首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Placental ribonuclease inhibitor (RI) binds diverse mammalian RNases with dissociation constants that are in the femtomolar range. Previous studies on the complexes of RI with RNase A and angiogenin revealed that RI utilises largely distinctive interactions to achieve high affinity for these two ligands. Here we report a 2.0 angstroms resolution crystal structure of RI in complex with a third ligand, eosinophil-derived neurotoxin (EDN), and a mutational analysis based on this structure. The RI-EDN interface is more extensive than those of the other two complexes and contains a considerably larger set of interactions. Few of the contacts present in the RI-angiogenin complex are replicated; the correspondence to the RI-RNase A complex is somewhat greater, but still modest. The energetic contributions of various interface regions differ strikingly from those in the earlier complexes. These findings provide insight into the structural basis for the unusual combination of high avidity and relaxed stringency that RI displays.  相似文献   

2.
Recent studies have demonstrated that non-coding RNAs (ncRNAs) play important roles during development and evolution. Chicken, the first genome-sequenced non-mammalian amniote, possesses unique features for developmental and evolutionary studies. However, apart from microRNAs, information on chicken ncRNAs has mainly been obtained from computational predictions without experimental validation. In the present study, we performed a systematic identification of intermediate size ncRNAs (50–500 nt) by ncRNA library construction and identified 125 chicken ncRNAs. Importantly, through the bioinformatics and expression analysis, we found the chicken ncRNAs has several novel features: (i) comparative genomic analysis against 18 sequenced vertebrate genomes revealed that the majority of the newly identified ncRNA candidates is not conserved and most are potentially bird/chicken specific, suggesting that ncRNAs play roles in lineage/species specification during evolution. (ii) The expression pattern analysis of intronic snoRNAs and their host genes suggested the coordinated expression between snoRNAs and their host genes. (iii) Several spatio-temporal specific expression patterns suggest involvement of ncRNAs in tissue development. Together, these findings provide new clues for future functional study of ncRNAs during development and evolution.  相似文献   

3.
Johnson RJ  Lavis LD  Raines RT 《Biochemistry》2007,46(45):13131-13140
The evolutionary rate of proteins involved in obligate protein-protein interactions is slower and the degree of coevolution higher than that for nonobligate protein-protein interactions. The coevolution of the proteins involved in certain nonobligate interactions is, however, essential to cell survival. To gain insight into the coevolution of one such nonobligate protein pair, the cytosolic ribonuclease inhibitor (RI) proteins and secretory pancreatic-type ribonucleases from cow (Bos taurus) and human (Homo sapiens) were produced in Escherichia coli and purified, and their physicochemical properties were analyzed. The two intraspecies complexes were found to be extremely tight (bovine Kd = 0.69 fM; human Kd = 0.34 fM). Human RI binds to its cognate ribonuclease (RNase 1) with 100-fold greater affinity than to the bovine homologue (RNase A). In contrast, bovine RI binds to RNase 1 and RNase A with nearly equal affinity. This broader specificity is consistent with there being more pancreatic-type ribonucleases in cows (20) than humans (13). Human RI (32 cysteine residues) also has 4-fold less resistance to oxidation by hydrogen peroxide than does bovine RI (29 cysteine residues). This decreased oxidative stability of human RI, which is caused largely by Cys74, implies a larger role for human RI as an antioxidant. The conformational and oxidative stabilities of both RIs increase upon complex formation with ribonucleases. Thus, RI has evolved to maintain its inhibition of invading ribonucleases, even when confronted with extreme environmental stress. That role appears to take precedence over its role in mediating oxidative damage.  相似文献   

4.
5.
The recent demonstration that a single mammalian receptor protein binds both mannose 6-phosphate (Man-6-P) and insulin-like growth factor II (IGF-II) with high affinity has suggested a multifunctional physiological role for this receptor, possibly including signal transduction. In order to better understand the functions of this receptor, we have investigated the properties of Man-6-P receptors from non-mammalian species. Receptors were affinity-purified from Triton X-100 extracts of total membranes from Xenopus and chicken liver as well as rat placenta using pentamannosyl 6-phosphate-Sepharose. The Man-6-P receptor was adsorbed to the pentamannosyl 6-phosphate-Sepharose and specifically eluted by Man-6-P in all three species, as evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by silver staining. When the purified receptors from these three species were cross-linked to 125I-IGF-II with disuccinimidyl suberate, only receptors isolated from rat membranes were affinity-labeled. To further evaluate the properties of these Man-6-P receptors, binding of 125I-rat-IGF-II and 125I-chicken Tyr-Gly-Thr-Ala-IGF-II to purified receptors from Xenopus, chicken, and rat was evaluated by polyethylene glycol precipitation. Only the rat Man-6-P receptor exhibited detectable binding of 125I-IGF-II. These data suggest that the emergence of a high affinity IGF-II binding site on the Man-6-P receptor occurred in evolution after the divergence of mammals from other vertebrates. Thus, the biological actions of IGF-II in chickens and frogs appear to be initiated by the type I IGF receptor.  相似文献   

6.

Background  

Dicer is an RNase III-ribonuclease that initiates the formation of small interfering RNAs as a defence against genomic parasites such as retrotransposons. Despite intensive characterization in mammalian species, the biological functions of Dicer in controlling retrotransposable elements of the non-mammalian vertebrate are poorly understood. In this report, we examine the role of chicken Dicer in controlling the activity of chicken CR1 retrotransposable elements in a chicken-human hybrid DT40 cell line employing a conditional loss-of-Dicer function.  相似文献   

7.
Cho S  Beintema JJ  Zhang J 《Genomics》2005,85(2):208-220
The RNase A superfamily has been important in biochemical, structural, and evolutionary studies and is believed to be the sole vertebrate-specific enzyme family. To understand the origin and diversification of the superfamily, we here determine its entire repertoire in the sequenced genomes of human, mouse, rat, and chicken. We report a previously unnoticed gene cluster in mouse chromosome 10 and a number of new genes, including mammalian RNases 11-13, which are close relatives of the recently identified RNases 9 and 10. Gene expression data imply male-reproductive functions for RNases 9-13, although their sequences suggest the lack of ribonucleolytic activities. In contrast to the presence of 13-20 functional genes in mammals, chicken has only 3 RNase genes, which are evolutionarily close to mammalian RNase 5, like other nonmammalian RNases. This and other evidence suggests that the RNase A superfamily originated from an RNase 5-like gene and expanded in mammals. Together with the fact that multiple lineages of the superfamily, including RNases 2, 3, 5, and 7, have antipathogenic activities, we suggest that the superfamily started off as a host-defense mechanism in vertebrates. Consistent with this hypothesis, all members of the superfamily exhibit high rates of amino acid substitution as is commonly observed in immunity genes.  相似文献   

8.
An ancestor of avian IgY was the evolutionary precursor of mammalian IgG and IgE, and present day chicken IgY performs the function of human IgG despite having the domain structure of human IgE. The kinetics of IgY binding to its receptor on a chicken monocyte cell line, MQ-NCSU, were measured, the first time that the binding of a non-mammalian antibody to a non-mammalian cell has been investigated (k(+1) = 1.14 +/- 0.46 x 10(5) mol(-1)sec(-1), k(-1) = 2.30 +/- 0.14 x 10(-3) s(-1), and K(a) = 4.95 x 10(7) m(-1)). This is a lower affinity than that recorded for mammalian IgE-high affinity receptor interactions (Ka approximately 10(10) m(-1)) but is within the range of mammalian IgG-high affinity receptor interactions (human: Ka approximately 10(8)-10(9) m(-1) mouse: Ka approximately 10(7)-10(8) m(-1). IgE has an extra pair of immunoglobulin domains when compared with IgG. Their presence reduces the dissociation rate of IgE from its receptor 20-fold, thus contributing to the high affinity of IgE. To assess the effect of the equivalent domains on the kinetics of IgY binding, IgY-Fc fragments with and without this domain were cloned and expressed in mammalian cells. In contrast to IgE, their presence in IgY has little effect on the association rate and no effect on dissociation. Whatever the function of this extra domain pair in avian IgY, it has persisted for at least 310 million years and has been co-opted in mammalian IgE to generate a uniquely slow dissociation rate and high affinity.  相似文献   

9.
The interleukin-1 gene family encodes a group of related proteins that exhibit a remarkable pleiotropy in the context of health and disease. The set of indispensable functions they control suggests that these genes should be found in all eukaryotic species. The ligands and receptors of this family have been primarily characterised in man and mouse. The genomes of most non-mammalian animal species sequenced so far possess all of the IL-1 receptor genes found in mammals. Yet, strikingly, very few of the ligands are identifiable in non-mammalian genomes. Our recent identification of two further IL-1 ligands in the chicken warranted a critical reappraisal of the evolution of this vitally important cytokine family. This review presents substantial data gathered across multiple, divergent metazoan genomes to unambiguously trace the origin of these genes. With the hypothesis that all of these genes, both ligands and receptors, were formed in a single ancient ancestor, extensive database mining revealed sufficient evidence to confirm this. It therefore suggests that the emergence of mammals is unrelated to the expansion of the IL-1 family. A thorough review of this cytokine family in the chicken, the most extensively studied amongst non-mammalian species, is also presented.  相似文献   

10.
Here we report the molecular cloning of the chicken (Gallus gallus) neuropeptide Y (NPY) receptor Y2, the first non-mammalian Y2 receptor. It displays 75-80% identity to mammalian Y2 and has a surprisingly divergent cytoplasmic tail. Expression of the receptor protein in a cell line showed that the receptor did not bind the mammalian Y2 selective antagonist BIIE0246. Furthermore, porcine [Leu(31), Pro(34)]NPY, which binds poorly to mammalian Y2, exhibited an unexpectedly high affinity for chicken Y2. In situ hybridisation revealed expression in the hippocampus. Thus, the chicken Y2 receptor exhibits substantial differences with regard to sequence and pharmacological profile in comparison to mammalian Y2 receptors, while the expression pattern in the central nervous system resembles that observed in mammals.  相似文献   

11.
12.
Chen M  Zou M  Fu B  Li X  Vibranovski MD  Gan X  Wang D  Wang W  Long M  He S 《PloS one》2011,6(7):e21466
The role of RNA-based duplication, or retroposition, in the evolution of new gene functions in mammals, plants, and Drosophila has been widely reported. However, little is known about RNA-based duplication in non-mammalian chordates. In this study, we screened ten non-mammalian chordate genomes for retrocopies and investigated their evolutionary patterns. We identified numerous retrocopies in these species. Examination of the age distribution of these retrocopies revealed no burst of young retrocopies in ancient chordate species. Upon comparing these non-mammalian chordate species to the mammalian species, we observed that a larger fraction of the non-mammalian retrocopies was under strong evolutionary constraints than mammalian retrocopies are, as evidenced by signals of purifying selection and expression profiles. For the Western clawed frog, Medaka, and Sea squirt, many retrogenes have evolved gonad and brain expression patterns, similar to what was observed in human. Testing of retrogene movement in the Medaka genome, where the nascent sex chrosomes have been well assembled, did not reveal any significant gene movement. Taken together, our analyses demonstrate that RNA-based duplication generates many functional genes and can make a significant contribution to the evolution of non-mammalian genomes.  相似文献   

13.
Recently, we identified three types of non-mammalian gonadotropin-releasing hormone receptors (GnRHR) in the bullfrog (designated bfGnRHR-1-3), and a mammalian type-II GnRHR in green monkey cell lines (denoted gmGnRHR-2). All these receptors responded better to GnRH-II than GnRH-I, while mammalian type-I GnRHR showed greater sensitivity to GnRH-I than GnRH-II. In the present study, we designed new GnRH-II analogs and examined whether they activated or inhibited non-mammalian and mammalian type-II GnRHRs. [D-Ala6]GnRH-II, with D-Ala substituted for Gly6 in GnRH-II, increased inositol phosphate (IP) production in cells stably expressing non-mammalian GnRHRs more effectively than native GnRH-II. However, it exhibited lower activity for mammalian type-I GnRHR than GnRH-I itself. Trptorelix-1, a GnRH-II antagonist, inhibited GnRH-induced IP production in cells expressing non-mammalian GnRHRs more effectively than Cetrorelix, a GnRH-I antagonist. Trptorelix-1, however, had lower potency for mammalian type-I GnRHR than Cetrorelix. Ligand-receptor binding assays revealed that [D-Ala6]GnRH-II and Trptorelix-1 have higher affinities for non-mammalian GnRHRs but lower affinities for mammalian type-I GnRHR than GnRH-II and Cetrorelix, respectively. Moreover, [D-Ala6]GnRH-II and Trptorelix-1 had a higher affinity for gmGnRHR-2 than GnRH-II and Cetrorelix, respectively. These results indicate that [D-Ala6]GnRH-II and Trptorelix-1 are highly effective agonist and antagonist, respectively, for non-mammalian and type-II mammalian GnRHRs.  相似文献   

14.

Background  

A fundamental question in comparative genomics concerns the identification of mechanisms that underpin chromosomal change. In an attempt to shed light on the dynamics of mammalian genome evolution, we analyzed the distribution of syntenic blocks, evolutionary breakpoint regions, and evolutionary breakpoints taken from public databases available for seven eutherian species (mouse, rat, cattle, dog, pig, cat, and horse) and the chicken, and examined these for correspondence with human fragile sites and tandem repeats.  相似文献   

15.
The luminal surface of the chemosensory epithelia of the main olfactory organ of terrestrial vertebrates is covered by a layer of fluid. The source of this fluid layer varies among vertebrates. Little is known regarding the relative development of the sources of fluid (sustentacular cells and Bowman's glands) in reptiles, especially in gekkotan lizards (despite recent assertions of olfactory speciality). This study examined the extent and morphology of the main olfactory organ in several Australian squamate reptiles, including three species of gekkotans, two species of skinks and one snake species. The olfactory mucosa of two gekkotan species (Christinus marmoratus and Strophurus intermedius) is spread over a large area of the nasal cavity. Additionally, the sustentacular cells of all three gekkotan species contained a comparatively reduced number of secretory granules, in relation to the skinks or snake examined. These observations imply that the gekkotan olfactory system may function differently from that of either skinks or snakes. Similar variation in secretory granule abundance was previously noted between mammalian and non-mammalian olfactory sustentacular cells. The observations in gekkotans suggests that the secretory capacity of the non-mammalian olfactory sustentacular cells show far more variation than initially thought.  相似文献   

16.
Inshore common bottlenose dolphins (Tursiops truncatus) are exposed to a broad spectrum of natural and anthropogenic stressors. In response to these stressors, the mammalian adrenal gland releases hormones such as cortisol and aldosterone to maintain physiological and biochemical homeostasis. Consequently, adrenal gland dysfunction results in disruption of hormone secretion and an inappropriate stress response. Our objective herein was to develop diagnostic reference intervals (RIs) for adrenal hormones commonly associated with the stress response (i.e., cortisol, aldosterone) that account for the influence of intrinsic (e.g., age, sex) and extrinsic (e.g., time) factors. Ultimately, these reference intervals will be used to gauge an individual’s response to chase-capture stress and could indicate adrenal abnormalities. Linear mixed models (LMMs) were used to evaluate demographic and sampling factors contributing to differences in serum cortisol and aldosterone concentrations among bottlenose dolphins sampled in Sarasota Bay, Florida, USA (2000–2012). Serum cortisol concentrations were significantly associated with elapsed time from initial stimulation to sample collection (p<0.05), and RIs were constructed using nonparametric methods based on elapsed sampling time for dolphins sampled in less than 30 minutes following net deployment (95% RI: 0.91–4.21 µg/dL) and following biological sampling aboard a research vessel (95% RI: 2.32–6.68 µg/dL). To examine the applicability of the pre-sampling cortisol RI across multiple estuarine stocks, data from three additional southeast U.S. sites were compared, revealing that all of the dolphins sampled from the other sites (N = 34) had cortisol concentrations within the 95th percentile RI. Significant associations between serum concentrations of aldosterone and variables reported in previous studies (i.e., age, elapsed sampling time) were not observed in the current project (p<0.05). Also, approximately 16% of Sarasota Bay bottlenose dolphin aldosterone concentrations were below the assay’s detection limit (11 pg/mL), thus hindering the ability to derive 95th percentile RIs. Serum aldosterone concentrations from animals sampled at the three additional sites were compared to the detection limit, and the proportion of animals with low aldosterone concentrations was not significantly different than an expected prevalence of 16%. Although this study relied upon long-term, free-ranging bottlenose dolphin health data from a single site, the objective RIs can be used for future evaluation of adrenal function among individuals sampled during capture-release health assessments.  相似文献   

17.
Comparison of spectrin isolated from erythroid and non-erythroid sources   总被引:13,自引:0,他引:13  
Spectrin from erythrocytes and two other tissues (brain and intestine) were isolated from two distant species, pig and chicken; some structural and functional properties were compared. A quantitative antibody inhibition assay was used to determine that antibodies to mammalian red cell spectrin cross-react very poorly, if at all, with their non-erythroid (brain) counterpart and similarly antibodies to pig brain spectrin (fodrin) cross-react very weakly with erythroid spectrin. By contrast, antibodies which were directed against the 240000-Mr subunit of avian fodrin were completely inhibited with avian spectrin and vice versa. To analyze the structural relatedness of these molecules further we compared the chymotryptic iodinated peptide maps generated from each individual subunit. Consistent with the antibody results, we find little (less than 10%) homology between peptides derived from mammalian fodrin and spectrin, but complete homology (100%) of the peptides derived from the 240000-Mr subunits of chicken fodrin, spectrin and another related molecule from intestine, TW260/240. Whereas the peptide maps of fodrin (brain spectrin) revealed striking similarity between divergent species, suggesting a high degree of structural conservation, the peptide maps of erythrocyte spectrin was highly variable between species, indicating that it has diverged considerably in mammalian evolution. In addition we have compared a functional activity of mammalian spectrins, the ability to bind calmodulin, using two different assays. Both results show that, whereas fodrin-calmodulin interaction can be readily demonstrated, the binding to mammalian erythroid spectrin is negligible. This suggests that the high-affinity calmodulin site present on fodrin has been lost from spectrin in mammalian evolution.  相似文献   

18.
19.
Immunoglobulin Y (IgY) is central to our understanding of immunoglobulin evolution. It has links to antibodies from the ancestral IgM to the mucosal IgX and IgA, as well as to mammalian serum IgG and IgE. IgY is found in amphibians, birds and reptiles, and as their most abundant serum antibody, is orthologous to mammalian IgG. However, IgY has the same domain architecture as IgM and IgE, lacking a hinge region and comprising four heavy‐chain constant domains. The relationship between IgY and the mucosal antibodies IgX and IgA is discussed herein, in particular the question of how IgA could have contributed to the emergence of IgY. Although IgY does not contain a hinge region, amphibian IgF and duck‐billed platypus IgY/O, which are closely related to IgY, do contain this region, as does mammalian IgG, IgA and IgD. A hinge region must therefore have evolved at least three times independently by convergent evolution. In the absence of three‐dimensional structural information for the complete Fc fragment of chicken IgY (IgY‐Fc), it remains to be discovered whether IgY displays the same conformational properties as IgM and IgE, which exhibit substantial flexibility in their Fc regions. IgY has three characterised Fc receptors, chicken Ig‐like receptor AB1 (CHIR‐AB1), the chicken yolk sac IgY receptor (FcRY) and Gallus gallus Fc receptor (ggFcR). These receptors bind to IgY at sites that are structurally homologous to mammalian counterparts; IgA/FcαRI for CHIR‐AB1, IgG/FcRn for FcRY and IgE/Fc?RI and IgG/FcγR for ggFcR. These resemblances reflect the close evolutionary relationships between IgY and IgA, IgG and IgE. However, the evolutionary distance between birds and mammals allows for the ready generation of IgY antibodies to conserved mammalian proteins for medical and biotechnological applications. Furthermore, the lack of reactivity of IgY with mammalian Fc receptors, and the fact that large quantities of IgY can be made quickly and cheaply in chicken eggs, offers important advantages and considerable potential for IgY in research, diagnostics and therapeutics.  相似文献   

20.
Plasma magnesium in at least five mammalian species (humans, rat, dog, sheep, cattle) is in the form of a complex, separable from ionic magnesium and plasma protein by size exclusion chromatography on Sephadex G-10. Plasma magnesium in three non-mammalian vertebrates (toads, trout, chicken) behaves similarly to ionic magnesium or as a very small magnesium complex on Sephadex G-10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号