首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Khattak GS  Haq MA  Ashraf M  McNeilly T 《Hereditas》2001,134(3):211-217
Additive, dominance, and epistasis genetic basis of seed yield per plant, number of pods per plant, number of seeds per pod, and 1000 seed weight in mungbean (Vigna radiata (L.) Wilczek) have been examined, using Triple Test Cross (TTC) analysis. The material for TTC test was evaluated in two seasons i.e., kharif (July-October) and spring/summer (March-June), at the research station of the Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan. Epistasis was present significantly for number of pods per plant and number of seeds per pod when grown in the spring/summer season (March to June). Partition of epistasis showed that additive x additive ('i' type) interaction was an important component of number of pods per plant, and number of seeds per pod was found to be of both types 'i' type, and additive x dominance, and dominance x dominance ('j' and 'l' type) interactions. This indicated that epistasis might be a non-trivial factor in the inheritance of pods per plant, and seeds per pod in mungbean. The expression of epistasis was influenced differentially by particular genotypes, indicating that a limited number of genotypes may not be sufficient to detect non-allelic interactions for a trait in mungbean. Additive and dominance genetic components were significant for all four traits in kharif season (July to October) but only for seed yield and 1000 seed weight in spring/summer season. This suggests that the genes controlling seed yield per plant, and 1000 seed weight are equally sensitive to the environment. The predominance additive gene action in those traits is not significantly influenced by epistasis, suggesting that improvement of the traits can be achieved through standard selection procedures.  相似文献   

2.
Alternative models of the maintenance of genetic variability, theories of life-history evolution, and theories of sexual selection and mate choice can be tested by measuring additive and nonadditive genetic variances of components of fitness. A quantitative genetic breeding design was used to produce estimates of genetic variances for male life-history traits in Drosophila melanogaster. Additive genetic covariances and correlations between traits were also estimated. Flies from a large, outbred, laboratory population were assayed for age-specific competitive mating ability, age-specific survivorship, body mass, and fertility. Variance-component analysis then allowed the decomposition of phenotypic variation into components associated with additive genetic, nonadditive genetic, and environmental variability. A comparison of dominance and additive components of genetic variation provides little support for an important role for balancing selection in maintaining genetic variance in this suite of traits. The results provide support for the mutation-accumulation theory, but not the antagonistic-pleiotropy theory of senescence. No evidence is found for the positive genetic correlations between mating success and offspring quality or quantity that are predicted by “good genes” models of sexual selection. Additive genetic coefficients of variation for life-history characters are larger than those for body weight. Finally, this set of male life-history characters exhibits a very low correspondence between estimates of genetic and phenotypic correlations.  相似文献   

3.
Fourteen north-west European spring barley cultivars were grown alone or in binary mixtures sampled according to a partial diallel scheme. On the basis of the association between cultivars in mixture and monoculture, three groups of characters were distinguished. Group A characters, plant height, ear weight/tiller, grain yield/tiller, number of grains/tiller and 1000-grain weight, showed strong positive associations between performance in monoculture and mixture. Group B characters, number of tillers/plant and harvest index showed incomplete positive associations, while for group C characters, dry matter/plant, ear weight/plant, grain yield/plant and number of grains/plant, associations were weak or non-existent. Compound characters in group C showed less genetic variation in monoculture and lower general competitive effects in mixture than component characters in groups A or B. These results clearly indicate that while selection for grain yield and other characters on a per plant basis (group C characters) is confounded by intergenotypic competition, characters such as the yield components number of grains/tiller and 1000-grain weight (group A characters) are hardly affected in this range of cultivars. Selection for opposing group A characters may start in the F2 generation, while any selection for group B and C characters should be delayed until later generations. The merits of indirect selection for yield using visual assessment of yield components are discussed. Separate analyses obtained by the inclusion of spring wheat cv. Timmo in monoculture and in the set of mixtures indicated that the use of spring wheat plants to minimise intergenotypic competition ranges from superfluous (group A characters) to useless (group C characters). A large degree of mixture advantage and the lack of complementary dominance and suppression between competitor and associate was attributed to the relatively low density of plants in the experiment which, though suitable for single plant selection, is not typical of normal seed rates for cropping.  相似文献   

4.
Dominance may be an important source of non-additive genetic variance for many traits of dairy cattle. However, nearly all prediction models for dairy cattle have included only additive effects because of the limited number of cows with both genotypes and phenotypes. The role of dominance in the Holstein and Jersey breeds was investigated for eight traits: milk, fat, and protein yields; productive life; daughter pregnancy rate; somatic cell score; fat percent and protein percent. Additive and dominance variance components were estimated and then used to estimate additive and dominance effects of single nucleotide polymorphisms (SNPs). The predictive abilities of three models with both additive and dominance effects and a model with additive effects only were assessed using ten-fold cross-validation. One procedure estimated dominance values, and another estimated dominance deviations; calculation of the dominance relationship matrix was different for the two methods. The third approach enlarged the dataset by including cows with genotype probabilities derived using genotyped ancestors. For yield traits, dominance variance accounted for 5 and 7% of total variance for Holsteins and Jerseys, respectively; using dominance deviations resulted in smaller dominance and larger additive variance estimates. For non-yield traits, dominance variances were very small for both breeds. For yield traits, including additive and dominance effects fit the data better than including only additive effects; average correlations between estimated genetic effects and phenotypes showed that prediction accuracy increased when both effects rather than just additive effects were included. No corresponding gains in prediction ability were found for non-yield traits. Including cows with derived genotype probabilities from genotyped ancestors did not improve prediction accuracy. The largest additive effects were located on chromosome 14 near DGAT1 for yield traits for both breeds; those SNPs also showed the largest dominance effects for fat yield (both breeds) as well as for Holstein milk yield.  相似文献   

5.
Summary The triple test cross analysis of Jinks and Perkins (1970) was used to study different components of genetic variation in four barley F2 populations, C 164x IB 226, C 164xJyoti, IB 226xP 113 and DL 3xP 113, for final plant height, spike length, 100-kernel weight, grain yield per plant and harvest index. The overall epistasis (i type) was, in general, a minor component but the j & 1 type epistasis was an important element for all five characters in cross 3 (IB 226xP 113). Both the additive (D) and dominance (H) components were highly significant for all the five characters in all four crosses. The dominance was directional in all cases except for 100-grain weight in crosses 1 (C 164xIB 226), 2 (C 164xJyoti) and 4(DL 3xP 113).  相似文献   

6.
采用禾谷类作物种子数量性状的遗传模型,分析了灿型黑米稻品种双列杂交F1和F2种子的粒重,粒长,粒宽和粒长/粒宽等粒形性状的遗传效应及其与米粒中矿质元素Fe,Zn,Mn和P含量的遗传相关性,结果表明:4种粒形性状同时受制于种子直接遗传效应,母体效应和细胞质作用影响,其中种子直接遗传效应比母体效应和细胞质效应的作用更大,且种子直接遗传效应以加性效应占主导,粒重,粒宽和粒长/粒宽的种子直接遗传率较高,杂种早代单粒选择效果较好,粒长的种子直接遗传率和母体遗传率均属中等,较高世代的杂种进行单株选择和单粒选择均有一定效果,4种粒形性状与其米粒中矿质元素Fe,Zn,Mn和P含量表现较强的种子直接加性相关,直接显性相关,细胞质相关,母体加性相关和母体显性相关,在特种稻育种实践中,可以通过粒形性的间接选择,达到改良其矿质元素含量等营养品质性状的目标。  相似文献   

7.
Three crosses of spring wheat (Triticum aestivum L. em Thell) involving six cultivars (WC29, WH291, SGP 14, RAJ. 1972, WH377 and HD 2329) were selected on the basis of combining ability analysis to study genetics of transgressive segregation for tillers/plant, grains/spike, 1000 grain weight and grain yield/plant using various mating designs. Diallel analysis indicated that both additive and non- additive components were significant for all the characters. On the basis of general combining ability and specific combining ability effects, the parents WH 291 and WH 377 were found to be good general combiners for tillers/ plant, 1000 grain weight and grain yield/plant. For grains/spike SGP 14 was found to be a good general combiner. The cross WH 377 × HD 2329 for tillers/plant, SGP 14 × Raj. 1972 for grains/spike and grain yield/plant and WC 29 × WH 291 for 1000 grain weight were found to be good cross combinations. Generation mean analysis indicated that the additive-dominance model was inadequate for all the characters in all the crosses except for 1000 grain weight in WC29 × WH291. Additive component was more pronounced than non-additive components for all the characters in all the crosses except for tillers/ plant in WH 377 × HD 2329. Predictions for transgressive segregants from F3 was more accurate than that from generation mean analysis. However, prediction from both the sources were equally efficient if additive-dominance model was adequate. In general, observed frequencies of transgressive segregants were more in F2 and BIPi than F4 but the majority of them were discarded on progeny testing. Biparental mating had an impact in increasing the frequencies of transgressive segregants for different characters in all the crosses. The crosses, WH 377 × HD 2329 for grain yield/ plant, SGP 14 × Raj. 1972 for tillers/plant and WC 29 × WH 291 for grains/spike and 1000 grain weight were found to be potential crosses for transgressive segregants. A comparison of combining ability of parents and crosses, and observed and predicted frequencies of transgressive segregants indicated that the potential crosses for transgressive segregants were those that had high sea effects and involved high and low general combiners. The crosses involving low general combiners irrespective of their sea effects showed poor performance with respect to transgressive segregation.  相似文献   

8.
Summary Two experiments, each including the same 30 homozygous varieties of spring wheat plus one separate tester variety, were conducted in order to detect epistasis and to test and estimate the additive and dominance components of genetic variation for five quantitative traits: final plant height, spike length, number of spikelets per spike, 100-kernel weight and grain yield per plant. Epistasis played a significant role in the control of 100-kernel weight and yield per plant. There was a gratifyingly good agreement between the two independent methods (2¯B1i — ¯f1i — ¯Pi and 2¯Bci — ¯F1i) used to test the presence of epistasis. In both experiments, there was a remarkably uniform high dominance ratio for most of the traits studied indicating that this test cross design is equally sensitive to both additive and dominance genetic variation.  相似文献   

9.
烤烟主要农艺性状的遗传与相关分析   总被引:8,自引:0,他引:8  
肖炳光  朱军  卢秀萍  白永富  李永平 《遗传》2006,28(3):317-323
利用包括基因型与环境互作的加性-显性遗传模型,对14个烤烟品种(系)及其配制的41个杂交组合在4个环境下的7个农艺性状表现进行遗传分析。结果表明,株高、节距、腰叶宽主要受加性效应控制,叶数、腰叶长受显性×环境互作效应影响最大,茎围以加性×环境互作效应、显性×环境互作效应为主,产量以加性效应、显性×环境互作效应为主。适应当地生态条件的品种(系)具有较高的正向加性效应。许多组合的显性主效应及在各试验点的显性×环境互作效应在方向上不尽一致,杂交组合的选配宜针对特定的生态环境进行。性状相关分析表明,大多数成对性状的各项相关系数为正值,且多以加性遗传相关为主,可利用株高对产量进行间接选择。
  相似文献   

10.
Summary Genetical studies on grain yield and its contributing traits were made in a six parent complete diallel in the F1 and F2 generations of one of the most widely grown grain species of grain amaranths (Amaranthus hypochondriacus L.). Graphical analysis indicated that epistasis exists for 1,000-grain weight in the F1. Grain weight/panicle, yield/plant and harvest index indicated absence of non-allelic gene interaction. The harvest index in the F1 and F2 and grain weight/ panicle, 1,000-grain weight, yield/plant in the F2 appeared to be controlled by overdominance effects. Higher grain yield appeared to be associated with dominant genes. Both additive and non-additive gene effects were responsible for the genetic variation in the diallel population. However, dominance variance was more important than additive variance in grain yield/ plant and harvest index in the F1 and F2. For 1,000-grain weight additive genetic variance was more important in the F1 and non-additive in F2. There was overdominance of a consistent nature in the two analyses for harvest index in the F1 and F2, grain weight/ panicle, 1,000-grain weight and yield/plant in the F2 and partial dominance for 1,000-grain weight in the F1.  相似文献   

11.
Summary A 5 X 5 diallel cross among well-adapted varieties of gram from different agroclimatic regions was studied for heterosis, combining ability and inheritance of days-to-flowering, primary branches, pods per plant, 100-seed weight and grain yield. A high degree of heterosis over mid-parent and better parent was observed for primary branches, no. of pods and grain yield, whereas very little heterosis was exhibited for days-to-flower and 100-seed weight. Crosses among lines of diverse origin generally gave higher heterosis and over-dominance than lines from the same region. Primary branch number, pod number, and grain yield exhibited positive over-dominance; days-to-flower showed negative over-dominance while 100-seed weight had no dominance. Both general and specific combining ability effects were significant for all the characters studied but g.c.a. effects appeared to be more important for days-to-flower, 100-seed weight and grain yield. Graphical analysis indicated additive effects for all the characters, with complete dominance for days-to-flower, no dominance for 100-seed weight and over-dominance for the other three characters. Dominant genes conditioned earliness, primary branch number and 100-seed weight. The role of various parents and crosses in planning a hybridization programme has been discussed.  相似文献   

12.
小麦品种间杂种优势与配合力分析   总被引:9,自引:1,他引:8  
对9个冬小麦亲本13个性状的杂种优势分析表明,产量性状的杂种优势较强,品质性状的杂种优势较弱。籽粒蛋白质含量、硬度和湿面筋、干面筋含量偏低亲或中亲遗传,沉淀值偏高遗传,存在较明显杂种优势(16.1-23.8%)。  相似文献   

13.
Best linear unbiased prediction (BLUP) has been found to be useful in maize (Zea mays L.) breeding. The advantage of including both testcross additive and dominance effects (Intralocus Model) in BLUP, rather than only testcross additive effects (Additive Model), has not been clearly demonstrated. The objective of this study was to compare the usefulness of Intralocus and Additive Models for BLUP of maize single-cross performance. Multilocation data from 1990 to 1995 were obtained from the hybrid testing program of Limagrain Genetics. Grain yield, moisture, stalk lodging, and root lodging of untested single crosses were predicted from (1) the performance of tested single crosses and (2) known genetic relationships among the parental inbreds. Correlations between predicted and observed performance were obtained with a delete-one cross-validation procedure. For the Intralocus Model, the correlations ranged from 0.50 to 0.66 for yield, 0.88 to 0.94 for moisture, 0.47 to 0.69 for stalk lodging, and 0.31 to 0.45 for root lodging. The BLUP procedure was consistently more effective with the Intralocus Model than with the Additive Model. When the Additive Model was used instead of the Intralocus Model, the reductions in the correlation were largest for root lodging (0.06–0.35), smallest for moisture (0.00–0.02), and intermediate for yield (0.02–0.06) and stalk lodging (0.02–0.08). The ratio of dominance variance (v D) to total genetic variance (v G) was highest for root lodging (0.47) and lowest for moisture (0.10). The Additive Model may be used if prior information indicates that VD for a given trait has little contribution to VG. Otherwise, the continued use of the Intralocus Model for BLUP of single-cross performance is recommended.  相似文献   

14.
Summary Spaced plants of a segregating soybean hybrid population in the F6 generation were scored for fourteen quantitative traits related to yield, foliage development and growth duration. Full-sib relationships were used to estimate the genetic additive components of variation and covariation. All genetic correlations between traits, as well as phenotypic and environmental correlations, were estimated separately. A principal component analysis was further performed in all three cases. Genetic correlations identified four different groups of traits comprised of: (I) seed number per pod; (II) mean seed weight; (III) dry weight and chlorophyll content per unit leaf area; (IV) all the other characters, including seed yield and total plant weight at maturity. Among these traits, stem diameter at ground level appeared to be a good indicator of yield. This distribution remained about the same for the environmental correlations, except that growth duration traits and foliage development traits became independent of yield. The implications of these results are discussed in relation to soybean breeding for climatic adaptation.  相似文献   

15.
Determination of genetic basis of heterosis may promote hybrid production in Upland cotton (Gossypium hirsutum L.). This study was designed to explore the genetic mechanism of heterosis for yield and yield components in F2: 3 and F2: 4 populations derived from a hybrid ‘Xinza No. 1’. Replicated yield field trials of the progenies were conducted in 2008 and 2009. Phenotypic data analyses indicated overdominance in F1 for yield and yield components. Additive and dominance effects at single-locus level and digenic epistatic interactions at two-locus level were analyzed by 421 marker loci spanning 3814 cM of the genome. A total of 38 and 49 QTLs controlling yield and yield components were identified in F2: 3 and F2: 4 populations, respectively. Analyses of these QTLs indicated that the effects of partial dominance and overdominance contributed to heterosis in Upland cotton simultaneously. Most of the QTLs showed partial dominance whereas 13 QTLs showing overdominance in F2:3 population, and 19 QTLs showed overdominance in F2:4. Among them, 21 QTLs were common in both F2: 3 and F2: 4 populations. A large number of two-locus interactions for yield and yield components were detected in both generations. AA (additive × additive) epistasis accounted for majority portion of epistatic effects. Thirty three complementary two-locus homozygotes (11/22 and 22/11) were the best genotypes for AA interactions in terms of bolls per plant. Genotypes of double homozygotes, 11/22, 22/11 and 22/22, performed best for AD/DA interactions, while genotype of 11/12 performed best for DD interactions. These results indicated that (1) partial dominance and overdominance effects at single-locus level and (2) epistasis at two-locus level elucidated the genetic basis of heterosis in Upland cotton.  相似文献   

16.
Summary In a diallel cross of Phaseolus aureus involving five varieties, combining ability and gene action for grain yield, grains per pod and pods per plant were estimated. The study indicated that both general combining ability and specific combining ability effects were significant and important for all three traits. Partial dominance for grain yield and partial to over-dominance for grains per pod and pods per plant were observed. Dominant genes seem to govern the inheritance of all three characters. Combining ability, and graphical and component variance analyses indicated that the grain yield and two of its components are influenced by both additive and non-additive gene action.  相似文献   

17.
Drought stress (DS) is one of the most critical environmental abiotic stresses for wheat production in the arid environments. Selection of high-yielding genotypes tolerant to DS can play a significant role in mitigation the negative impacts associated with DS. In the present study, generation means analysis (GMA) was used to study the performance of two crosses under well irrigation (WI) and deficit irrigation [cross I (Line 44 × Shandweel-1) and cross II (Line 20 × Sakha 93)]. Significant differences were observed for days to heading (DH), days to maturity (DM), plant height (PH), spike length (SL), number of spikes per plant (NS/P), number of grains per spike (NG/S), thousand-grain weight (TGW), grain yield per plant (GY/P), and proline content (PC) in the six populations of the two crosses within each irrigation level. Cross II had early maturity and the highest PC, NS/P, TGW, and GY/P regardless of the irrigation level. Cross I showed positive significant relative heterosis and heterobeltiosis for GY/P under the two irrigation levels. The inheritance of characters of cross I revealed additive, dominant, and epistatic effects, which varied with trait and stress. Additive genetic effects predominated in DH, SL, and PC, while non- additive were found in DM, NS/P, NG/S, and GY/P. Narrow-sense heritability estimates (h2n) were high for DH and PC, moderate to high for PH and SL, moderate for DM, NG/S, NS/P, and TGW, and low for GY/P. Based on different drought indices the populations BC1, BC2, F1, and P1 of cross II and BC1 of cross I were more tolerant to drought stress. Therefore, PC, TGW and DH can be used as selection indicators to improve wheat for drought tolerance in early generations and other yield components traits in late generations. The second cross (Line 20 × Sakha 93) shows promise and is of interest to a drought tolerance breeding program, where wheat breeders can use recombinant breeding strategies to construct desirable drought stress genes. Correlation and path coefficient revealed that TGW and PC were the main contributor in grain yield in both environments.  相似文献   

18.
Summary Tassel branch numbers of six crosses of maize (Zea mays L.) were analyzed to determine inheritance of this trait. Generation mean analyses were used to estimate genetic effects, and additive and nonadditive components of variance were calculated and evaluated for bias due to linkage. Both narrow-sense and broad-sense heritabilities were estimated. Additive genetic variance estimates were significant in five of the six crosses, whereas estimates of variance due to nonadditive components were significant in only three crosses. Additionally, estimates of additive variance components usually were larger than corresponding nonadditive components. There was no evidence for linkage bias in these estimates. Estimates of additive genetic effects were significant in four of six crosses, but significant dominance, additive × additive and additive × dominance effects also were detected. Additive, dominance, and epistatic gene action, therefore, all influenced the inheritance of tassel branch number, but additive gene action was most important. Both narrow-sense and broadsense heritability estimates were larger than those reported for other physiological traits of maize and corroborated conclusions concerning the importance of additive gene action inferred from analyses of genetic effects and variances. We concluded that selection for smalltasseled inbreds could be accomplished most easily through a mass-selection and/or pedigree-selection system. Production of a small-tasseled hybrid would require crossing of two small-tasseled inbreds. We proposed two genetic models to explain unexpected results obtained for two crosses. One model involved five interacting loci and the other employed two loci displaying only additive and additive × additive gene action.Journal Paper No. J-9231 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa 50011. Project No. 2152  相似文献   

19.
粳稻品质性状间及其与植株性状和产量性状间的遗传相关   总被引:4,自引:0,他引:4  
吕文彦  张鉴  邵国军  周鸿飞  曹萍 《遗传》2005,27(4):601-604
利用朱军等提出的种子性状遗传模型,采用 3×3 NCⅡ正反交设计的亲本和部分组合F2代种子,分析了品质性状糙米率、垩白粒率、垩白面积和AC间及上述品质性状与株高、穗部性状等的遗传相关,以期为粳稻育种后代选择提供指导。结果表明,精米重与糙米率存在极显著的母体加性相关;虽然控制品质性状的主要遗传效应分量与植株性状相应遗传效应分量遗传协方差不显著,但在其他相应遗传效应分量方面存在着复杂的关系。  相似文献   

20.
Cereal crop yield is determined by different yield components such as seed weight, seed number per spike and the tiller number and spikes. Negative correlations between these traits are often attributed to resource limitation. However, recent evidence suggests that the same genes or regulatory modules can regulate both inflorescence branching and tillering. It is therefore important to explore the role of genetic correlations between different yield components in small grain cereals. In this work, we studied pleiotropic effects of row type genes on seed size, seed number per spike, thousand grain weight, and tillering in barley to better understand the genetic correlations between individual yield components. Allelic mutants of nine different row type loci (36 mutants), in the original spring barley varieties Barke, Bonus and Foma and introgressed in the spring barley cultivar Bowman, were phenotyped under greenhouse and outdoor conditions. We identified two main mutant groups characterized by their relationships between seed and tillering parameters. The first group comprises all mutants with an increased number of seeds and significant change in tiller number at early development (group 1a) or reduced tillering only at full maturity (group 1b). Mutants in the second group are characterized by a reduction in seeds per spike and tiller number, thus exhibiting positive correlations between seed and tiller number. Reduced tillering at full maturity (group 1b) is likely due to resource limitations. In contrast, altered tillering at early development (groups 1a and 2) suggests that the same genes or regulatory modules affect inflorescence and shoot branching. Understanding the genetic bases of the trade-offs between these traits is important for the genetic manipulation of individual yield components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号