首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifty-two 2-benzoylaminobenzoate analogs were synthesized and subjected to anti-platelet aggregation assay using arachidonic acid (AA), collagen (Col), thrombin (Thr), and U46619 as inducers. The results revealed that most of 2-benzoylaminobenzoic acid derivatives showed a selectively inhibitory effect on AA-induced platelet aggregation. As a result of the 2-benzoylaminobenzoic acid derivatives (18, 44, and 46), there were no inhibitory effects on platelet aggregation induced by U46619, but these elicited an inhibitory effect on thromboxane B(2) formation at 1.0microM. These 2-benzoylaminobenzoate analogs were therefore proposed as cyclooxygenase inhibitors.  相似文献   

2.
血小板聚集的药理性解聚   总被引:1,自引:0,他引:1  
潘家绮  张之南 《生理学报》1989,41(5):482-488
在进行中的不可逆聚集的富血小板血浆(PRP)中,加入不同浓度的解聚剂,测定其解聚程度。以一系列作用机制不同的血小板解聚剂对ADP、胶原、花生四烯酸、U_(46619)(血栓素A_2类似物)、PAF所诱发的血小板聚集的拮抗作用的结果显示,血小板聚集作用得以维持是一个复杂的过程,涉及多种机制的参与,并和促聚剂种类有关。维持ADP诱发的聚集,需要外源性Ca~(2 )及细胞内Ca~(2 )的动员。PAF U_(46619)和花生四烯酸诱发的聚集作用的维持也需要细胞内钙的动员。但是胶原诱发的聚集作用的维持,有除Ca~(2 )、ADP以外的其他途径。维持持续的聚集并不依赖于血小板TXA_2(血栓素A_2)的持续合成,钙调节蛋白在血小板的持续聚集中起重要作用。钙调蛋白抑制剂都是有效的血小板解聚剂。各种血小板解聚剂的拮抗效果取决于(1) 采用促聚剂的种类、(2) 加入解聚剂时血小板聚集的时相、(3) 解聚剂的种类。  相似文献   

3.
Leech saliva is shown to contain protein platelet aggregation inhibitors and a range of selective low molecular weight (LMW) aggregation inhibitors. Gel filtration on Bio-Gel P-2 (cut-off kDa) yields a protein fraction (Fr. I) and three LMW fractions. Fr. I inhibits aggregation induced by collagen, ADP, epinephrine and arachidonic acid. Of all the fractions, only one, Fr. II (LMW) specifically inhibits aggregation induced by platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine). Fr. II also inhibits thrombin-induced platelet aggregation. Fr. III inhibits aggregation induced by ADP, epinephrine and arachidonic acid, and Fr. IV only that induced by arachidonic acid. Fr. II also inhibits PAF- and thrombin-induced thromboxane generation in platelets, but does not inhibit arachidonic acid-induced thromboxane generation. Efforts to separate the anti-PAF from the anti-thrombin activity have been unsuccessful. The inhibition may therefore be due to a single inhibitor, though it may also be due to several inhibitors. Fr. II also inhibits superoxide anion production in formyl Met-Leu-Phe (fMLP)- and ionophore 23187- stimulated neutrophils. This may be due to the inhibition of the effects of PAF generated within the cell. Preliminary results suggest that the Fr. II inhibitor(s) is (are) amphipathic. The interaction of platelets with PAF and their interaction with the inhibitor(s) are mutually exclusive, and the inhibition may be competitive.  相似文献   

4.
The in vitro effect of 2-(diethylamino)-7-ethoxychromone (RC39XVIII) on human platelet aggregation induced by several agonists and on thromboxane B2 formation, granule release and intracellular cAMP elevation has been studied. The chromosome-derivative exerts a dose-dependent inhibitory effect on aggregation produced by U46619, arachidonic acid, thrombin, collagen and ADP. RC39XVIII inhibits aggregation, TxB2 formation and granule release in parallel. Moreover the drug potentiates cAMP accumulation induced by iloprost and forskolin. The drug also inhibits soluble cAMP phosphodiesterase in a dose-dependent manner. No effect on adenylate cyclase activity measured in platelet membranes was evident.  相似文献   

5.
The action of phospholipases A2 and C in the course of collagen-stimulated platelet activation and the effect of cytochalasins on the responses were studied. Stimulation of human platelets with collagen was accompanied by aggregation, Ca2+ mobilization, inositol phosphate formation, and arachidonic acid release. However, in the presence of a cyclooxygenase inhibitor or a thromboxane A2 (TXA2) receptor antagonist, collagen induced only weak arachidonic acid release and weak inositol phosphate formation. The TXA2 mimetic agonist U46619 induced all the responses except for arachidonic acid release, which was induced by synergistic action of collagen and U46619. The result that U46619 did not induce arachidonic acid release despite the activation of phospholipase C suggested that arachidonic acid was not released via phospholipase C but by phospholipase A2. These findings suggested that collagen initially induced weak activation of phospholipases A2 and C and that further activation of phospholipase C as well as Ca2+ mobilization and aggregation were induced by TXA2, whereas further activation of phospholipase A2 required the synergistic action of collagen and TXA2. Platelets pretreated with cytochalasins did not respond to collagen. Further analysis revealed that the initial activation of phospholipases A2 and C was specifically inhibited by cytochalasins, but the responses induced by U46619 or a synergistic action of collagen and U46619 were not inhibited. Therefore, we proposed that interaction of collagen receptor with actin filaments might have some roles in the collagen-induced initial activation of phospholipases.  相似文献   

6.
cis- and trans-unsaturated fatty acids with 18 carbon atoms (oleic, linoleic, elaidic and linolelaidic acid) inhibited aggregation of washed rabbit platelets stimulated with collagen, arachidonic acid and U46619 when in the same concentration ranges. Thrombin-induced aggregation was not affected by any of them. Saturated fatty acid (stearic acid) had no effect on this response. The inhibition is independent of the induced change in membrane fluidity, since trans-isomers could not induce the change in fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. Unsaturated fatty acids, except linoleic acid, did not interfere with the formation of thromboxane B2 from exogenously added arachidonic acid. All the unsaturated fatty acids only slightly inhibited the arachidonic acid liberation by phospholipase A2 in platelet lysate. This indicates that the unsaturated fatty acids may block a process after formation of thromboxane A2 in response to collagen and arachidonic acid. The increase in phosphatidic acid formation stimulated with U46619 was inhibited dose dependently by each of the unsaturated fatty acids but that stimulated with thrombin was not affected by any of them. Phospholipase C activity measured by diacylglycerol formation in unstimulated platelet lysate was not inhibited by the fatty acids. The elevation of cytosolic free Ca2+ induced by arachidonic acid or U46619 and Ca2+ influx by collagen were inhibited almost completely at the same concentration as that which inhibited their aggregation. These data suggest that the unsaturated fatty acids were intercalated into the membrane and inhibited collagen- and arachidonic acid-induced platelet aggregation by causing a significant suppression of the thromboxane A2-mediated increase in cytosolic free Ca2+, probably due to interference with the receptor-operated Ca2+ channel.  相似文献   

7.
Effects and the mechanism of the antiplatelet actions of beclobrinic acid, free acid form of a new hypolipidemic agent beclobrate [(+)-2-[d-(P-chlorophenyl)p-tolyl)oxy)-2-methyl-butyrate), were examined using human platelets. Platelet-rich plasma (PRP) which has been prelabeled with (14C)-serotonin was incubated with beclobrinic acid (BBA) for one minute before the addition of various agonists. BBA (0.1-1.5 mM) inhibited platelet aggregation and serotonin secretion induced by ADP, epinephrine, arachidonic acid and collagen in a concentration dependent manner. BBA also inhibited arachidonic acid-induced production of malondialdehyde (MDA), a byproduct of prostaglandins, in a concentration dependent manner. However, up to 1.0 mM BBA did not inhibit platelet aggregation induced by U46619, a stable analog of prostaglandin H2. In other experiments BBA also blocked thrombin-induced release of (3H)-arachidonic acid from platelet phospholipids. These findings suggest that: (a) BBA inhibits platelet aggregation and serotonin secretion by inhibiting prostaglandin synthesis at two steps. First by interfering in the release of arachidonic acid from platelet phospholipids and second by inhibiting its conversion into prostaglandins; and (b) BBA does not inhibit the action of prostaglandins on human platelets.  相似文献   

8.
A collagen-binding glycoprotein was isolated from human platelets using affinity chromatography of immobilized collagen. Based upon characterizations of this protein we confirmed that it was identical to the propolypeptide of von Willebrand factor (pp-vWF), which is also called von Willebrand antigen II. The characteristics we have investigated are molecular weight, existence of carbohydrate chains, and the NH2-terminal amino acid sequence. pp-vWF has strong affinity to collagen and inhibits collagen-induced aggregation of human platelets at a concentration as low as 2 micrograms/ml even in the presence of plasma. This inhibitory effect is specific for collagen-induced aggregation since it does not inhibit aggregation of platelets induced by other agonists such as ADP, arachidonic acid, platelet-activating factor, ionophore A23187, and ristocetin. As pp-vWF is quickly released from platelets upon activation by various agonists, it is possible that pp-vWF functions as a repressor for excess platelet aggregation induced by collagen and constitutes a negative feed-back mechanism. Considering the fact that mature vWF supports platelet adhesion to subendothelium, present observations suggest that the propeptide portion and the mature protein could have opposing effects on hemostasis.  相似文献   

9.
The inhibitory mechanism of high levels of exogenously added arachidonic acid on activation of washed human platelets was investigated. While low levels of arachidonic acid (5-10 microM) induced aggregation, ATP secretion and increase in cytoplasmic free Ca2+ concentration (first phase of activation), these platelet responses did not occur significantly at high concentrations (30-50 microM). However, much higher concentrations than 80 microM again elicited these responses (second phase). The first phase of platelet activation was inhibited by cyclooxygenase inhibitor, indomethacin, whereas the second one was independent of such treatment. Thromboxane B2 was produced dose-dependently until reaching a plateau at arachidonic acid concentrations higher than 20 microM, irrespective of the lack of aggregation and secretion at high concentrations. After that the amount of free arachidonic acid which remained unmetabolized in platelets gradually increased. High concentrations of arachidonic acid as well as other polyunsaturated fatty acids caused desensitization of platelets in response to U46619, and also depressed the specific [3H]U46619-binding to the receptor as well as other polyunsaturated fatty acids. The amount free arachidonic acid needed in platelets to suppress [3H]U46619 binding corresponded to that needed to inhibit platelet aggregation. Furthermore, arachidonic acid dose-dependently induced fluidization of lipid phase of platelet membranes as detected by 1,6-diphenyl-1,3,5-hexatriene. These results suggest that the inhibition of platelet response by high levels of arachidonic acid can be attributed to interference with endoperoxide/thromboxane A2 binding to the receptor, probably due to perturbation of the membrane lipid phase due to excess amounts of free arachidonic acid remaining in the membranes.  相似文献   

10.
Clausine-D inhibited concentration-dependently the aggregation and release of washed rabbit platelets induced by arachidonic acid and collagen, without affecting those induced by U46619, PAF and thrombin. The IC50 values of clausine-D on arachidonic acid-and collagen-induced platelet aggregation were calculated to be 9.0±1.1 and 58.9±0.9 μM, respectively. Thromboxane B2 and prostaglandin D2 formation in platelets caused by arachidonic acid were also suppressed. Clausine-D inhibited increased intracellular concentration of calcium in platelets caused by arachidonic acid and collagen, and also abolished the generation of inositol monophosphate caused by arachidonic acid, but not that by collagen U46619, PAF and thrombin. In human citrated platelet-rich plasma, clausine-D inhibited the secondary phase, but not the primary phase, of aggregation induced by epinephrine and ADP. These results indicate that the antiplatelet effect of clausine-D is due to inhibition of the formation of thromboxane A2.  相似文献   

11.
Two sulphoxides (2,3,5-trithiahexane 5-oxide and 2,4,5,7-tetrathiaoctane 2-oxide), three novel sulphones [S-(methylthiomethyl)methanesulfonothioate, methylthio(methylthio-methyl)sulfone, 2,3,5,7-tetrathiaoctane3,3-dioxide] and four known sulphones [methylsulphonylmethylthiomethane, methylmethanethiosulfonate, bis-methyl-sulphonylmethane, and bis-(methylthiomethyl)sulfone] were isolated from the bark extracts of Scorodophloeus zenkeri Harms. The structures were determined by spectral methods, essentially MS and NMR experiments.  相似文献   

12.
The inhibitory effects of four acidamides, piperine, pipernonaline, piperoctadecalidine, and piperlongumine, isolated from the fruits of Piper longum L. on washed rabbit platelet aggregation were examined. All of the four tested acidamides showed dose-dependent inhibitory activities on washed rabbit platelet aggregation induced by collagen, arachidonic acid (AA), and platelet-activating factor (PAF), except for that induced by thrombin. Piperlongumine, in particular, showed stronger inhibitory effects than other acidamides to rabbit platelet aggregation induced by collagen, AA and PAF.  相似文献   

13.
We investigated the effects of a stable prostacyclin analogue, carbacyclin, on the interaction of platelets with collagen substrates differing in their ability to activate platelets: human collagens type I, III, IV and V (CI, CIII, CIV and CV), and commercial calf skin collagen type I (CSC). The total adhesion was measured using 51Cr-labelled platelets, and quantitative morphometry of adherent platelets was performed by scanning electron microscopy (SEM). Carbacyclin in the concentrations inducing a 10-fold rise in platelet cAMP did not affect the adhesion of platelets to weak substrates, CV and CSC, but reduced the adhesion to strong substrates, CIV (by 49%) and CI/CIII (by 78%), which stimulated massive spreading and formation of surface-bound aggregates respectively. Carbacyclin inhibited all morphological manifestations of platelet activation associated with adhesion: conversion of native discoid platelets to spherical ones on CSC; massive spreading on CIV; and aggregate formation on CI/CIII. Massive spreading and aggregation on a weak substrate (CSC) stimulated by arachidonic acid and thrombin was also inhibited by carbacyclin. Under the same concentration of agonists aggregation of platelets was more sensitive to the action of carbacyclin, than spreading. Strong collagen substrates CI, CIII and CIV, but not CV and gelatin, inhibited the carbacyclin-induced rise in platelet cAMP.  相似文献   

14.
We have isolated and characterized EMS16, a potent and selective inhibitor of the alpha2beta1 integrin, from Echis multisquamatus venom. It belongs to the family of C-lectin type of proteins (CLPs), and its amino acid sequence is homologous with other members of this protein family occurring in snake venoms. EMS16 (M(r) approximately 33K) is a heterodimer composed of two distinct subunits linked by S-S bonds. K562 cells transfected with alpha2 integrin selectively adhere to immobilized EMS16, but not to two other snake venom-derived CLPs, echicetin and alboaggregin B. EMS16 inhibits adhesion of alpha2beta1-expressing cells to immobilized collagen I at picomolar concentrations, and the platelet/collagen I interaction in solution at nanomolar concentrations. EMS16 inhibits binding of isolated, recombinant I domain of alpha2 integrin to collagen in an ELISA assay, but not the interaction of isolated I domain of alpha1 integrin with collagen IV. Studies with monoclonal antibodies suggested that EMS16 binds to the alpha2 subunit of the integrin. EMS16 inhibits collagen-induced platelet aggregation, but has no effect on aggregation induced by other agonists such as ADP, thromboxane analogue (U46619), TRAP, or convulxin. EMS16 also inhibits collagen-induced, but not convulxin-induced, platelet cytosolic Ca(2+) mobilization. In addition, EMS16 inhibits HUVEC migration in collagen I gel. In conclusion, we report a new, potent viper venom-derived inhibitor of alpha2beta1 integrin, which does not belong to the disintegrin family.  相似文献   

15.
To facilitate feeding, certain hematophagous invertebrates possess inhibitors of collagen-induced platelet aggregation in their saliva. However, their mechanisms of action have not been fully elucidated. Here, we describe two major salivary proteins, triplatin-1 and -2, from the assassin bug, Triatoma infestans, which inhibited platelet aggregation induced by collagen but not by other agents including ADP, arachidonic acid, U46619 and thrombin. Furthermore, these triplatins also inhibited platelet aggregation induced by collagen-related peptide, a specific agonist of the major collagen-signaling receptor glycoprotein (GP)VI. Moreover, triplatin-1 inhibited Fc receptor gamma-chain phosphorylation induced by collagen, which is the first step of GPVI-mediated signaling. These results strongly suggest that triplatins target GPVI and inhibit signal transduction necessary for platelet activation by collagen. This is the first report on the mechanism of action of collagen-induced platelet aggregation inhibitors from hematophagus invertebrates.  相似文献   

16.
Kuo RY  Chang FR  Chen CY  Teng CM  Yen HF  Wu YC 《Phytochemistry》2001,57(3):421-425
Bioassay-directed fractionation of the stems of Rollinia mucosa led to the isolation of new N-methoxycarbonyl aporphine alkaloids, romucosine A (1), romucosine B (2), romucosine C (3), and romucosine D (4), along with the known alkaloid, N-methoxylcarbonyl-nornuciferine (5). Alkaloids 1 and 4 exhibited significant inhibition of collagen, arachidonic acid, and platelet activating factor-induced platelet aggregation, and alkaloid 3 also showed an inhibitory effect on arachidonic acid induced platelet aggregation.  相似文献   

17.
Only tetraprenol (n = 4), among the (n)-polyprenols studied, induced activation of rabbit platelets. Tetraprenol-induced responses, including platelet aggregation, Ca2+ mobilization, inositol phosphate formation, and arachidonic acid release, were greatly inhibited by a thromboxane A2 (TXA2) receptor antagonist and a cyclooxygenase inhibitor, indicating an essential role for endogenously produced TXA2. The TXA2-mimetic agonist U46619 induced platelet aggregation, Ca2+ mobilization and phospholipase C action but did not induce arachidonic acid release. These results suggest that arachidonic acid is not released via phospholipase C but by phospholipase A2, and this is also supported by the finding that phospholipase C action was inhibited by depletion of extracellular Ca2+, while arachidonic acid release was not. Full arachidonic acid release was found to be induced by the synergistic action of U46619 and tetraprenol. Therefore, the initial, most essential response induced by tetraprenol is a small arachidonic acid release by phospholipase A2, which results in initial TXA2 formation. Further action of phospholipase C as well as Ca2+ mobilization and aggregation were induced by the initially formed TXA2 while further activation of phospholipase A2 required the synergistic action of tetraprenol and TXA2.  相似文献   

18.
The aim of our study was to evaluate the effects of thromboxane A2 (TXA2) agonist, U-46619, on systemic circulatory parameters in the pigs before and after administration of a novel TXA2 receptor antagonist and synthase inhibitor (BM-573). Twelve anesthetized pigs were randomly assigned in two groups: in Ago group (n=6), the animals received six consecutive injections of U-46619 at 30 min interval, while in Anta group (n=6) they received an increasing dosage regimen of BM-573 10 min before each U-46619 injection. The effects of each dose of BM-573 on ex vivo platelet aggregation induced by arachidonic acid, collagen or ADP were also evaluated. Vascular properties such as characteristic impedance, peripheral resistance, compliance, arterial elastance were estimated using a windkessel model. Intravenous injections of 0.500 mg/ml of BM-573 and higher doses resulted in a complete inhibition of platelet aggregation induced by arachidonic acid. In the same conditions, BM-573 completely blocked the increase of arterial elastance, and stabilized both mean aortic blood pressure and mean systemic blood flow. In conclusion, BM-573 could therefore be a promising therapeutic approach in pathophysiological states where TXA2 plays a main role in the increase of vascular resistance like in pathologies such as systemic hypertension.  相似文献   

19.
S-(1,2-Dicarboxyethyl)glutathione (DCE-GS) found in animal tissues or baker's yeast showed strong inhibitory effects on blood coagulation and platelet aggregation. The inhibitory effect of blood coagulation was almost the same as those of EDTA, oxalate, and citrate. DCE-GS did not show chelating activity. As for ADP- or thrombin-induced platelet aggregations, DCE-GS exerted a potent effect on the secondary aggregation, while it was less active in the primary aggregation. DCE-GS gave a distinct lag period in the time course of the secondary aggregation induced by collagen and inhibited most strongly the aggregation induced by arachidonic acid compared with those elicited by ADP, thrombin, and collagen. The peptide, however, did not inhibit the platelet aggregation induced by 12-O-tetradecanoylphorbol-13-acetate. Although both DCE-GS and EDTA inhibited the platelet aggregation which was triggered by ADP, their inhibitory manners were entirely different.  相似文献   

20.
In human platelet-rich plasma (PRP) eicosapentaenoic acid (EPA) inhibited platelet aggregation induced by a stable analogue of PGH2 (U46619), arachidonic acid, collagen or ADP. EPA was more potent than oleic, linoleic, α-linolenic or γ-linolenic acids. In aspirin-treated platelets, aggregation induced by U46619 was inhibited to a similar extent by arachidonic acid or by EPA over a range of concentrations of 0.05–0.3 mM. EPA incubated with PRP did not induce the generation of a thromboxane (TXA)-like activity; indeed it prevented the formation of TXA2 induced by arachidonic acid or by collagen. The anti-aggregatory activity of EPA was not influenced by inhibitors of cyclo-oxygenase and lipoxygenase. The anti-aggregatory action of EPA may be caused by a rapid occupancy by EPA of TXA2/PGH2 “receptors” on platelet membrane as well as by a slower displacement of arachidonic acid from platelet phospholipids by chemically unchanged molecules of EPA.Not all samples of PRP were irreversibly aggregated by PGH2, but in those that were, PGH3 also induced an immediate dose-dependent but reversible aggregation. After a 4 min incubation of non-aggregating doses of PGH2 or PGH3 (100–300 nM) with PRP a stable anti-aggregatory compound was detected. The inhibitory activity produced from PGH3 was apparently more potent (ca 10 times) than that obtained from PGH2. The anti-aggregating compounds were identified by TLC and GLC-MS as PGD2 and PGD3. The apparent difference of potency between PGD2 and PGD3 was attributed to the concurrent production of PGE2 and PGE3. PGE2 prevented the inhibitory effect of PGD2 whereas PGE3 did not affect the activity of PGD3.It is concluded that one of the reasons for the low incidence of myocardial infarction in Eskimos could be that the pro-aggregatory arachidonic acid is replaced in their phospholipids by the anti-aggregatory EPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号