首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The aim of this study was to investigate the maternal genealogical pattern of chicken breeds sampled in Europe. Sequence polymorphisms of 1256 chickens of the hypervariable region (D‐loop) of mitochondrial DNA (mtDNA) were used. Median‐joining networks were constructed to establish evolutionary relationships among mtDNA haplotypes of chickens, which included a wide range of breeds with different origin and history. Chicken breeds which have had their roots in Europe for more than 3000 years were categorized by their founding regions, encompassing Mediterranean type, East European type and Northwest European type. Breeds which were introduced to Europe from Asia since the mid‐19th century were classified as Asian type, and breeds based on crossbreeding between Asian breeds and European breeds were classified as Intermediate type. The last group, Game birds, included fighting birds from Asia. The classification of mtDNA haplotypes was based on Liu et al.'s (2006) nomenclature. Haplogroup E was the predominant clade among the European chicken breeds. The results showed, on average, the highest number of haplotypes, highest haplotype diversity, and highest nucleotide diversity for Asian type breeds, followed by Intermediate type chickens. East European and Northwest European breeds had lower haplotype and nucleotide diversity compared to Mediterranean, Intermediate, Game and Asian type breeds. Results of our study support earlier findings that chicken breeds sampled in Europe have their roots in the Indian subcontinent and East Asia. This is consistent with historical and archaeological evidence of chicken migration routes to Europe.  相似文献   

2.
Modern genetic samples are commonly used to trace dog origins, which entails untested assumptions that village dogs reflect indigenous ancestry or that breed origins can be reliably traced to particular regions. We used high-resolution Y chromosome markers (SNP and STR) and mitochondrial DNA to analyze 495 village dogs/dingoes from the Middle East and Southeast Asia, along with 138 dogs from >35 modern breeds to 1) assess genetic divergence between Middle Eastern and Southeast Asian village dogs and their phylogenetic affinities to Australian dingoes and gray wolves (Canis lupus) and 2) compare the genetic affinities of modern breeds to regional indigenous village dog populations. The Y chromosome markers indicated that village dogs in the two regions corresponded to reciprocally monophyletic clades, reflecting several to many thousand years divergence, predating the Neolithic ages, and indicating long-indigenous roots to those regions. As expected, breeds of the Middle East and East Asia clustered within the respective regional village dog clade. Australian dingoes also clustered in the Southeast Asian clade. However, the European and American breeds clustered almost entirely within the Southeast Asian clade, even sharing many haplotypes, suggesting a substantial and recent influence of East Asian dogs in the creation of European breeds. Comparison to 818 published breed dog Y STR haplotypes confirmed this conclusion and indicated that some African breeds reflect another distinct patrilineal origin. The lower-resolution mtDNA marker consistently supported Y-chromosome results. Both marker types confirmed previous findings of higher genetic diversity in dogs from Southeast Asia than the Middle East. Our findings demonstrate the importance of village dogs as windows into the past and provide a reference against which ancient DNA can be used to further elucidate origins and spread of the domestic dog.  相似文献   

3.
The domestic chicken (Gallus gallus domesticus) is an excellent model for genetic studies of phenotypic diversity. The Guangxi Region of China possesses several native chicken breeds displaying a broad range of phenotypes well adapted to the extreme hot-and-wet environments in the region. We thus evaluated the genetic diversity and relationships among six native chicken populations of the Guangxi region and also evaluated two commercial breeds (Arbor Acres and Roman chickens). We analyzed the sequences of the D-loop region of the mitochondrial DNA (mtDNA) and 18 microsatellite loci of 280 blood samples from six Guangxi native chicken breeds and from Arbor Acres and Roman chickens, and used the neighbor-joining method to construct the phylogenetic tree of these eight breeds. Our results showed that the genetic diversity of Guangxi native breeds was relatively rich. The phylogenetic tree using the unweighed pair-group method with arithmetic means (UPGAM) on microsatellite marks revealed two main clusters. Arbor Acres chicken and Roman chicken were in one cluster, while the Guangxi breeds were in the other cluster. Moreover, the UPGAM tree of Guangxi native breeds based on microsatellite loci was more consistent with the genesis, breeding history, differentiation and location than the mtDNA D-loop region. STRUCTURE analysis further confirmed the genetic structure of Guangxi native breeds in the Neighbor-Net dendrogram. The nomenclature of mtDNA sequence polymorphisms suggests that the Guangxi native chickens are distributed across four clades, but most of them are clustered in two main clades (B and E), with the other haplotypes within the clades A and C. The Guangxi native breeds revealed abundant genetic diversity not only on microsatellite loci but also on mtDNA D-loop region, and contained multiple maternal lineages, including one from China and another from Europe or the Middle East.  相似文献   

4.
Genetic diversity and population structure of 113 chicken populations from Africa, Asia and Europe were studied using 29 microsatellite markers. Among these, three populations of wild chickens and nine commercial purebreds were used as reference populations for comparison. Compared to commercial lines and chickens sampled from the European region, high mean numbers of alleles and a high degree of heterozygosity were found in Asian and African chickens as well as in Red Junglefowl. Population differentiation (FST) was higher among European breeds and commercial lines than among African, Asian and Red Junglefowl populations. Neighbour‐Net genetic clustering and structure analysis revealed two main groups of Asian and north‐west European breeds, whereas African populations overlap with other breeds from Eastern Europe and the Mediterranean region. Broilers and brown egg layers were situated between the Asian and north‐west European clusters. structure analysis confirmed a lower degree of population stratification in African and Asian chickens than in European breeds. High genetic differentiation and low genetic contributions to global diversity have been observed for single European breeds. Populations with low genetic variability have also shown a low genetic contribution to a core set of diversity in attaining maximum genetic variation present from the total populations. This may indicate that conservation measures in Europe should pay special attention to preserving as many single chicken breeds as possible to maintain maximum genetic diversity given that higher genetic variations come from differentiation between breeds.  相似文献   

5.
To understand the origin and genetic diversity of Italian horses, mitochondrial DNA D‐loop sequences were generated for 163 horses from seven breeds. Sequence analysis of a 480‐bp segment revealed a total of 84 haplotypes with 57 polymorphic sites, indicating multiple maternal origins and high genetic diversity. Comparison of the haplotypes with the equine mtDNA haplotype/haplogroup nomenclature showed a haplogroup distribution in the Italian breeds more similar to that found in the Middle East breeds than in the European breeds, probably due to the economic and cultural relationship with the Middle East in the past centuries.  相似文献   

6.
This survey represents the first characterization of mitochondrial DNA diversity within three breeds of Indian sheep (two strains of the Deccani breed, as well as the Bannur and Garole breeds) from different geographic regions and with divergent phenotypic characteristics. A 1061-bp fragment of the mitochondrial genome spanning the control region, a portion of the 12S rRNA gene and the complete phenyl tRNA gene, was sequenced from 73 animals and compared with the corresponding published sequence from European and Asian breeds and the European Mouflon (Ovis musimon). Analysis of all 156 sequences revealed 73 haplotypes, 52 of which belonged to the Indian breeds. The three Indian breeds had no haplotypes in common, but one Indian haplotype was shared with European and other Asian breeds. The highest nucleotide and haplotype diversity was observed in the Bannur breed (0.00355 and 0.981 respectively), while the minimum was in the Sangamneri strain of the Deccani breed (0.00167 and 0.882 respectively). All 52 Indian haplotypes belonged to mitochondrial lineage A. Therefore, these Indian sheep are distinct from other Asian and European breeds studied so far. The relationships among the haplotypes showed strong breed structure and almost no introgression among these Indian breeds, consistent with Indian sheep husbandry, which discourages genetic exchange between breeds. These results have implications for the conservation of India's ovine biodiversity and suggest a common origin for the breeds investigated.  相似文献   

7.
系统评估地方鸡的遗传变异水平并追溯其母系起源, 可为保护利用优质家禽种质资源库提供科学依据。本研究测定了广东省和邻省共12个地方鸡品种的线粒体DNA D-loop序列, 分析品种间的遗传距离与系统关系, 并构建单倍型系统发生树和中介网络图。360份样品共检测到60个突变位点, 均为转换。定义了85种单倍型, 归属于单倍型类群A、B、C和E, 在12个鸡品种中均有分布, 其中B是优势单倍型类群(187个, 51.94%), E次之(76个, 21.11%)。B02 和C01是优势单倍型(85个, 23.61%; 48个, 13.33%), 为12个鸡品种共有; E03位居第三(35个, 9.72%), 杏花鸡、黄郎鸡和宁都三黄鸡未见此单倍型。杏花鸡集中分布在单倍型类群B, 惠阳胡须鸡和中山沙栏鸡则主要分布在单倍型类群E; 怀乡鸡的单倍型数量最多, 中山沙栏鸡的最少。广东地方鸡品种间遗传距离为0.012-0.015, 单倍型多样性0.805 ± 0.047至0.949 ± 0.026, 核苷酸多样性0.0102 ± 0.0017至0.0138 ± 0.0009。邻接树和中介网络图将85种单倍型划分为进化枝A、B、C和E, 广东省与邻省地方鸡单倍型的地理分布模式相似。中性检验显示广东地方鸡未经历明显的群体历史扩张。结果表明广东地方鸡处于较好的保护状态, 遗传多样性水平较高, 品种的形成受到邻省和北方家鸡的影响, 东南亚红原鸡对广东地方鸡也有重要的遗传贡献。  相似文献   

8.
Local domestic chicken populations are of paramount importance as a source of protein in developing countries. Bangladesh possesses a large number of native chicken populations which display a broad range of phenotypes well adapted to the extreme wet and hot environments of this region. This and the fact that wild jungle fowls (JFs) are still available in some regions of the country, it urges to study the present genetic diversity and relationships between Bangladeshi autochthonous chicken populations. Here, we report the results of the mitochondrial DNA (mtDNA) sequence polymorphisms analyses to assess the genetic diversity and possible maternal origin of Bangladeshi indigenous chickens. A 648-bp fragment of mtDNA control region (D-loop) was analyzed in 96 samples from four different chicken populations and one red JF population. Sequence analysis revealed 39 variable sites that defined 25 haplotypes. Estimates of haplotype and nucleotide diversities ranged from 0.745 to 0.901 and from 0.011 to 0.016, respectively. The pairwise differences between populations ranged from 0.091 to 1.459 while most of the PhiSTST) values were significant. Furthermore, AMOVA analysis revealed 89.16 % of the total genetic diversity was accounted for within population variation, indicating little genetic differentiation among the studied populations. The median network analysis from haplotypes of Bangladeshi chickens illustrated five distinct mitochondrial haplogroups (A, D, E, F and I). Individuals from all Bangladeshi chicken populations were represented in the major clades D and E; those maternal origins are presumed to be from Indian Subcontinent and Southeast Asian countries, more particularly from South China, Vietnam, Myanmar and Thailand. Further, phylogenetic analysis between indigenous chicken populations and sub-species of red JFs showed G. g. gallus and G. g. spadiceus shared with almost all haplogroups and had major influence than G. g. murghi in the origin of indigenous chicken of Bangladesh. These results suggest that Bangladeshi indigenous chickens still have abundant genetic diversity and have originated from multiple maternal lineages, and further conservation efforts are warranted to maintain the diversity.  相似文献   

9.
This study sought to assess mitochondrial DNA (mtDNA) diversity and phylogeographic structure of chickens from five agro‐ecological zones of Zimbabwe. Furthermore, chickens from Zimbabwe were compared with populations from other geographical regions (Malawi, Sudan and Germany) and other management systems (broiler and layer purebred lines). Finally, haplotypes of these animals were aligned to chicken sequences, taken from GenBank, that reflected populations of presumed centres of domestication. A 455‐bp fragment of the mtDNA D‐loop region was sequenced in 283 chickens of 14 populations. Thirty‐two variable sites that defined 34 haplotypes were observed. In Zimbabwean chickens, diversity within ecotypes accounted for 96.8% of the variation, indicating little differentiation between ecotypes. The 34 haplotypes clustered into three clades that corresponded to (i) Zimbabwean and Malawian chickens, (ii) broiler and layer purebred lines and Northwest European chickens, and (iii) a mixture of chickens from Zimbabwe, Sudan, Northwest Europe and the purebred lines. Diversity among clades explained more than 80% of the total variation. Results indicated the existence of two distinct maternal lineages evenly distributed among the five Zimbabwean chicken ecotypes. For one of these lineages, chickens from Zimbabwe and Malawi shared major haplotypes with chicken populations that have a Southeast Asian background. The second maternal lineage, probably from the Indian subcontinent, was common to the five Zimbabwean chicken ecotypes, Sudanese and Northwest European chickens as well as purebred broiler and layer chicken lines. A third maternal lineage excluded Zimbabwean and other African chickens and clustered with haplotypes presumably originating from South China.  相似文献   

10.
A 378-bp section of the mitochondrial displacement loop was used to estimate genetic diversity in the native Canadian equine populations. The inclusion of 10 Mountain and Moorland, 3 Nordic pony breeds, 2 feral populations, and 5 horse breeds were also investigated as they may have influenced the development (or rejuvenation) of the native Canadian populations. A total of 281 samples were sequenced, which produced 75 haplotypes derived from 54 informative sites. On further investigation, 36 of these 75 haplotypes were found to be previously unreported. Overall, total diversity was lowest in the feral Sable Island population with a haplotype diversity (0.27 ± 0.12), nucleotide diversity (0.0007 ± 0.0004), and pairwise difference of 0.286 ± 0.317. This is not surprising due to the geographic isolation of this population. Haplotype diversity was highest (1.00 ± 0.13) in the New Forest population, pairwise difference was highest (8.061 ± 4.028) in the Icelandic breed, whereas nucleotide diversity was highest in the Exmoor breed (0.0209 ± 0.0025). Within the Canadian populations, haplotype diversity was highest in the Newfoundland pony (0.96 ± 0.08), whereas pairwise difference and nucleotide diversity was highest in the Canadian horse (7.090 ± 3.581 and 0.0188 ± 0.0042, respectively). Three different estimates of genetic distances were used to examine the phylogenetic relationships amongst these populations. All 3 estimates produced similar topologies. In general, the native Canadian populations were highly represented in the D clade, with particular emphasis in the D1 and D2 clades. This is an important factor when considering the phylogenetic conservation of these Canadian equine populations.  相似文献   

11.
East Balkan Swine (EBS) Sus scrofa is the only aboriginal domesticated pig breed in Bulgaria and is distributed on the western coast of the Black Sea in Bulgaria. To reveal the breed's genetic characteristics, we analysed mitochondrial DNA (mtDNA) and Y chromosomal DNA sequences of EBS in Bulgaria. Nucleotide diversity (πn) of the mtDNA control region, including two newly found haplotypes, in 54 EBS was higher (0.014 ± 0.007) compared with that of European (0.005 ± 0.003) and Asian (0.006 ± 0.003) domestic pigs and wild boar. The median‐joining network based on the mtDNA control region showed that the EBS and wild boar in Bulgaria comprised mainly two major mtDNA clades, European clade E1 (61.3%) and Asian clade A (38.7%). The coexistence of two mtDNA clades in EBS in Bulgaria may be the relict of historical pig translocation. Among the Bulgarian EBS colonies, the geographical differences in distribution of two mtDNA clades (E1 and A) could be attributed to the source pig populations and/or historical crossbreeding with imported pigs. In addition, analysis of the Y chromosomal DNA sequences for the EBS revealed that all of the EBS had haplotype HY1, which is dominant in European domestic pigs.  相似文献   

12.
全面了解中国乌骨鸡的遗传背景有利于保护和开发利用其种质资源。本研究测定了中国12个乌骨鸡品种线粒体细胞色素c氧化酶亚基I (cytochrome c oxidase subunit I, COI)基因, 比较分析其遗传多样性和群体遗传结构。255份乌骨鸡样品共检测到22个变异位点, 占分析位点的3.17%; 核苷酸多样性为0.00142-0.00339, 单倍型多样性为0.380-0.757, 其中略阳乌鸡核苷酸多样性最高, 德化黑鸡最低。检测到7个氨基酸变异位点, 来自6个品种共11个个体。定义了24种单倍型, 其中单倍型H1和H3为12个乌骨鸡品种共享, 出现频率分别为115次和64次; 盐津乌骨鸡单倍型数最多, 广西乌鸡最少。中性检验与错配分析显示实验种群未经历显著的群体扩张事件。分子变异分析显示81.06%的变异来自群体内; 品种间遗传距离为0.002-0.004, 品种间遗传分化系数Fst值为-0.035至0.594, 雪峰乌骨鸡与其他种群间的遗传分化程度最高。邻接树显示, 乌骨鸡未能独立形成分支, 不能从家鸡和红原鸡中有效区分开来。中国乌骨鸡中介网络图将24个单倍型分为3条进化主支, 呈现出一定的品种特异性, 由无量山乌骨鸡、云南盐津乌骨鸡和雪峰乌骨鸡组成单倍型H8、H9、H11、H12游离于这3条进化主支之外。增加其他家鸡和红原鸡COI基因的中介网络图主体结构与中国乌骨鸡的相同。结果表明中国乌骨鸡品种遗传多样性较低, 但品种间遗传分化显著, 可能是从当地家鸡中选育而来, 需要加强种质资源的保护。  相似文献   

13.
测定了13个黄牛品种125个个体的线粒体D-loop区段的全序列,包括12个中国地方黄牛品种的123个个体和德国黄牛2个个体,并进行了分析。结果显示,共检测到93个变异位点,57个单倍型,平均核苷酸差异(average number ofnucleotide differences,k)为22.708,核苷酸多样度(nucleotide diversity,π)为0.0251±0.00479,单倍型多样度(haplotypediversity,Hd)为0.888±0.026,表明我国黄牛品种遗传多样性非常丰富。构建的Neighbor-Joining进化树显示这13个品种主要分成两大类型:普通牛和瘤牛;新发现的特殊类型Ⅲ只有一个西藏阿沛甲咂牛的个体,它与牦牛D-loop序列最相近,证明西藏地区的黄牛与牦牛之间存在基因渗入现象。普通牛和瘤牛在日喀则驼峰牛中占的比例分别是64.3%和35.7%,在阿沛甲咂牛中占的比例分别是50.0%和50.0%,证明了西藏的黄牛也有瘤牛类型。云南牛品种的单倍型非常丰富证明了云南在中国黄牛起源上的重要地位;在27个中国黄牛品种中(本研究11个品种以及GenBank上的16个品种)找到了中国瘤牛的核心单倍型i1,并且对它进行了讨论。同时证明了西藏瘤牛独立于中国瘤牛核心类群的特殊性。  相似文献   

14.
In an extensive survey of the genetic diversity in Portuguese dogs, we have examined an 887-bp fragment of the mitochondrial DNA (mtDNA) from 8 Portuguese, 1 Spanish, and 2 North African native dog breeds, including village dogs from Portugal and Tunisia. Forty-nine haplotypes were found in the 164 individuals analyzed, with private haplotypes being found in several breeds. For example, the Castro Laboreiro Watchdog, a rare breed from a small and isolated region in Portugal, was monomorphic for mtDNA and possessed a new haplotype, which may be provisionally considered a breed-specific marker. Phylogenetic analyses recapitulated 4 major clades identified in other studies, but new haplotypes, grouping within a clade that was previously thought as geographically restricted, were detected in Portugal and Morocco. Portuguese village dogs showed no genetic differentiation from nonnative dogs or from local breeds of the areas in which the village dogs were sampled. Although Iberian and North African dog breeds possessed breed-specific mtDNA haplotypes, no significant geographic structure could be detected among them. There is no evidence for introgression of North African haplotypes in Iberian dogs, contrary to previous results for other domestic animals.  相似文献   

15.
In this study, we assessed the maternal origin of six Hungarian indigenous chicken breeds using mitochondrial DNA information. Sequences of Hungarian chickens were compared with the D-loop chicken sequences annotated in the GenBank and to nine previously described reference haplotypes representing the main haplogroups of chicken. The first 530 bases of the D-loop region were sequenced in 74 chickens of nine populations. Eleven haplotypes (HIC1-HIC11) were observed from 17 variable sites. Three sequences (HIC3, HIC8 and HIC9) of our chickens were found as unique to Hungary when searched against the NCBI GenBank database. Hungarian domestic chicken mtDNA sequences could be assigned into three clades and probably two maternal lineages. Results indicated that 86% of the Hungarian haplotypes are related to the reference sequence that likely originated from the Indian subcontinent, while the minor part of our sequences presumably derive from South East Asia, China and Japan.  相似文献   

16.
The variation in polymorphic DNA (RAPD and minisatellite) and protein markers was compared for nine Russian chicken breeds differing in morphological and productivity types and in origin, three European egg breeds, and three meat breeds of the Asian origin. Genetic diversity indices were calculated for each breed group and each marker type and were used to construct dendrograms of genetic similarity. In all breed groups, minisatellites and RAPD markers revealed higher genetic diversity as compared with protein markers. With any type of markers, genetic diversity of the Russian and Asian meat breeds proved to be significantly higher than that of the European egg breeds. The differentiating potentialities of molecular and genetic biochemical markers at the breed level and the origin of the Russian chicken breeds are discussed.  相似文献   

17.
The variation in polymorphic DNA (RAPD and minisatellite) and protein markers was compared for nine Russian chicken breeds differing in morphological and productivity types and in origin, three European egg breeds, and three broiler breeds of the Asian origin. Genetic diversity indices were calculated for each breed group and each marker type and were used to construct dendrograms of genetic similarity. In all breed groups, minisatellites and RAPD markers revealed higher genetic diversity as compared with protein markers. With any type of markers, genetic diversity of the Russian and Asian broiler breeds proved to be significantly higher than that of the European egg breeds. The differentiating potentialities of molecular and genetic biochemical markers at the breed level and the origin of the Russian chicken breeds are discussed.  相似文献   

18.

Background

Aedes aegypti is the primary global vector to humans of yellow fever and dengue flaviviruses. Over the past 50 years, many population genetic studies have documented large genetic differences among global populations of this species. These studies initially used morphological polymorphisms, followed later by allozymes, and most recently various molecular genetic markers including microsatellites and mitochondrial markers. In particular, since 2000, fourteen publications and four unpublished datasets have used sequence data from the NADH dehydrogenase subunit 4 mitochondrial gene to compare Ae. aegypti collections and collectively 95 unique mtDNA haplotypes have been found. Phylogenetic analyses in these many studies consistently resolved two clades but no comprehensive study of mtDNA haplotypes have been made in Africa, the continent in which the species originated.

Methods and Findings

ND4 haplotypes were sequenced in 426 Ae. aegypti s.l. from Senegal, West Africa and Kenya, East Africa. In Senegal 15 and in Kenya 7 new haplotypes were discovered. When added to the 95 published haplotypes and including 6 African Aedes species as outgroups, phylogenetic analyses showed that all but one Senegal haplotype occurred in a basal clade while most East African haplotypes occurred in a second clade arising from the basal clade. Globally distributed haplotypes occurred in both clades demonstrating that populations outside Africa consist of mixtures of mosquitoes from both clades.

Conclusions

Populations of Ae. aegypti outside Africa consist of mosquitoes arising from one of two ancestral clades. One clade is basal and primarily associated with West Africa while the second arises from the first and contains primarily mosquitoes from East Africa  相似文献   

19.
Identifying genomics regions that are affected by selection is important to understand the domestication and selection history of the domesticated chicken, as well as understanding molecular pathways underlying phenotypic traits and breeding goals. While whole-genome approaches, either high-density SNP chips or massively parallel sequencing, have been successfully applied to identify evidence for selective sweeps in chicken, it has been difficult to distinguish patterns of selection and stochastic and breed specific effects. Here we present a study to identify selective sweeps in a large number of chicken breeds (67 in total) using a high-density (58 K) SNP chip. We analyzed commercial chickens representing all major breeding goals. In addition, we analyzed non-commercial chicken diversity for almost all recognized traditional Dutch breeds and a selection of representative breeds from China. Based on their shared history or breeding goal we in silico grouped the breeds into 14 breed groups. We identified 396 chromosomal regions that show suggestive evidence of selection in at least one breed group with 26 of these regions showing strong evidence of selection. Of these 26 regions, 13 were previously described and 13 yield new candidate genes for performance traits in chicken. Our approach demonstrates the strength of including many different populations with similar, and breed groups with different selection histories to reduce stochastic effects based on single populations.  相似文献   

20.
殷斯  郝转  陆飞东  高永 《广西植物》2023,43(11):2042-2054
研究野生作物资源的遗传变异及分化机制对种质资源的收集与改良具有重要意义。魔芋是我国西南地区的特色经济作物,但由于受到人为活动干扰,野生种群不断衰退。为评估西南地区魔芋属(Amorphophallus)野生群体的遗传多样性,探究代表性物种的系统发育地位,该研究利用3个叶绿体DNA(cpDNA)片段,分析了魔芋6个物种的遗传多样性,重建了种间系统发育关系。结果表明:(1)西南地区野生魔芋群体的遗传多样性普遍较低,虽然单倍型多样性(Hd)均值为0.428,但近一半群体只有1个单倍型,6个物种整体水平上的单倍型多样性在0.704到0.983之间。(2)在6个物种间检测到高水平的遗传分化,遗传分化系数(FST)值在0.481到0.967之间。(3)系统发育分析表明,选取的27个魔芋种主要聚成3个分支:非洲分支、东南亚分支和东亚大陆分支。疣柄魔芋(A. paeoniifolius)隶属于东南亚分支,而东亚大陆分支A包含花魔芋(A. konjac)和西盟魔芋(A. krausei),东亚大陆分支B由东亚魔芋(A. kiusianus)、滇魔芋(A. yunnanensis)和东京魔芋(A. tonkinensis)构成。生境隔离与人为干扰造成了西南地区野生魔芋群体较低的遗传多样性,魔芋属东亚大陆分支的分化可能与早期的快速扩张和生态适应有关。该研究为西南地区魔芋资源的合理保护、可持续利用和杂交育种提供了参考资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号