involvement of Alu-mediated recombination in HPRT deletion mutagenesis. Received: 21 April 1998 / Accepted: 16 July 1998  相似文献   

11.
12.
宋昉  金煜炜  王红  张玉敏  杨艳玲  张霆 《遗传》2005,27(1):53-56
为探讨中国苯丙酮尿症(PKU)人群中苯丙氨酸羟化酶(PAH)基因外显子7的突变特征,对147例PKU患儿的294个PAH基因外显子7以及两侧部分内含子序列,应用PCR-单链构象多态性(SSCP)分析及基因序列分析的方法进行了筛查和确定。共发现13种突变基因:G239D、R241C、R241fs、R243Q、G247S、G247V、R252Q、L255S、R261Q、M276K、E280G、P281L、Ivs7+2T>A,其中7 种突变基因在中国PKU人群首次发现:G239D 、R241fs 、G247S 、E280G、L255S、R261Q、P281L,前4种在国际上尚未见到报道,并已提交到国际PAH突变数据库(www.pahdb.mcgill.ca)。突变基因的总频率为30.61%(90 /294)。突变涉及了错义、缺失、移码和剪接位点4种突变类型。结果明确了PAH基因外显子7的突变种类和分布等特征,表明外显子7是中国人PAH基因突变的热点区域。 Abstract: To study mutation in exon 7 of the gene for the phenylalanine hydroxylase(PAH), the mutations in exon 7 and flanking sequence of PAH gene were detected by means of SSCP analysis and DNA sequencing, in 147 unrelated Chinese children with phynelketonuria and their parents. Thirteen different mutations, including 11 missense, 1 deletion and 1 splice mutation, were revealed in 90/294 mutant alleles (30.61%). The prevalent mutations were R243Q (22.8%) and Ivs7nt2t->a (2.38%). Seven novel mutations were identified: G239D, R241fsdelG, G247S, E280G, L255S, R261Q, P281L. These new mutations have not been described in Chinese PKU population and the first 4 mutants have not been reported and thus been submitted to www.pahdb,mcgill.ca. The missense was the most common type. The deletion and frameshift mutations were detected for the first time in Chinese PKU population. This study showed the mutation characteristics and their distribution in exon 7 of PAH gene and proved that the exon 7 was the hot region of PAH gene mutation in Chinese PKU population .  相似文献   

13.
14.
15.
Glycogen storage disease (GSD) type 1a (von Gierke disease) is an autosomal recessive disorder caused by a deficiency in microsomal glucose-6-phosphatase (G6Pase). We have identified a novel mutation in the G6Pase gene of a individual with GSD type 1a. The cDNA from the patient's liver revealed a 91-nt deletion in exon 5. The genomic DNA from the patient's white blood cells revealed no deletion or mutation at the splicing junction of intron 4 and exon 5. The 3' splicing occurred 91 bp from the 5' site of exon 5 (at position 732 in the coding region), causing a substitution of a single nucleotide (G to T) at position 727 in the coding region. Further confirmation of the missplicing was obtained by transient expression of allelic minigene constructs into animal cells. Another eight unrelated families of nine Japanese patients were all found to have this mutation. This mutation is a new type of splicing mutation in the G6Pase gene, and 91% of patients and carriers suffering from GSD1a in Japan are detectable with this splicing mutation.  相似文献   

16.
Hermansky-Pudlak syndrome (HPS), consisting of oculocutaneous albinism and a bleeding diathesis due to the absence of platelet dense granules, displays extensive locus heterogeneity. HPS1 mutations cause HPS-1 disease, and ADTB3A mutations cause HPS-2 disease, which is known to involve abnormal intracellular vesicle formation. A third HPS-causing gene, HPS3, was recently identified on the basis of homozygosity mapping of a genetic isolate of HPS in central Puerto Rico. We now describe the clinical and molecular characteristics of eight patients with HPS-3 who are of non-Puerto Rican heritage. Five are Ashkenazi Jews; three of these are homozygous for a 1303+1G-->A splice-site mutation that causes skipping of exon 5, deleting an RsaI restriction site and decreasing the amounts of mRNA found on northern blotting. The other two are heterozygous for the 1303+1G-->A mutation and for either an 1831+2T-->G or a 2621-2A-->G splicing mutation. Of 235 anonymous Ashkenazi Jewish DNA samples, one was heterozygous for the 1303+1G-->A mutation. One seven-year-old boy of German/Swiss extraction was compound heterozygous for a 2729+1G-->C mutation, causing skipping of exon 14, and resulting in a C1329T missense (R396W), with decreased mRNA production. A 15-year-old Irish/English boy was heterozygous for an 89-bp insertion between exons 16 and 17 resulting from abnormal splicing; his fibroblast HPS3 mRNA is normal in amount but is increased in size. A 12-year-old girl of Puerto Rican and Italian background has the 3,904-bp founder deletion from central Puerto Rico on one allele. All eight patients have mild symptoms of HPS; two Jewish patients had received the diagnosis of ocular, rather than oculocutaneous, albinism. These findings expand the molecular diagnosis of HPS, provide a screening method for a mutation common among Jews, and suggest that other patients with mild hypopigmentation and decreased vision should be examined for HPS.  相似文献   

17.
BACKGROUND: Acute intermittent porphyria (AIP), an autosomal dominant inborn error, results from the half-normal activity of the heme biosynthetic enzyme hydroxymethylbilane synthase (EC 4.3.1.8; HMB-synthase). This disease is characterized by acute, life-threatening neurologic attacks that are precipitated by various drugs, hormones, and other factors. The enzymatic and/or biochemical diagnosis of AIP heterozygotes is problematic; therefore, efforts have focused on the identification of HMB-synthase mutations so that heterozygotes can be identified and educated to avoid the precipitating factors. In Spain, the occurrence of AIP has been reported, but the nature of the HMB-synthase mutations causing AIP in Spanish families has not been investigated. Molecular analysis was therefore undertaken in nine unrelated Spanish AIP patients. MATERIALS AND METHODS: Genomic DNA was isolated from affected probands and family members of nine unrelated Spanish families with AIP. The HMB-synthase gene was amplified by long-range PCR and the nucleotide sequence of each exon was determined by cycle sequencing. RESULTS: Three new mutations, a missense, M212V; a single base insertion, g4715insT; and a deletion/insertion, g7902ACT-->G, as well as five previously reported mutations (G111R, R116W, R149X R167W, and R173W) were detected in the Spanish probands. Expression of the novel missense mutation M212V in E. coli revealed that the mutation was causative, having <2% residual activity. CONCLUSIONS: These studies identified the first mutations in the HMB-synthase gene causing AIP in Spanish patients. Three of the mutations were novel, while five previously reported lesions were found in six Spanish families. These findings enable accurate identification and counseling of presymptomatic carriers in these nine unrelated Spanish AIP families and further demonstrate the genetic heterogeneity of mutations causing AIP.  相似文献   

18.
19.
NPC1 gene mutations in Japanese patients with Niemann-Pick disease type C   总被引:3,自引:0,他引:3  
Complementary and genomic DNAs isolated from the fibroblasts of 10 Japanese (7 late infantile, 2 juvenile, and 1 adult form of the disease) and one Caucasian patient with Niemann-Pick disease type C were analyzed for mutations in the NPC1 gene. Fourteen novel mutations were found including small deletions and point mutations. A one-base deletion and a point mutation caused splicing errors. The mutations were not clustered in any particular region of the gene and were found both in and out of the transmembrane domains. Three patients were homozygous, five were compound heterozygous, and the remaining three were suspected of being compound hetrozygous with an unknown error in one of their NPC1 alleles. Of the 14 mutations, the G1553A substitution that caused a splicing error of exon 9 appeared to be relatively common in Japanese patients, because two patients were homozygous and one patient was compound heterozygous for this mutation. Electronic Publication  相似文献   

20.
The mutational status of the tumor suppressor gene TP53 is often examined by immunohistochemistry. We compared the incidence of TP53 mutations in 12 permanent squamous cell carcinoma lines of the head and neck with the immunohistochemical staining obtained with two different antibodies. The mutational status of the TP53 gene was assessed by sequencing the complete coding frame of the TP53 mRNA. All 12 tumor cell lines had TP53 mutations. Six of them showed missense mutations and five had premature stop codons caused either by splicing mutations or nonsense mutations or by exon skipping. One tumor cell line was heterozygous, with a truncating splicing mutation and an additional missense mutation located on different alleles. In one case, an in-frame insertion of 23 extra codons was found. All missense mutations were positive in immunhistochemistry and Western blotting. The truncated p53 was not immunohistochemically detected in three cases with the DO-7 antibody and in five cases with the G59-12 antibody, giving false-negative results in 25% or 40%, respectively, of all tumor cell lines examined. We conclude that splicing mutations are common in squamous cell carcinoma lines and that the incidence of p53 inactiviation by erroneous splicing is higher than yet reported. Sequencing of only the exons of TP53 may miss intronic mutations leading to missplicing and may therefore systematically underestimate the TP53 mutation frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号