首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
草地是陆地生态系统中最重要、分布最广的生态系统类型之一,对全球碳循环和气候调节有着重要的作用和效应.我国拥有极为丰富的草地资源,是巨大的陆地碳储存库,也是全球碳循环重要组成部分.干湿交替是土壤中普遍发生的自然现象,这种现象的发生可能会加速土壤的碳矿化过程、激增土壤呼吸以及影响微生物的活性和群落结构等.在全球变化日趋显著的背景下,降雨量、降雨强度以及降雨频率的变化将会加速土壤干湿交替进程,进而带来微生物活性、群落结构以及土壤呼吸的变化,并对全球碳循环过程产生重要影响.本文综述了近十年来国内外的相关文献,对干湿交替条件下,土壤释放CO2消耗碳源、土壤呼吸随时间的动态变化趋势以及土壤呼吸与微生物量、微生物活性和微生物群落结构之间的关系进行了分析和总结,以期为更好地理解干湿交替过程中草地生态系统土壤呼吸的微生物学响应机制,更准确地预测和评估未来的全球陆地生态系统的碳收支与气候变化提供一定的理论基础.  相似文献   

2.
UV-B辐射增强对陆地生态系统碳循环的影响   总被引:1,自引:0,他引:1  
作为全球变化的重要现象之一,紫外射线B(UV-B,波长280~320 nm)辐射增强对陆地生态系统碳循环具有重要影响.UV-B辐射增强主要通过改变植物的光合作用、凋落物分解以及土壤呼吸来影响陆地生态系统碳的输入和转化输出.其他气候因子(大气CO2浓度、温度和水分)可能会促进或减缓UV-B辐射对陆地生态系统碳循环的作用.本文介绍了UV-B辐射增强的背景,综述了国内外近年来UV-B辐射增强及与其他气候因子交互作用对陆地生态系统碳循环的影响,总结了目前研究存在的不足,讨论了未来的研究重点和方向.  相似文献   

3.
陆地生态系统碳源与碳汇及其影响机制研究进展   总被引:27,自引:2,他引:25  
全球碳循环研究中发现,目前已知碳源与碳汇不能达到平衡。存在一个很大的碳失汇。大气、海洋和陆地生态系统是人工源CO2的3个可能的容纳汇,其中陆地生态系统最复杂、最具不确定性,因此陆地生态系统碳源与碳汇研究是全球碳循环研究的核心问题之一。大气成分监测、CO2通量测定、森林资源清查以及模型模拟等方面的研究都表明,CO2施肥效应、氮沉降增加、污染、全球气候变化以及土地利用变化,是影响陆地生态系统碳储量的主要生态机制,但不确定在过去的10~100年以及未来哪一种机制起最主要的作用。  相似文献   

4.
在干旱/半干旱地区,土壤干湿交替是非常普遍的自然现象。近年来,随着极端降水和极端干旱气候事件增加,干湿交替对土壤C和N循环过程影响受到广泛重视。本研究以我国北方半干旱地区科尔沁沙地樟子松人工林为对象,模拟土壤干湿交替对土壤C和N矿化速率影响及其延时效应。结果表明,土壤呼吸CO2释放速率随土壤干旱化增加不断降低,干旱土壤重新湿润后,土壤呼吸速率能够迅速恢复到初始水平。与恒湿处理相比,干湿交替变化能够降低土壤呼吸CO2释放累积量和土壤硝态氮含量;而干湿交替处理土壤呼吸CO2释放累积量、土壤硝态氮含量和净硝化速率均显著高于恒干处理。在干湿交替结束后延时期间,土壤呼吸CO2释放速率、累积释放量对干湿交替变化表现出延时性,而土壤净硝化速率在不同处理间差异不显著。研究表明,土壤水分是影响半干旱地区沙地樟子松人工林土壤C和N循环的重要环境因子,且土壤C和N矿化速率对土壤干湿交替变化的延时响应存在差异。  相似文献   

5.
草地生态系统土壤呼吸对放牧干扰的响应研究进展   总被引:1,自引:0,他引:1  
草地占地球陆地总表面积的40%, 是陆地生态系统的主体类型之一。草地生态系统碳贮量大, 土壤呼吸又是陆地生态系统将碳释放到大气的重要环节, 这类生态系统土壤呼吸对全球碳循环的贡献不可忽视。研究草地生态系统环境变化和人类活动干扰对土壤呼吸的影响对于估算未来碳循环前景和气候变化具有重要意义。放牧是人类对草地生态系统最重要的利用和干扰方式, 在全球变化背景下, 近年来草地生态系统土壤呼吸对放牧干扰的响应成为碳循环研究中的一项重要内容。现有研究结果显示, 土壤呼吸对放牧干扰的响应具有一定的不确定性, 其原因同这一过程所涉及的复杂机制有关。这些机制包括: 放牧改变了植物凋落物的产量和质量、植物同化产物的分配和根系生物量、微生物生物量和多样性、与呼吸有关的酶的活性、土壤养分状况、土壤温度和水分状况等。对于土壤呼吸及其组分而言, 上述机制有的具有促进作用, 有的具有抑制作用, 且在不同时间和地点起主导作用的机制各不相同, 从而在放牧干扰的作用下, 土壤呼吸会呈现出升高、降低或无反应等多种结果。由于根据现有这些不一致的结果, 无法精确估算人类的放牧干扰活动对全球碳循环的影响, 因此, 今后要从土壤呼吸各个组分的区分入手, 量化解析放牧干扰对土壤呼吸影响的机制过程及构建机理模型等方面加强该领域的研究。  相似文献   

6.
干旱半干旱区不同环境因素对土壤呼吸影响研究进展   总被引:10,自引:0,他引:10  
王新源  李玉霖  赵学勇  毛伟  崔夺  曲浩  连杰  罗永清 《生态学报》2012,32(15):4890-4901
土壤呼吸是全球陆地生态系统碳循环的重要环节,也是全球气候变化的关键生态过程。阐明和探讨影响土壤呼吸的各类环境因素,对准确评估陆地生态系统碳收支具有重要意义。干旱半干旱区是陆地生态系统的重要组成部分,研究该区域影响土壤呼吸的环境因素有助于深刻了解干旱半干旱区土壤碳循环过程。就土壤温度、土壤水分、降水、土壤有机质等非生物因子及植被类型、地上、地下生物量、土壤凋落物等生物因子两个方面对土壤呼吸的影响进行了综述。以干旱半干旱区的研究进展为主要论述对象,在上述因素中重点阐述了土壤温度、水分及其耦合作用下土壤呼吸的响应,并就土壤呼吸的Q10值及各影响因素间的交互作用进行归纳总结。在此基础上,说明了土壤温度和水分是影响干旱半干旱区土壤呼吸的主要因素。为了更准确的估算干旱半干旱区土壤呼吸速率,综合分析多种因子的交互影响,提出目前土壤呼吸研究存在的问题和今后重点关注的方向:1)不同尺度下干旱半干旱区土壤呼吸的研究;2)荒漠生态系统土壤呼吸研究;3)非生长季土壤呼吸研究;4)多因素协同作用土壤呼吸模型建立;5)测量方法的改进与完善。  相似文献   

7.
土壤呼吸是陆地生态系统碳循环的重要组成部分,研究土壤呼吸对降水变化和养分沉降的响应有助于评估全球变化对生态系统碳循环的影响.然而,目前降水变化和养分沉降对土壤呼吸的交互影响研究相对较少.本研究以呼伦贝尔草甸草原为对象,通过增减雨和养分添加,模拟研究降水变化和养分沉降及其交互对草甸草原土壤呼吸的影响及其机制.结果表明:增...  相似文献   

8.
陆地生态系统类型转变与碳循环   总被引:50,自引:6,他引:44       下载免费PDF全文
 土地利用变化引起的陆地生态系统类型转变对于全球碳循环有着极其重要的作用。 通过总结国内外有关森林砍伐以及森林、草地转变成农田对于碳循环的影响,阐述了可能引起全球“未知汇”现象的重要原因,强调未来中国陆地生态系统碳循环研究应充分重视陆地生态系统类型转变对于全球碳循环的影响研究,包括研究陆地生态系统的不同发展阶段(自然与退化生态系统)、利用方式的改变(森林转化为人工林或农田,草地转化为农田、退耕还林草等)所引起的碳库类型转换的增汇机理及其对全球变化响应,并指出了建立统一观测方法与规范的陆地生态系统碳通量观测网  相似文献   

9.
陆地生态系统地下碳输入与输出过程研究进展   总被引:3,自引:0,他引:3  
生态系统地下碳输入与输出过程是陆地生态系统碳分配和转化的核心,并直接影响着全球碳循环。陆地生态系统凋落物、根系周转、根系分泌物、土壤有机碳、土壤微生物和土壤呼吸是地下碳输入与输出过程中的重要组成部分。由于这些组分非常复杂且其研究技术和方法受到限制,目前人们对陆地生态系统地下碳输入与输出过程尚缺乏全面的认识,故在陆地生态系统碳循环研究中存在诸多的不确定性。该文概述了凋落物、根系周转、根系分泌物、土壤有机碳、土壤微生物和土壤呼吸的研究方法,以及它们对气候变化的响应,探讨了陆地生态系统地下碳输入与输出过程中的研究难点,并对未来需要深入探究的一些领域进行了展望。  相似文献   

10.
全球降水格局变化下土壤氮循环研究进展   总被引:3,自引:1,他引:2  
陈琳  曾冀  李华  刘士玲  雷丽群  刘世荣 《生态学报》2020,40(20):7543-7551
自然和人为因素导致全球降水格局发生改变,降水变化势必影响土壤氮循环,从而影响陆地生态系统生产力和多样性,然而不同降水变化类型对土壤氮循环的影响仍然缺乏足够的认识。因此,本文综合分析了全球和我国降水格局变化特征,简要介绍了6种降水格局变化下土壤氮循环的研究方法(长期降水固定观测、野外降水控制实验、自然降水梯度、室内培养、模型和遥感),系统综述了3种降水变化类型(降水波动、干旱、干湿交替),以及降水与温度、氮沉降等交互作用对土壤氮循环影响的研究进展与存在的问题,并展望了未来研究方向,为评估和预测未来降水变化对陆地生态系统功能的影响提供理论依据。  相似文献   

11.
《农业工程》2014,34(5):271-276
Grassland ecosystems are important parts of terrestrial ecosystems and play an important role in the global carbon cycle. In recent years, the grasslands in Northern Tibet have experienced warming, and its precipitation has also increased. Alpine grassland irrigation measures could be a reasonable pathway to redistribute and make full use of the increased precipitation. In this study, we measured the soil respiration in alpine grassland in Northern Tibet under sprinkler head irrigation in the growing season to determine the relationships between soil temperature /water and ecosystem/soil respiration, soil moisture and Q10, and soil temperature and Q10. The results showed that after 2 years irrigation, alpine grassland aboveground biomass increased significantly, with 2010 higher than 2009. There was significant annual, seasonal and daily variation of soil respiration. Under irrigation, ecosystem respiration and soil respiration increased 75% and 64% respectively; soil water increase can promote the respiration of ecosystem and its components. In our results, the Q10 value was 2.23–2.81, over the global average. The irrigation can promote ecosystem respiration temperature sensitivity. There was a positive linear correlation between ecosystem respiration and grassland aboveground biomass. The aboveground biomass accounted for 32.8% of ecosystem respiration variation. Soil respiration accounted for more than 70% of ecosystem respiration, indicating that the contribution to carbon emissions of soil respiration is very high. In short, we can project that in grasslands biomass and ecosystem respiration will increase under future precipitation change, which will significantly affect the function of alpine grassland carbon storage.  相似文献   

12.
Soil respiration is an important part of the global carbon (C) cycle and the largest component of C flux from terrestrial ecosystems to the atmosphere. Here, we investigated possible effects of photosynthetic substrate supply on soil respiration in a semiarid ecosystem. A field experiment combining water addition and shading (low and high shading) treatments was conducted to manipulate photosynthetic substrate supply in a temperate semiarid steppe in two growing seasons. Our result showed that water addition and/or low shading significantly increased net primary productivity (ecosystem‐level photosynthetic substrate supply) and soil respiration in both two growing seasons. However, the effects of high shading on net primary productivity and soil respiration depended on soil water condition, which were negative in wet year (2008) but positive in dry year (2009). On the diel timescale, soil respiration was out of phase with soil temperature and leaf net photosynthesis, but in phase with leaf sugar and starch contents (leaf‐level photosynthetic substrate production). The results indicated that photosynthetic substrate supply was an important factor in regulating soil respiration on both daily and seasonal timescales. Moreover, its effect on soil respiration increased with increasing water availability in this region. The predominant role of C assimilate supply on soil respiration indicates that the predicted positive influence of rising temperature on soil respiration will be simultaneously mediated by substrate supply and water availability in semiarid steppe ecosystems.  相似文献   

13.
土壤呼吸对温度升高的适应   总被引:36,自引:5,他引:31  
土壤呼吸是陆地生态系统碳循环的重要环节之一 ,其对温度升高的敏感程度在相当大的程度上决定着全球气候变化与碳循环之间的反馈关系。土壤呼吸对温度升高的适应是个比较普遍的现象 ,其表现形式主要为随着温度的持续升高和升温时间的延长 ,土壤呼吸对温度升高反应的敏感程度下降。产生这一现象的机制包括影响因子主导地位的转移和温度以外其他因子的协同变化。土壤呼吸对温度升高的适应可以视为碳循环对全球变暖的负反馈效应 ,它可能会在一定程度上缓和陆地生态系统对全球气候系统之间的耦合作用 ,并且导致土壤呼吸对全球温度升高响应的时空差异。由于目前生态系统模型多数没有考虑土壤呼吸的对温度升高的适应性 ,而采用统一的 Q1 0 值 ,其对未来土壤呼吸和未来气候变化幅度的预测可能存在偏差  相似文献   

14.
在多年定位试验的基础上,采用LI-8150-16多通道土壤碳通量测量系统对传统耕作和免耕处理下玉米田的土壤呼吸进行了连续观测,以探讨不同耕作措施处理下土壤呼吸对降雨的响应。结果表明:降雨发生瞬间,土壤呼吸受应激反应影响迅速降低,传统耕作和免耕处理下分别较降雨前降低62.9%—92.9%和35.8%—56.9%;降雨后,传统耕作和免耕处理土壤呼吸的降幅范围分别为31.5%—89.2%和15.7%—59.9%;土壤体积含水量接近于18%时,传统耕作下土壤呼吸比免耕下高51.8%,当土壤体积含水量高于30%时,传统耕作下土壤呼吸比免耕处理下低43.0%,表明传统耕作土壤呼吸更易受土壤水分的影响,波动幅度大;传统耕作处理下土壤呼吸随土壤温度的升高而增大,免耕处理下土壤呼吸随土壤温度的升高变化不明显;土壤体积含水量较小(20%)时,不同耕作处理下土壤呼吸均随土壤含水量增加而增加,含水量较高(30%)时则均随土壤含水量的升高而减小,两种情况下均为免耕处理的变化速率更大;双因子线性模型可较好地描述玉米田土壤呼吸对温度和水分变化的响应。  相似文献   

15.
土壤微生物与根系呼吸作用影响因子分析   总被引:29,自引:1,他引:28  
土壤呼吸作用作为陆地生态系统碳循环的重要组成部分,是当前碳循环研究中的热点问题.对于土壤呼吸作用主要组成部分土壤微生物呼吸作用和根系呼吸作用影响因子的研究,有助于准确地评估全球碳收支.本文从气候、土壤、植被及地表覆被物、大气CO2浓度、人为干扰等方面综述了土壤微生物呼吸作用和根系呼吸作用的主导影响因子,指出这些影响因子不仅直接或间接地影响土壤微生物呼吸作用和根系呼吸作用,而且它们之间相互作用、相互影响,且各影响因子的地位和作用会随时空尺度变化发生相应改变.在此基础上,论文提出了未来土壤呼吸作用的研究重点.  相似文献   

16.
稳定性同位素技术和Keeling曲线法是现代生态学研究的重要手段和方法之一。稳定性同位素能够整合生态系统复杂的生物学、生态学和生物地球化学过程在时间和空间尺度上对环境变化的响应。Keeling曲线法是以生物过程前后物质平衡理论为基础,将CO2或H2O的同位素组成(δDδ13C或δ18O)与其对应浓度测量结合起来,将生态系统净碳通量区分为光合固定和呼吸释放通量,或将整个生态系统水分蒸散区分为植物蒸腾和土壤蒸发。在全球尺度上,稳定性同位素技术、Keeling曲线法与全球尺度陆地生态系统模型相结合,还可区分陆地生态系统和海洋生态系统对全球碳通量的贡献以及不同植被类型(C3或C4)在全球CO2同化量中所占的比例。然而,生态系统的异质性使得稳定性同位素技术和Keeling曲线法从冠层尺度外推到生态系统、区域或全球尺度时存在有一定程度的不确定性。此外,取样时间、地点的选取也会影响最终的研究结果。尽管如此,随着分析手段的不断精确和研究方法的日趋完善,稳定性同位素技术和Keeling曲线法与其它测量方法(如微气象法)的有机结合将成为未来陆地生态系统碳/水交换研究的重要手段和方法之一。  相似文献   

17.
土壤呼吸是森林生态系统碳循环的关键过程,土壤动物可通过自身代谢及影响微生物活动调控土壤呼吸,因此研究土壤动物与土壤呼吸的相互关系对进一步揭示生态系统碳循环的规律和机理具有重要意义。通过野外定点,以帽儿山3种森林生态系统的土壤呼吸及土壤动物为研究对象,探讨不同森林生态系统的土壤呼吸、土壤动物个体密度和生物量的时间变化规律及二者相互关系。结果表明:(1)3种森林生态系统土壤总呼吸速率与土壤异养呼吸速率均呈现先增强后减弱的时间动态变化(P<0.05),且不同森林生态系统土壤异养呼吸速率差异显著(P<0.05),表现为硬阔叶林最高,红松人工林最低;(2)3种森林生态系统土壤动物生物量也具有显著的时间动态变化(P<0.05),均在9月份达到最大,且不同森林生态系统土壤动物个体密度显著不同(P<0.05),蒙古栎林土壤动物个体密度显著小于红松人工林与硬阔叶林;(3)通过回归分析可得,土壤动物数量及生物量的增加抑制了土壤呼吸速率,尤其在生长季初期、末期。研究表明土壤动物可通过抑制微生物生命活动和降低根系呼吸从而对土壤总呼吸及异养呼吸产生负反馈作用,三者是不可分割的整体,与土壤温度、水分等环境因子共同调控着土壤呼吸。  相似文献   

18.
 土壤呼吸响应全球气候变化对全球C循环具有重要作用。应用大型开顶箱(Open-top chamber, OTC)人工控制手段, 研究了大气CO2浓度倍增、高氮沉降和高降雨处理对南亚热带人工森林生态系统土壤呼吸的影响。结果表明: 对照箱、CO2浓度倍增处理以及高氮沉降处理下土壤呼吸速率都具有明显的季节变化, 雨季(4~9月)的土壤呼吸速率显著高于旱季(10月至次年3月) (p<0.001); 但高降雨处理下无明显的季节差异(p>0.05)。CO2浓度倍增能显著提高土壤呼吸速率(p<0.05), 其他处理则变化不大。大气CO2浓度倍增、高氮沉降、高降雨处理和对照箱的土壤呼吸年通量分别为4 241.7、3 400.8、3 432.0和3 308.4 g CO2·m–2·a–1。但在不同季节, 各种处理对土壤呼吸的影响是不同的。在雨季, 大气CO2浓度倍增和高氮沉降的土壤呼吸速率显著提高(p<0.05), 其他处理无显著变化; 而在旱季, 高降雨的土壤呼吸速率显著高于对照箱(p<0.05), 氮沉降处理则抑制土壤呼吸作用(p<0.05)。各处理的土壤呼吸速率与地下5 cm土壤温度之间具有显著的指数关系(p<0.001); 当土壤湿度低于15%时, 各处理的土壤呼吸速率与地下5 cm土壤湿度具有显著的线性关系(p<0.001)。  相似文献   

19.
 干旱对陆地生态系统的影响已成为全球变化研究的焦点问题之一。该研究基于生态系统过程模型——CEVSA2, 结合涡度相关通量观测, 分析了不同程度干旱对亚热带人工针叶林碳交换的影响及其关键控制因素。结果表明: 1)干旱使生态系统碳交换显著下降, 2003和2004年的干旱使得年净生态系统生产力(Net ecosystem production, NEP)相比无干旱影响情景的模拟结果分别减少了63%和47%; 2)光合和呼吸对干旱具有不同的响应, 干旱时光合的下降比呼吸更为显著, 这导致了NEP的显著下降; 3)当饱和水气压差(Vapor pressure deficit, VPD)达到1.5 kPa以上时, 生态系统的光合、呼吸和净碳吸收均开始下降, 当VPD大于2.5 kPa、土壤相对含水量(土壤含水量/土壤饱和含水量)(Relative soil water content, RSW)低于40%时, 生态系统的碳收支由碳汇转为碳源; 4)土壤干旱是造成碳交换下降的主要驱动因素, 对年NEP下降的平均贡献率为46%, 而大气干旱的贡献率仅为4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号