首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sex differences in the genetic architecture of behavioral traits can offer critical insight into the processes of sex‐specific selection and sexual conflict dynamics. Here, we assess genetic variances and cross‐sex genetic correlations of two personality traits, aggression and activity, in a sexually size‐dimorphic spider, Nuctenea umbratica. Using a quantitative genetic approach, we show that both traits are heritable. Males have higher heritability estimates for aggressiveness compared to females, whereas the coefficient of additive genetic variation and evolvability did not differ between the sexes. Furthermore, we found sex differences in the coefficient of residual variance in aggressiveness with females exhibiting higher estimates. In contrast, the quantitative genetic estimates for activity suggest no significant differentiation between males and females. We interpret these results with caution as the estimates of additive genetic variances may be inflated by nonadditive genetic effects. The mean cross‐sex genetic correlations for aggression and activity were 0.5 and 0.6, respectively. Nonetheless, credible intervals of both estimates were broad, implying high uncertainty for these estimates. Future work using larger sample sizes would be needed to draw firmer conclusions on how sexual selection shapes sex differences in the genetic architecture of behavioral traits.  相似文献   

2.
Directional and stabilizing selection tend to deplete additive genetic variance. On the other hand, genetic variance in traits related to fitness could be retained through polygenic mutation, spatially varying selection, genotype-environment interaction, or antagonistic pleiotropy. Most estimates of genetic variance in fitness-related traits have come from laboratory studies, with few estimates of heritability made under natural conditions, particularly for longer lived organisms. Here I estimated additive genetic variance in life-history characters of a monocarpic herb, Ipomopsis aggregata, that lives for up to a decade. Experimental crosses yielded 229 full-sibships nested within 32 paternal half-sibships. More than 5000 offspring were planted as seeds into natural field sites and were followed in most cases through their entire life cycle. Survival showed substantial additive genetic variance (genetic coefficient of variation ≈ 54%). Small differences at seedling emergence were magnified over time, such that the genetic variability in survival was only detectable by tracking the success of offspring for several years starting from seed. In contrast to survival, reproductive traits such as flower number, seeds per flower, and age at flowering showed little or no genetic variability. Despite relatively high levels of additive genetic variation for some life-history characters, high environmental variance in survival resulted in very low heritabilities (0–9%) for all of these characters. Maternal effects were evident in seed mass and remained strong throughout the lengthy vegetative period. No negative genetic correlations between major components of female fitness were detected. Mean corolla width for a paternal family was, however, negatively correlated with the finite rate of increase based on female fitness. That negative correlation could help to maintain additive genetic variance in the face of strong selection through male function for wide corollas.  相似文献   

3.
Variation among females in mate choice may influence evolution by sexual selection. The genetic basis of this variation is of interest because the elaboration of mating preferences requires additive genetic variation in these traits. Here we measure the repeatability and heritability of two components of female choosiness (responsiveness and discrimination) and of female preference functions for the multiple ornaments borne by male guppies (Poecilia reticulata). We show that there is significant repeatable variation in both components of choosiness and in some preference functions but not in others. There appear to be several male ornaments that females find uniformly attractive and others for which females differ in preference. One consequence is that there is no universally attractive male phenotype. Only responsiveness shows significant additive genetic variation. Variation in responsiveness appears to mask variation in discrimination and some preference functions and may be the most biologically relevant source of phenotypic and genetic variation in mate-choice behavior. To test the potential evolutionary importance of the phenotypic variation in mate choice that we report, we estimated the opportunity for and the intensity of sexual selection under models of mate choice that excluded and that incorporated individual female variation. We then compared these estimates with estimates based on measured mating success. Incorporating individual variation in mate choice generally did not predict the outcome of sexual selection any better than models that ignored such variation.  相似文献   

4.
Comparing Evolvability and Variability of Quantitative Traits   总被引:35,自引:0,他引:35       下载免费PDF全文
D. Houle 《Genetics》1992,130(1):195-204
There are two distinct reasons for making comparisons of genetic variation for quantitative characters. The first is to compare evolvabilities, or ability to respond to selection, and the second is to make inferences about the forces that maintain genetic variability. Measures of variation that are standardized by the trait mean, such as the additive genetic coefficient of variation, are appropriate for both purposes. Variation has usually been compared as narrow sense heritabilities, but this is almost always an inappropriate comparative measure of evolvability and variability. Coefficients of variation were calculated from 842 estimates of trait means, variances and heritabilities in the literature. Traits closely related to fitness have higher additive genetic and nongenetic variability by the coefficient of variation criterion than characters under weak selection. This is the reverse of the accepted conclusion based on comparisons of heritability. The low heritability of fitness components is best explained by their high residual variation. The high additive genetic and residual variability of fitness traits might be explained by the great number of genetic and environmental events they are affected by, or by a lack of stabilizing selection to reduce their phenotypic variance. Over one-third of the quantitative genetics papers reviewed did not report trait means or variances. Researchers should always report these statistics, so that measures of variation appropriate to a variety of situations may be calculated.  相似文献   

5.
Body size is an important determinant of fitness in many organisms. While size will typically change over the lifetime of an individual, heritable components of phenotypic variance may also show ontogenetic variation. We estimated genetic (additive and maternal) and environmental covariance structures for a size trait (June weight) measured over the first 5 years of life in a natural population of bighorn sheep Ovis canadensis. We also assessed the utility of random regression models for estimating these structures. Additive genetic variance was found for June weight, with heritability increasing over ontogeny because of declining environmental variance. This pattern, mirrored at the phenotypic level, likely reflects viability selection acting on early size traits. Maternal genetic effects were significant at ages 0 and 1, having important evolutionary implications for early weight, but declined with age being negligible by age 2. Strong positive genetic correlations between age-specific traits suggest that selection on June weight at any age will likely induce positively correlated responses across ontogeny. Random regression modeling yielded similar results to traditional methods. However, by facilitating more efficient data use where phenotypic sampling is incomplete, random regression should allow better estimation of genetic (co)variances for size and growth traits in natural populations.  相似文献   

6.
Summary Tassel branch numbers of six crosses of maize (Zea mays L.) were analyzed to determine inheritance of this trait. Generation mean analyses were used to estimate genetic effects, and additive and nonadditive components of variance were calculated and evaluated for bias due to linkage. Both narrow-sense and broad-sense heritabilities were estimated. Additive genetic variance estimates were significant in five of the six crosses, whereas estimates of variance due to nonadditive components were significant in only three crosses. Additionally, estimates of additive variance components usually were larger than corresponding nonadditive components. There was no evidence for linkage bias in these estimates. Estimates of additive genetic effects were significant in four of six crosses, but significant dominance, additive × additive and additive × dominance effects also were detected. Additive, dominance, and epistatic gene action, therefore, all influenced the inheritance of tassel branch number, but additive gene action was most important. Both narrow-sense and broadsense heritability estimates were larger than those reported for other physiological traits of maize and corroborated conclusions concerning the importance of additive gene action inferred from analyses of genetic effects and variances. We concluded that selection for smalltasseled inbreds could be accomplished most easily through a mass-selection and/or pedigree-selection system. Production of a small-tasseled hybrid would require crossing of two small-tasseled inbreds. We proposed two genetic models to explain unexpected results obtained for two crosses. One model involved five interacting loci and the other employed two loci displaying only additive and additive × additive gene action.Journal Paper No. J-9231 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa 50011. Project No. 2152  相似文献   

7.
A sib analysis of adult life-history characters was performed on about twelve hundred females from a laboratory Drosophila melanogaster population that had been sampled from nature and cultured so as to preserve its genetic variability. The following results were found. There was no detectable trend with age in additive or dominance genetic variances for age-specific fecundity. Environmental variance for age-specific fecundity increased with age. The genetic variance for fecundity characters was primarily additive. The genetic variance for longevity was primarily dominance variance. There were negative genetic correlations between early fecundity and lifespan, as well as between mean egg-laying rate and longevity.  相似文献   

8.
In Tribolium flour beetles and other organisms, individuals migrate between heterogeneous environments where they often encounter markedly different nutritional conditions. Under these circumstances, theory suggests that genotype-by-environment interactions (GEI) may be important in facilitating adaptation to new environments and maintaining genetic variation for male traits subject to directional selection. Here, we used a nested half-sib breeding design with Tribolium castaneum to partition the separate and joint effects of male genotype and nutritional environment on phenotypic variation in a comprehensive suite of life-history traits, reproductive performance measures across three sequential sexual selection episodes, and fitness. When male genotypes were tested across three nutritional environments, considerable phenotypic plasticity was found for male mating and insemination success, longevity and traits related to larval development. Our results also revealed significant additive genetic variation for male mating rate, sperm offence ability (P(2)), longevity and total fitness and for several traits reflecting both larval and adult resource use. In addition, we found evidence supporting GEI for sperm defence ability (P(1)), adult longevity and larval development; thus, no single male genotype outperforms others in every nutritional environment. These results provide insight into the potential roles of phenotypic plasticity and GEI in facilitating Tribolium adaptation to new environments in ecological and evolutionary time.  相似文献   

9.
Summary Additive genetic, dominance genetic and environmental correlations between pairs of agronomically important characters in five spring barley crosses were calculated from estimates of the components of variance and covariance, obtained by Triple Test Cross analysis. Phenotypic correlations were calculated from the Triple Test Cross family means and compared to the additive genetic correlations. Phenotypic correlations were generally lower than the additive genetic correlations and, occasionally, of different sign. The highest phenotypic correlations between single plant yield and its components were found with number of tillers whereas these were the lowest additive genetic correlations, thousand grain weight giving the highest. High dominance genetic correlations were found between single plant yield and both grain number and thousand grain weight thus indirect early generation selection for single plant yield using these two characters would be ineffective. Additive and dominance genetic correlations confirm association of the erectoides dwarfing gene with low thousand grain weight and plant yield.  相似文献   

10.
The trajectory of phenotypic evolution is constrained in the short term by genetic correlations among traits. However, the extent to which genetic correlations impose a lasting constraint is generally unknown. Here, I examine the genetic architecture of life-history variation in male and female gametophytes from two populations of the moss Ceratodon purpureus, focusing on genetic correlations within and between the sexes. A significant negative correlation between allocation to vegetative and reproductive tissue was evident in males of both populations, but not females. All traits showed between-sex correlations of significantly less than one, indicating additive genetic variance for sexual dimorphism. The degree of dimorphism for traits was significantly negatively associated with the strength of the between-sex correlation. The structure of genetic correlations among life-history traits was more divergent between the two populations in females than in males. Collectively, these results suggest that genetic correlations do not impose a lasting constraint on the evolution of life-history variation in the species.  相似文献   

11.
Kelly JK  Arathi HS 《Heredity》2003,90(1):77-83
The additive genetic variance, V(A), is frequently used as a measure of evolutionary potential in natural plant populations. Many plants inbreed to some extent; a notable observation given that random mating is essential to the model that predicts evolutionary change from V(A). With inbreeding, V(A) is not the only relevant component of genetic variation. Several nonadditive components emerge from the combined effects of inbreeding and genetic dominance. An important empirical question is whether these components are quantitatively significant. We use maximum likelihood estimation to extract estimates for V(A) and the nonadditive 'inbreeding components' from an experimental study of the wildflower Mimulus guttatus. The inbreeding components contribute significantly to four of five floral traits, including several measures of flower size and stigma-anther separation. These results indicate that inbreeding will substantially alter the evolutionary response to natural selection on floral characters.  相似文献   

12.
Bubliy OA  Loeschcke V 《Heredity》2002,89(1):70-75
A half-sib analysis was used to investigate genetic variation for three morphological traits (thorax length, wing length and sternopleural bristle number) and two life-history traits (developmental time and larva-to-adult viability) in Drosophila melanogaster reared at a standard (25 degrees C) and a low stressful (13 degrees C) temperature. Both phenotypic and environmental variation showed a significant increase under stressful conditions in all traits. For estimates of genetic variation, no statistically significant differences were found between the two environments. Narrow heritabilities tended to be higher at 13 degrees C for sternopleural bristle number and viability and at 25 degrees C for wing length and developmental time, whereas thorax length did not show any trend. However, the pattern of genetic variances and evolvability indices (coefficient of genetic variation and evolvability), considered in the context of literature evidence, indicated the possibility of an increase in additive genetic variation for the morphological traits and viability and in nonadditive genetic variation for developmental time. The data suggest that the effect of stressful temperature may be trait-specific and this warns against generalizations about the behaviour of genetic variation under extreme conditions.  相似文献   

13.
Evans JP  Simmons LW 《Genetica》2008,134(1):5-19
The good-sperm and sexy-sperm (GS-SS) hypotheses predict that female multiple mating (polyandry) can fuel sexual selection for heritable male traits that promote success in sperm competition. A major prediction generated by these models, therefore, is that polyandry will benefit females indirectly via their sons' enhanced fertilization success. Furthermore, like classic 'good genes' and 'sexy son' models for the evolution of female preferences, GS-SS processes predict a genetic correlation between genes for female mating frequency (analogous to the female preference) and those for traits influencing fertilization success (the sexually selected traits). We examine the premise for these predictions by exploring the genetic basis of traits thought to influence fertilization success and female mating frequency. We also highlight recent debates that stress the possible genetic constraints to evolution of traits influencing fertilization success via GS-SS processes, including sex-linked inheritance, nonadditive effects, interacting parental genotypes, and trade-offs between integrated ejaculate components. Despite these possible constraints, the available data suggest that male traits involved in sperm competition typically exhibit substantial additive genetic variance and rapid evolutionary responses to selection. Nevertheless, the limited data on the genetic variation in female mating frequency implicate strong genetic maternal effects, including X-linkage, which is inconsistent with GS-SS processes. Although the relative paucity of studies on the genetic basis of polyandry does not allow us to draw firm conclusions about the evolutionary origins of this trait, the emerging pattern of sex linkage in genes for polyandry is more consistent with an evolutionary history of antagonistic selection over mating frequency. We advocate further development of GS-SS theory to take account of the complex evolutionary dynamics imposed by sexual conflict over mating frequency.  相似文献   

14.
Selection for increased morphometric shape (ratio of wing length to thorax width) was compared between control (nonbottlenecked) populations and bottlenecked populations founded with two male–female pairs of flies. Contrary to neutral expectation, selectional response was not reduced in bottlenecked populations, and the mean realized heritabilities and additive genetic variances were higher for the bottlenecked lines than for the nonbottlenecked lines. Additive genetic variances based on these realized heritabilities were consistent with independent estimates of genetic variances based on parent–offspring covariances. Joint scaling tests applied to the crosses between selected lines and their controls revealed significant nonadditive components of genetic variance in the ancestor, which were not detected in the crosses involving bottlenecked lines. The nonbottlenecked lines responded principally by changes in one trait or the other (wing length or thorax width) but not in both, and regardless of which trait responded, larger trait size was dominant and epistatic to smaller size. Stabilizing selection for morphometric shape in the ancestor likely molded the genetic architecture to include nonadditive genetic effects.  相似文献   

15.
Ejaculates function as an integrated unit to ensure male fertility and paternity, can have a complex structure, and can experience multiple episodes of selection. Current studies on the evolution of ejaculates typically focus on phenotypic variation in sperm number, size, or related traits such as testes size as adaptations to postcopulatory male-male competition. However, the evolution of the integrated nature of ejaculate structure and function depends on genetic variation in and covariation between the component parts. Here we report a quantitative genetic study of the components of the ejaculate of the cockroach Nauphoeta cinerea, including those we know to experience postcopulatory sexual selection, in the context of functional integration of ejaculate characters. We use the patterns of genetic variation and covariation to infer how the integration of the functions of the ejaculate constrain and shape its evolution. Ejaculate components were highly variable, showed significant additive genetic variance, and moderate to high evolvability. The level of genetic variation in these characters, despite strong directional or truncating selection, may reflect the integration of multiple episodes of selection that occur in N. cinerea. There were few significant phenotypic correlations, but all the genetic correlations among ejaculate characters were significantly different from zero. The patterns of genetic variation and covariation suggest that there are important trade-offs among individual traits of the ejaculate and that evolution of ejaculate characteristics will not proceed unconstrained. Fully describing the genetic relationships among traits that perform as an integrated unit helps us understand how functional relationships constrain or facilitate the evolution of the complex structure that is the ejaculate.  相似文献   

16.
A number of studies have shown that in several animal species females prefer dominant males as mating partners, but fewer attempts have been made to measure possible indirect benefits of this choice. One reason for this may be that, even though dominance is a widely used concept, the definition of dominance still remains controversial Furthermore, defining and measuring the heritability of social behaviors is problematic because they are not individual traits but, by definition, involve interactions between at least two individuals. In this study we estimated heritabilities and coefficients of additive genetic variances (CVA) for male traits that are closely associated with dominance and female mating preferences in bank voles (Clethrionomys glareolus). The heritability values were estimated using father-offspring regression. All heritability estimates were relatively high ranging from 0.531 (urine marking) to 0.767 (preputial glands). The CVA-values indicated high levels of additive genetic variance especially in the characters most closely related to dominance: the weight of preputial glands and urine marking behavior. All phenotypic correlations among the traits measured were significantly positive and the genetic correlations were of similar magnitude as the corresponding phenotypic counterparts. Even though heritabilities may be lower in the natural environment than under controlled laboratory conditions, our results suggest that characters closely related to dominance may be at least partly genetically determined.  相似文献   

17.
Male guppies (Poecilia reticulata) exhibit extreme phenotypic and genetic variability for several traits that are important to male fitness, and several lines of evidence suggest that resource level affects phenotypic expression of these traits in nature. We tested the hypothesis that genetic variation for male secondary sex traits could be maintained by genotype-specific effects of variable resource levels (genotype-environment interaction). To do this, we measured genetic variation and covariation under two environmental conditions--relatively low and relatively high food availability. We found high levels of genetic variation for most traits, but we only found a significant G x E interaction across food levels for one trait (body size) for one population. The across-environment correlations for size were large and positive, indicating that the reaction norms for size did not cross. We also found that male colour pattern elements had nearly an order of magnitude more genetic variation than did male size. Heritability estimates indicated that Y-linked genes are responsible for some of the genetic variation in male size and colour traits. We discuss implications of these results for theories of the maintenance of genetic variation in male secondary sexual traits in guppies.  相似文献   

18.
Estimates of genetic components are important for our understanding of how individual characteristics are transferred between generations. We show that the level of heritability varies between 0.12 and 0.68 in six morphological traits in house sparrows (Passer domesticus L.) in northern Norway. Positive and negative genetic correlations were present among traits, suggesting evolutionary constraints on the evolution of some of these characters. A sexual difference in the amount of heritable genetic variation was found in tarsus length, wing length, bill depth and body condition index, with generally higher heritability in females. In addition, the structure of the genetic variance-covariance matrix for the traits differed between the sexes. Genetic correlations between males and females for the morphological traits were however large and not significantly different from one, indicating that sex-specific responses to selection will be influenced by intersexual differences in selection differentials. Despite this, some traits had heritability above 0.1 in females, even after conditioning on the additive genetic covariance between sexes and the additive genetic variances in males. Moreover, a meta-analysis indicated that higher heritability in females than in males may be common in birds. Thus, this indicates sexual differences in the genetic architecture of birds. Consequently, as in house sparrows, the evolutionary responses to selection will often be larger in females than males. Hence, our results suggest that sex-specific additive genetic variances and covariances, although ignored in most studies, should be included when making predictions of evolutionary changes from standard quantitative genetic models.  相似文献   

19.
Allen DE  Lynch M 《Genetics》2008,179(3):1497-1502
Sexual reproduction is generally believed to yield beneficial effects via the expansion of expressed genetic variation, which increases the efficiency of selection and the adaptive potential of a population. However, when nonadditive gene action is involved, sex can actually impede the adaptive progress of a population. If selection promotes coupling disequilibria between genes of similar effect, recombination and segregation can result in a decrease in expressed genetic variance in the offspring population. In addition, when nonadditive gene action underlies a quantitative trait, sex can produce a change in trait means in a direction opposite to that favored by selection. In this study we measured the change in genotypic trait means and genetic variances across a sexual generation in four populations of the cyclical parthenogen Daphnia pulicaria, which vary predictably in their incidence of sexual reproduction. We show that both the costs and benefits of sex, as measured by changes in means and variances in life-history traits, increase substantially with decreasing frequency of sex.  相似文献   

20.
The heritability estimates of 25 external morphometric characters and 23 craniometric indices are obtained by use of variances in monoclonal all-female triploids and bisexual tetraploids of spined loaches (genus Cobitis, Cobitidae) collected from the same breeding biotope. Most of studied traits demonstrate low heritability confirming previous conclusion on the similarity between external morphometric characters and craniological indices in relative effects of genetic and environmental components in their total phenotypic variation. Low heritability estimates in most of external morphological traits correspond to their low diagnostic value in Cobitis species. As a whole, in spite of certain deviations, studies on clonal forms do not refute the concept on higher heritability estimates in diagnostically significant traits in comparison with traits without diagnostic values in the same taxonomic group. Low heritability in most morphometric traits more probably is resulted from their low additive genetic variation caused by strong selection of evolutionary developed specific body shape in spined loaches, because strong selection should reduce the genetic variance in body proportions to minimal size. Sex differences observed in heritability estimates should be interpreted as a result of linkage of several additive genes controlling these traits to sex chromosomes. A few characters demonstrating high heritability estimates up to 0.492–0.580 are of great interest for taxonomic and phylogenetic studies in genus Cobitis and related taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号