首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of aluminum (Al) on root elongation, the mechanical extensibility of the cell wall, and the amount of cell-wall polysaccharides in the roots of Al-resistant (Atlas 66) and Al-sensitive (Scout 66) cultivars of wheat ( Triticum aestivum L.) were examined. Exposure to 10 μ M AlCl3 for 6 h inhibited root elongation in Scout 66 but not in Atlas 66. It also decreased the mechanical extensibility of the cell wall in the roots of both cultivars, but prominently only in the roots of Scout 66. The amount of hemicellulose in the 10-mm region of root apex of Scout 66 was increased by the exposure to Al, especially in the apical regions. Al did not influence the neutral sugar composition of either pectin or hemicellulose in Scout 66 roots. However, Al increased the weight-average molecular mass of hemicellulosic polysaccharides and the amounts of wall-bound ferulic and diferulic acids in Scout 66 roots. These findings suggest that Al modifies the metabolism of cell-wall components and thus makes the cell wall thick and rigid, thereby inhibiting the growth of wheat roots.  相似文献   

2.
The changes in osmotic potential and the concentration of osmotic solutes in the cell sap of the root tips exposed to Al were examined in two cultivars of wheat ( Triticum aestivum ) differing in Al resistance. Root elongation was less influenced by an 8-h exposure to 20 μ M or 50 μ M Al in Al-resistant cv. Atlas 66 than in Al-sensitive cv. Scout 66. After Al treatment the osmotic potential of the root cells was decreased in Atlas 66 but increased in Scout 66 indicating that the Al treatment osmotically stimulated the driving force for water uptake in Atlas 66 but suppressed it in Scout 66. Al increased the concentration of soluble sugars, the major osmotic solute in the root cells in Atlas 66, but decreased it in Scout 66. Al at both low (5 μ M ) and high (50 μ M ) concentrations, also increased the concentration of soluble sugars in the Al-resistant genotype ET8 but a high Al concentration decreased it in Al-sensitive genotype ES8. Enzymatic analyses and thin-layer chromatography revealed that soluble sugars in the root cells of both Atlas 66 and Scout 66 mainly consisted of monosaccharides such as glucose, fructose and a small amount of sucrose. These results suggest that the accumulation of soluble sugars in Al-resistant wheat Atlas 66 keeps the osmotic potential in the root cells low and thus, enables the root cells to take up water and to elongate against the pressure produced by cell wall rigidification under Al stress.  相似文献   

3.
The influence of Al exposure on long-distance Ca2+ translocation from specific root zones (root apex or mature root) to the shoot was studied in intact seedlings of winter wheat (Triticum aestivum L.) cultivars (Al-tolerant Atlas 66 and Al-sensitive Scout 66). Seedlings were grown in 100 [mu]M CaCl2 solution (pH 4.5) for 3 d. Subsequently, a divided chamber technique using 45Ca2+-labeled solutions (100 [mu]M CaCl2 with or without 5 or 20 [mu]M AlCl3, pH 4.5) was used to study Ca2+ translocation from either the terminal 5 to 10 mm of the root or a 10-mm region of intact root approximately 50 mm behind the root apex. The Al concentrations used, which were toxic to Scout 66, caused a significant inhibition of Ca2+ translocation from the apical region of Scout 66 roots. The same Al exposures had a much smaller effect on root apical Ca2+ translocation in Atlas 66. When a 10-mm region of the mature root was exposed to 45Ca2+, smaller genotypic differences in the Al effects effects on Ca2+ translocation were observed, because the degree of Al-induced inhibition of Ca2+ translocation was less than that at the root apex. Exposure of the root apex to Al inhibited root elongation by 70 to 99% in Scout 66 but had a lesser effect (less than 40% inhibition) in Atlas 66. When a mature root region was exposed to Al, root elongation was not significantly affected in either cultivar. These results demonstrate that genotypic differences in Al-induced inhibition of Ca2+ translocation and root growth are localized primarily in the root apex. The pattern of Ca2+ translocation within the intact root was mainly basipetal, with most of the absorbed Ca2+ translocated toward the shoot. A small amount of acropetal Ca2+ translocation from the mature root regions to the apex was also observed, which accounted for less than 5% of the total Ca2+ translocation within the entire root. Because Ca2+ translocation toward the root apex is limited, most of the Ca2+ needed for normal cellular function in the apex must be absorbed from the external solution. Thus, continuous Al disruption of Ca2+ absorption into cells of the root apex could alter Ca2+ nutrition and homeostasis in these cells and could play a pivotal role in the mechanisms of Al toxicity in Al-sensitive wheat cultivars.  相似文献   

4.
Inhibition of growth and development of root border cells in wheat by Al   总被引:18,自引:0,他引:18  
The production and development of border cells vary with genotype, and they are released in wheat at an earlier stage of root development than other species studied so far. No significant difference was observed in the maximum number of border cells between Al-tolerant (Atlas 66) and Al-sensitive (Scout 66) cultivars in the absence of Al treatment. Al seriously inhibited the production and release of border cells, resulting in clumping of border cells in Scout 66, but less clustering in Atlas 66. The number of border cells released from roots treated with Al is significantly less than that from roots grown without Al treatment. Al treatment induced the death of detached border cells in vitro and they were killed by a 20-h treatment with 25 µ m Al. No significant difference in survival percentage of detached border cells was observed between Atlas 66 and Scout 66, regardless of the presence or absence of Al. The removal of border cells from root tips of both Atlas 66 and Scout 66 enhanced the Al-induced inhibition of root elongation concomitant with increased Al accumulation in the root. These results suggest that border cells adhered to the root tips play a potential role in the protection of root from Al injury in wheat.  相似文献   

5.
Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots   总被引:4,自引:0,他引:4  
We investigated the relation between the toxic effect of aluminum (Al) on root growth and the lignin deposition in wheat ( Triticum aestivum L. cvs Atlas 66 and Scout 66). In the Al-tolerant cultivar Atlas 66, control treatment without AlCl3 at pH 4.75, cell length increased dramatically in the portion of the root that was 0.6 to 3.2 mm from the root cap junction (approximately 1.0 to 3.6 mm from the root tip). However, treatment with 20 μ M AlCl3 for 24 and 48 h completely inhibited root elongation and markedly decreased the length and increased the diameter of the cells in the same portion of the root. Moreover, marked deposition of lignin was observed in the cells that corresponded to the portion 1.5 to 4.5 mm from the root tip in Atlas 66 roots treated with 20 μ M AlCl3, while no deposition of lignin was detected in control roots. Treatment with 5 μ M AlCl3 slightly inhibited root growth and there was no deposition of lignin in the root. On the other hand, in roots of the Al-sensitive cultivar Scout 66, treatment with 5 μ M AlCl3 completely inhibited root growth and markedly induced deposition of lignin. These results suggest that lignification in the elongating region coincided with the extent of inhibition of root growth by Al in two wheat cultivars that differed in their sensitivity to Al.  相似文献   

6.
The role of Ca2+ transport in the mechanism of Al toxicity was investigated, using a Ca2+-selective microelectrode system to study Al effects on root apical Ca2+ fluxes in two wheat (Triticum aestivum L.) cultivars: Al-tolerant Atlas 66 and Al-sensitive Scout 66. Intact 3-day-old low-salt-grown (100 micromolar CaCl2, pH 4.5) wheat seedlings were used, and it was found that both cultivars maintained similar rates of net Ca2+ uptake in the absence of Al. Addition of Al concentrations that were toxic to Scout (5-20 micromolar AlCl3) immediately and dramatically inhibited Ca2+ uptake in Scout, whereas Ca2+ transport in Atlas was relatively unaffected. The Al-induced inhibition of Ca2+ uptake in Scout 66 was rapidly reversed following removal of Al from the solution bathing the roots. Similar studies with morphologically intact root cell wall preparations indicated that the Al effects did not involve Al-Ca interactions in the cell wall. These results suggest that Al inhibits Ca2+ influx across the root plasmalemma, possibly via blockage of calcium channels. The differential effect of Al on Ca2+ transport in Al-sensitive Scout and Al-tolerant Atlas suggests that Al blockage of Ca2+ channels could play a role in the cellular mechanism of Al toxicity in higher plants.  相似文献   

7.
The inhibition of root growth by aluminum (Al) is well established, yet a unifying mechanism for Al toxicity remains unclear. The association between cell growth and endogenously generated ionic currents measured in many different systems, including plant roots, suggests that these currents may be directing growth. A vibrating voltage microelectrode system was used to measure the net ionic currents at the apex of wheat (Triticum aestivum L.) roots from Al-tolerant and Al-sensitive cultivars. We examined the relationship between these currents and Al-induced inhibition of root growth. In the Al-sensitive cultivar, Scout 66, 10 micromolar Al (pH 4.5) began to inhibit the net current and root elongation within 1 to 3 hours. These changes occurred concurrently in 75% of experiments. A significant correlation was found between current magnitude and the rate of root growth when data were pooled. No changes in either current magnitude or growth rate were observed in similar experiments using the Al-tolerant cultivar Atlas 66. Measurements with ion-selective microelectrodes suggested that H+ influx was responsible for most of the current at the apex, with smaller contributions from Ca2+ and Cl fluxes. In 50% of experiments, Al began to inhibit the net H+ influx in Scott 66 roots at the same time that growth was affected. However, in more than 25% of cases, Al-induced inhibition of growth rate occurred before any sustained decrease in the current or H+ flux. Although showing a correlation between growth and current or H+ fluxes, these data do not suggest a mechanistic association between these processes. We conclude that the inhibition of root growth by Al is not caused by the reduction in current or H+ influx at the root apex.  相似文献   

8.
Wang Y  Stass A  Horst WJ 《Plant physiology》2004,136(3):3762-3770
The alleviating effect of silicon (Si) supply on aluminum (Al) toxicity was suggested to be based on ex or in planta mechanisms. In our experiments with the Al-sensitive maize (Zea mays) cultivar Lixis, Si treatment but not Si pretreatment ameliorated Al-induced root injury as revealed by less root-growth inhibition and callose formation. Si treatment did not affect monomeric Al concentrations in the nutrient solution, suggesting an in planta effect of Si on Al resistance. A fractionated analysis of Si and Al in the 1-cm root apices revealed that more than 85% of the root-tip Al was bound in the cell wall. Al contents in the apoplastic sap, the symplastic sap, and the cell wall did not differ between -Si and +Si plants. Si did not affect the Al-induced exudation of organic acid anions and phenols from the root apices. However, Al treatment greatly enhanced Si accumulation in the cell wall fraction, reducing the mobility of apoplastic Al. From our data we conclude that Si treatment leads to the formation of hydroxyaluminumsilicates in the apoplast of the root apex, thus detoxifying Al.  相似文献   

9.
Ryan PR  Kochian LV 《Plant physiology》1993,102(3):975-982
Aluminum (Al) is toxic to plants at pH < 5.0 and can begin to inhibit root growth within 3 h in solution experiments. The mechanism by which this occurs is unclear. Disruption of calcium (Ca) uptake by Al has long been considered a possible cause of toxicity, and recent work with wheat (Triticum aestivum L. Thell) has demonstrated that Ca uptake at the root apex in an Al-sensitive cultivar (Scout 66) was inhibited more than in a tolerant cultivar (Atlas 66) (J.W. Huang, J.E. Shaff, D.L. Grunes, L.V. Kochian [1992] Plant Physiol 98: 230-237). We investigated this interaction further in wheat by measuring root growth and Ca uptake in three separate pairs of near-isogenic lines within which plants exhibit differential sensitivity to Al. The vibrating calcium-selective microelectrode technique was used to estimate net Ca uptake at the root apex of 6-d-old seedlings. Following the addition of 20 or 50 [mu]M AlCl3, exchange of Ca for Al in the root apoplasm caused a net Ca efflux from the root for up to 10 min. After 40 min of exposure to 50 [mu]M Al, cell wall exchange had ceased, and Ca uptake in the Al-sensitive plants of the near-isogenic lines was inhibited, whereas in the tolerant plants it was either unaffected or stimulated. This provides a general correlation between the inhibition of growth by Al and the reduction in Ca influx and adds some support to the hypothesis that a Ca/Al interaction may be involved in the primary mechanism of Al toxicity in roots. In some treatments, however, Al was able to inhibit root growth significantly without affecting net Ca influx. This suggests that the correlation between inhibition of Ca uptake and the reduction in root growth may not be a mechanistic association. The inhibition of Ca uptake by Al is discussed, and we speculate about possible mechanisms of tolerance.  相似文献   

10.
Inhibition of root elongation by toxic aluminum (Al(3+)) occurs rapidly and is one of the most distinct and earliest symptoms of Al toxicity. To elucidate mechanism underlying Al(3+)-induced inhibition of root elongation, we investigated the involvement of ethylene in Al(3+)-induced inhibition of root elongation using the legume model plants Lotus japonicus and Medicago truncatula. Root elongation of L. japonicus and M. truncatula was rapidly inhibited by exposure to AlCl(3). A similar rapid inhibition of root elongation by the ethylene-releasing substance, ethephon, and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), was also observed. The Al(3+)-induced inhibition of root elongation was substantially ameliorated in the presence of antagonists of ethylene biosynthesis [Co(2+) and aminoethoxyvinylglycine (AVG)]. Al(3+) increased the activity of ACC oxidase (ACO), and induced a rapid evolution of ethylene from root apices and expression of genes of ACC synthase (ACS) and ACO. These findings suggest that induction of ethylene evolution resulting from up-regulation of ACS and ACO plays a critical role in Al(3+)-induced inhibition of root elongation.  相似文献   

11.
In search for the cellular and molecular basis for differences in aluminum (Al) resistance between maize (Zea mays) cultivars we applied the patch-clamp technique to protoplasts isolated from the apical root cortex of two maize cultivars differing in Al resistance. Measurements were performed on protoplasts from two apical root zones: The 1- to 2-mm zone (DTZ), described as most Al-sensitive, and the main elongation zone (3-5 mm), the site of Al-induced inhibition of cell elongation. Al stimulated citrate and malate efflux from intact root apices, revealing cultivar differences. In the elongation zone, anion channels were not observed in the absence and presence of Al. Preincubation of intact roots with 90 microM Al for 1 h induced a citrate- and malate-permeable, large conductance anion channel in 80% of the DTZ protoplasts from the resistant cultivar, but only 30% from the sensitive cultivar. When Al was applied to the protoplasts in the whole-cell configuration, anion currents were elicited within 10 min in the resistant cultivar only. La3+ was not able to replace or counteract with Al3+ in the activation of this channel. In the presence of the anion-channel blockers, niflumic acid and 4, 4'-dinitrostilbene-2, 2'disulfonic acid, anion currents as well as exudation rates were strongly inhibited. Application of cycloheximide did not affect the Al response, suggesting that the channel is activated through post-translational modifications. We propose that the Al-activated large anion channel described here contributes to enhanced genotypical Al resistance by facilitating the exudation of organic acid anions from the DTZ of the maize root apex.  相似文献   

12.
It is generally understood that the inhibition of growth of root apices is the initial effect caused by aluminium (Al) toxicity. The correlation between impaired H+-fluxes across the plasma membrane (PM) and Al-induced growth inhibition, Al accumulation and callose formation in root apices of squash (Cucurbita pepo L. cv. Tetsukabuto) is reported here. The root inhibition was dependent on Al concentration, and the duration of exposure, with the damage occurring preferentially in regions with high Al accumulation and callose formation. Using the fluorescent Al indicator (Morin), Al was localized in the cell walls of the root-tip cells after 3 h and in the whole root-tip cells after 6 h of the Al treatment (50 micro M). The inhibition of H+-pumping rate in the highly purified PM vesicles obtained from the Al-treated apical root portions (1 cm) coincided with the inhibition of root growth under Al stress. Furthermore, H+-ATPase activity of PM vesicles prepared from the control root apices was strongly inhibited by Al in vitro in a dose-dependent manner. Approximately 50% inhibition was observed when PM vesicles were preincubated at Al concentration as low as 10 micro M followed by the enzyme assay in the medium without Al. Using the pH indicator (bromocresol purple), it is shown that surface pH of the control (0 Al) root apices was strongly alkalized from the starting pH of 4.5 in a time-dependent manner. By contrast, the surface pH changed only slightly in the Al-treated root apices. The changes in surface pH mediated by altered dynamics of H+ efflux and influx across the root tip PM play an important role in root growth as affected by Al.  相似文献   

13.
Primary roots of intact maize plants (Zea mays L.) grown for several days in nutrient solutions containing 100 mol m−3 NaCl and additional calcium, had relatively inhibited rates of elongation. Possible physical restraints underlying this salt induced inhibition were investigated. The inhibition did not involve reductions in osmotic potential gradients and turgor in the tip tissues responsible for root elongation growth. The apparent yield threshold pressure, which is related to capacity of cell walls to undergo loosening by stress relaxation, was estimated psychrometrically in excised root tips. Salinity increased yield threshold values. Comparative root extensibility values were obtained for intact plants by determining the initial (1 min) increase in root elongation rate induced by an 0.1 MPa osmotic jump. Comparative extensibility was significantly reduced in the salinized root tips. Salinity did not reduce capacities for water efflux and associated elastic contraction in root tip tissues of intact plants exposed to hypertonic mannitol. We conclude that cell wall hardening in the elongating root tips is an important component of root growth inhibition induced by long-term salinization.  相似文献   

14.
目的:铝毒害在酸性土壤中普遍存在,已经成为影响小麦产量和品质的重要因素,因此小麦铝毒害与耐铝分子机制的研究逐渐成为了小麦抗逆研究的热点内容之一。从细胞水平上阐明铝毒害的机理。方法:设置了3种铝浓度梯度(100、200 300μmol/1),通过组织培养及透射电镜的方法观察了铝对铝敏感材料Scout66,耐铝材料Adas66及湖北主栽品种EM12胚发生阶段及超微结构的影响。结果:铝降低了胚的诱导率,抑制了胚的进一步分化,其中幼胚的诱导率从对照的94.0%降到了25.3% (300μmaol/1),成熟胚的诱导率从对照的75.0%降到了17.3%(300μtmol/1);铝严重破坏了小麦根尖的超微结构,与对照相比,最明显的变化是细胞核结构变得不完整,同时空泡增多,线粒体数量增加,脊的结构变模糊甚至消失。结论:以上结果说明铝破坏了细胞的超微结构,特别是细胞核和线粒体结构的破坏阻止了细胞的进一步分裂和分化。  相似文献   

15.

Background and Aims

Aluminium (Al) toxicity is one of the most severe limitations to crop production in acid soils. Inhibition of root elongation is the primary symptom of Al toxicity. However, the underlying basis of the process is unclear. Considering the multiple physiological and biochemical functions of pectin in plants, possible involvement of homogalacturonan (HG), one of the pectic polysaccharide domains, was examined in connection with root growth inhibition induced by Al.

Methods

An immunolabelling technique with antibodies specific to HG epitopes (JIM5, unesterified residues flanked by methylesterifed residues; JIM7, methyl-esterified residues flanked by unesterified residues) was used to visualize the distribution of different types of HG in cell walls of root apices of two maize cultivars differing in Al resistance.

Key Results

In the absence of Al, the JIM5 epitope was present around the cell wall with higher fluorescence intensity at cell corners lining the intercellular spaces, and the JIM7 epitope was present throughout the cell wall. However, treatment with 50 µm Al for 3 h produced 10 % root growth inhibition in both cultivars and caused the disappearance of fluorescence in the middle lamella of both epitopes. Prolonged Al treatment (24 h) with 50 % root growth inhibition in ‘B73’, an Al-sensitive cultivar, resulted in faint and irregular distribution of both epitopes. In ‘Nongda3138’, an Al-resistant cultivar, the distribution of HG epitopes was also restricted to the lining of intercellular spaces when a 50 % inhibition to root growth was induced by Al (100 µm Al, 9 h). Altered distribution of both epitopes was also observed when of roots were exposed to 50 µm LaCl3 for 24 h, resulting in 40 % inhibition of root growth.

Conclusions

Changes in HG distribution and root growth inhibition were highly correlated, indicating that Al-induced perturbed distribution of HG epitopes is possibly involved in Al-induced inhibition of root growth in maize.Key words: Al toxicity, cell wall, homogalacturnonan, immunofluorescence, methylesterification, pectin  相似文献   

16.
Gaume  Alain  Mächler  Felix  Frossard  Emmanuel 《Plant and Soil》2001,234(1):73-81
Root exudation of organic acids as Al-chelating compounds and P nutrition have been suggested to play a major role in Al-resistance in higher plants. Effects of Al exposure on maize plant growth, and organic acid root content and root exudation under various levels of P nutrition were examined. Sikuani, a Colombian maize cultivar tolerant to acid soils with high Al saturation, and Corso, a Swiss cultivar, were grown in sterile hydroponic conditions for 21 days. Al-caused inhibition of root growth was lower in Sikuani than in Corso. Al effect on plant growth was decreased with increasing P content in roots. Al content in roots increased with increasing P content and was higher in Sikuani than in Corso. When exposed to Al, the contents in root apices as well as the root exudation of citric and malic acids in Corso and citric, malic and succinic acids in Sikuani increased, and were higher in Sikuani than in Corso. Increased PEP carboxylase (PEPC) activity in root apices after Al exposure partially explained the variations of organic acid content in the roots. These Al-induced changes in PEPC activity, organic acid content and exudation were reduced in plants supplied with higher P concentrations during the 21 days prior to treatment. Increased secretion of organic acids after exposure to Al appeared to be specific to Al and was not totally explained by increased root content in organic acids.  相似文献   

17.
Secretion of organic acid has been suggested to be one of the mechanisms for Al resistance in short‐term experiments. In the present study, relatively long‐term response of roots to Al stress was investigated in terms of organic acid secretion. Eight plant cultivars belonging to 5 species that exhibited differential sensitivity to Al were used. Ten days of intermittent exposure to Al (one day in 0.5 m M CaCl2 containing 50 µ M AlCl3 at pH 4.5, alternating with one day in nutrient solution without Al) inhibited root growth by 65% in an Al‐sensitive cultivar of wheat ( Triticum aestivum L. Scout 66) and by 25‐50% in two cultivars of oilseed rape ( Brassica napus L. 94008 and H166), two cultivars of oat ( Avena sativa L. Tochiyutaka and Heoats), and an Al‐tolerant cultivar of wheat (Atlas 66). However, root growth was hardly affected by the same treatment in buckwheat ( Fagopyrum esculentum Moench Jianxi) and radish ( Raphanus sativus L. Guangxi). Organic acids were monitored during the first 6 h of each day of Al treatment, and both the kind and amount of organic acids secreted were found to differ among different species. Roots of buckwheat secreted oxalic acid, those of wheat exuded malic acid, while those of rapeseed, oats, and radish secreted both citric and malic acids. Three different patterns in response to relatively long‐term treatment of Al were found in terms of total amount of organic acids secreted: (1) the amount secreted was very low during the treatment (wheat cv. Scout 66, oat), (2) the amount gradually decreased with duration of treatment (wheat cv. Atlas 66, oilseed rape), and (3) the amount maintained at a high level during the whole period of Al treatment (buckwheat and radish). Combined with the results of growth inhibition, it is suggested that the continuous secretion of organic acids at a high level is related to high Al resistance.  相似文献   

18.
The present study was conducted to investigate the effects of enhanced Ca supply on Al toxicity in relation to cell wall properties in two wheat (Triticum aestivum L.) cultivars differing in Al resistance. Seedlings of Al-tolerant Inia66 and Al-sensitive Kalyansona cultivars were grown in complete nutrient solutions for 4 days then subjected to treatment solutions containing Al (0, 50 μM) and Ca (500, 2500 μM) at pH 4.5 for 24 h. Root elongation was affected greatly by Al treatment in the Al-sensitive cultivar and a significant improvement in root growth was observed with enhanced Ca supply during Al stress. Pectin and hemicellulose contents in the root cell walls increased with Al stress, and this increase was more conspicuous in the Al-sensitive cultivar. The molecular mass of hemicellulosic polysaccharides increased with Al treatment in the Al-sensitive cultivar and decreased with enhanced Ca supply. The increase in the molecular mass of hemicellulosic polysaccharides was attributed to increased content of glucose, arabinose and xylose in neutral sugars. Enhanced Ca supply slightly decreased the content of these components with Al stress. Aluminum treatment increased the contents of ferulic and p-coumaric acid, especially in the Al-sensitive cultivar, by increasing peroxidase (POD, EC 1.11.1.7) and phenylalanine ammonia lyase (PAL, EC 4.3.1.5) activity, whereas enhanced Ca supply during Al stress decreased the content of these components by decreasing POD and PAL activity. These results suggest that the increased molecular mass of hemicellulosic polysaccharides and phenolic compounds in the Al-sensitive cultivar with Al stress might have inhibited root elongation associated with cell wall stiffening related to cross-linking among cell-wall polymers and lignin. Enhanced Ca supply might maintain the normal synthesis of these materials even with Al stress.  相似文献   

19.
Two triticale cultivars ZC 237 (Al-resistant) and ZC 1890 (Al-sensitive) were used to investigate the effects of 30 to 100 μM Al on antioxidative enzyme activity, lipid peroxidation and cell wall composition. In ZC 1890, the root elongation was significantly inhibited after 1-h exposure to 50 μM Al, the changes in hemicellulose fraction were clearly detected after 2-h Al exposure, while the peroxidase (POD) and superoxide dismutase (SOD) activities significantly increased after 6-h exposure, and the malondialdehyde (MDA) content after 12-h exposure. The similar patterns were also found in ZC 237. Treatment of ZC 1890 with 1 mM citrate for 30 min after 3-h exposure to Al resulted in significant decrease of Al bound to cell-wall and recovery of root elongation. These results suggested that Al affected cell wall before the damage of plasma membrane, but this was not the primary cause of root elongation inhibition.  相似文献   

20.
The mechanism of aluminium-induced inhibition of root elongation is still not well understood. It is a matter of debate whether the primary lesions of Al toxicity are apoplastic or symplastic. The present paper summarises experimental evidence which offers new avenues in the understanding of Al toxicity and resistance in maize. Application of Al for 1 h to individual 1 mm sections of the root apex only inhibited root elongation if applied to the first 3 apical mm. The most Al-sensitive apical root zone appeared to be the 1–2 mm segment. Aluminium-induced prominent alterations in both the microtubular (disintegration) and the actin cytoskeleton (altered polymerisation patterns) were found especially in the apical 1–2 mm zone using monoclonal antibodies. Since accumulation of Al in the root apoplast is dependent on the properties of the pectic matrix, we investigated whether Al uptake and toxicity could be modulated by changing the pectin content of the cell walls through pre-treatment of intact maize plants with 150 mM NaCl for 5 days. NaCl-adapted plants with higher pectin content accumulated more Al in their root apices and they were more Al-sensitive as indicated by more severe inhibition of root elongation and enhanced callose induction by Al. This special role of the pectic matrix of the cell walls in the modulation of Al toxicity is also indicated by a close positive correlation between pectin, Al, and Al-induced callose contents of 1 mm root segments along the 5 mm root apex. On the basis of the presented data we suggest that the rapid disorganisation of the cytoskeleton leading to root growth inhibition may be mediated by interaction of Al with the apoplastic side of the cell wall – plasma membrane – cytoskeleton continuum. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号