首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We summarize the results of several of our recent studies on the dielectric properties of protein solutions, tissues, and nonionic microemulsions at microwave frequencies extending to 18 GHz. The data in all cases are analyzed using the Maxwell mixture theory to determine the dielectric properties of the suspending water and the amount and dielectric properties of the water of hydration associated with the suspended phase. The dielectric data from the protein solutions and tissues are broadly consistent with the results of previous studies at UHF frequencies; they indicate hydration values in the range of 0.4–0.6 g water/g protein. There is evidence of a dielectric relaxation process occurring at low-GHz frequencies that can be attributed in part to dielectric relaxation of the “bound” water in the system. The remaining solvent water appears to have dielectric properties close to, if not precisely the same as, those of pure water. The average relaxation frequency of the suspending water in the microemulsions is reduced from that of pure water, evidently reflecting an average of that of the water of hydration (~5–6 GHz) and that of pure water. This reduced average relaxation frequency implies an increased average viscosity of the water and (by Walden's rule) accounts for the unexpectedly low ionic conductivity of the preparations.  相似文献   

2.
G P South  E H Grant 《Biopolymers》1974,13(9):1777-1789
Recent advances in dielectric theory are applied to two models representing an aqueous solution of dipolar macromolecules. In one model the water is treated as a dielectric continuum and the macromolecule as a finite-sized sphere; in the other both components are represented as point dipoles suspended in a background dielectric. The predicted frequency dependences of the complex permittivity in these two cases agree and the validity of the dielectric technique for estimating macromolecular size and shape is established. The model in which water is treated as a dielectric continuum predicts a larger dielectric dispersion in the radio frequency region, which is consistent with the experimental data available for myoglobin. The validity of the Debye formula for relaxation time and the effect of “dielectric friction” in macromolecular solutions are also discussed.  相似文献   

3.
When introduced into water, some molecules and ions (solutes) enforce the hydrogen-bonded network of neighboring water molecules that are thus restrained from thermal motions and are less mobile than those in the bulk phase (structure-making or positive hydration effect), and other solutes cause the opposite effect (structure-breaking or negative hydration effect). Using a method of microwave dielectric spectroscopy recently developed to measure the rotational mobility (dielectric relaxation frequency) of water hydrating proteins and the volume of hydration shells, the hydration of actin filament (F-actin) has been studied. The results indicate that F-actin exhibits both the structure-making and structure-breaking effects. Thus, apart from the water molecules with lowered rotational mobility that make up a typical hydration shell, there are other water molecules around the F-actin which have a much higher mobility than that of bulk water. No such dual hydration has been observed for myoglobin studied as the representative example of globular proteins which all showed qualitatively similar dielectric spectra. The volume fraction of the mobilized (hyper-mobile) water is roughly equal to that of the restrained water, which is two-thirds of the molecular volume of G-actin in size. The dielectric spectra of aqueous solutions of urea and potassium-halide salts have also been studied. The results suggest that urea and I(-) induce the hyper-mobile states of water, which is consistent with their well-known structure-breaking effect. The molecular surface of actin is rich in negative charges, which along with its filamentous structure provides a structural basis for the induction of a hyper-mobile state of water. A possible implication of the findings of the present study is discussed in relation to the chemomechanical energy transduction through interaction with myosin in the presence of ATP.  相似文献   

4.
Three independent dielectric methods for the measurement of water of hydration (bound water) in a biological material are described and discussed comparatively. For well-defined aqueous solutions of biological molecules, hydration can be obtained from direct observations made on the δ dispersion or from measurement of the dielectric values of the β dispersion. For whole tissue, however, neither of these two methods is applicable, and to deduce the hydration, it is necessary to use the third technique in which the volume of the hydrated biological particle is obtained by measuring the effect of it on the known dielectric properties of pure water. The hydration can then be calculated by deducting the volume of the anhydrous particle from the experimentally determined volume of the hydrated particle. Owing to possible systemmatic errors the uncertainty in the absolute hydration value associated with this technique is rather larger than that obtained with the other two dielectric methods. For studying the differences between hydration in similar tissues, however, this objection disappears.  相似文献   

5.
This report describes and documents the presence of multiple water-of-hydration fractions on proteins and in cells. Initial studies of hydration fractions in g of water/g of DM (dry mass) for tendon/collagen led to the development of the molecular SHM (stoichiometric hydration model) and the development of methods for calculating the size of hydration fractions on a number of different proteins of known amino acid composition. The water fractions have differences in molecular motion and other physical properties due to electrostatic interactions of polar water molecules with electric fields generated by covalently bound pairs of opposite partial charge on the protein backbone. The methods allow calculation of the size of four hydration fractions: single water bridges, double water bridges, dielectric water clusters over polar-hydrophilic surfaces and water clusters over hydrophobic surfaces. These four fractions provide monolayer water coverage. The predicted SHM hydration fractions match closely measured hydration fraction values for collagen and for globular proteins. This report also presents water sorption findings that support the SHM. The SHM is applicable for cell systems where it has been studied. In seven cell systems studied, more than half of all of the cell water had properties unlike those of bulk water. The SHM predicts and explains the commonly cited and measured bound water fraction of 0.2-0.4 g of water/g of DM on proteins. The commonly accepted concept that water beyond this bound water fraction can be considered bulk-like water in its physical properties is unwarranted.  相似文献   

6.
The dielectric behaviour of aqueous solutions of glucose, poly(ethylene glycol)s (PEGs) 200 and 600, and poly(vinyl pyrrolidone) (PVP) has been examined at different concentrations in the frequency range of 10(6)-10(-3) Hz by dielectric spectroscopy and by using differential scanning calorimetry down to 77 K from room temperature. The shape of the relaxation spectra and the temperature dependence of the relaxation rates have been critically examined along with temperature dependence of dielectric strength. In addition to the so-called primary (alpha-) relaxation process, which is responsible for the glass-transition event at T(g), another relaxation process of comparable magnitude has been found to bifurcate from the main relaxation process on the water-rich side, which continues to the sub-T(g) region, exhibiting relaxation at low frequencies. The sub-T(g) process dominates the dielectric measurements in aqueous solutions of higher PEGs, and the main relaxation process is seen as a weak process. The sub-T(g) process was not observed when water was replaced by methanol in the binary mixtures. These observations suggest that the sub-T(g) process in the aqueous mixtures is due to the reorientational motion of the 'confined' water molecules. The corresponding dielectric strength shows a noticeable change at T(g), indicating a hindered rotation of water molecules in the glassy phase. The nature of this confined water appears to be anomalous compared to most other supercooled confined liquids.  相似文献   

7.
The water of hydration in myoglobin crystals and solutions was studied at subzero temperatures by calorimetry and infrared spectroscopy (ir). For comparison we also investigated glycine, DL-alanine and DL-valine solutions. The hydration water remains amorphous at low temperatures. We find a broad glass transition between 180 and 270 K depending on the degree of hydration. The ice component shows a noncolligative melting point depression that is attributed to a finite conformational flexibility. The ir spectrum and the specific heat of water in myoglobin crystals was determined for the first time between 180 and 290 K. The glass transition in crystals is qualitatively similar to what is found in amorphous samples at the same water content. These data are compared with M?ssbauer experiments and dielectric relaxation of water in myoglobin crystals. The similar temperature dependencies suggest a cross correlation between structural fluctuations and the thermal motion of crystal water. A hydrogen bond network model is proposed to explain these features. The essential ingredients are cooperativity and a distribution of hydrogen-bonded clusters.  相似文献   

8.
Hydration, protons and onset of physiological activities in maize seeds   总被引:1,自引:0,他引:1  
Dry maize ( Zea mays L.) seed components, namely, embryo and endosperm, provide model materials for studies on water-dependent mechanisms in cellular function. We explored the thermodynamics of hydration for both tissues, along with their dielectric behavior, as a function of water content. In addition, we evaluated the direct current (DC) conductivity due to water protons. Our data on embryo tissue show large enthalpic and entropic peaks at water content [h, in g H2O (g dry sampie)−1] around 0.08 g g−1, indicating very tight binding and ordering of water molecules. With increasing water content both enthalpy and entropy decrease, and the completion of primary hydration requires h ∼ 0.26 g g−1. Data for endosperm tissue show the absence of such an enthalpic peak and a reduced degree of ordering for h < 0.10 g g−1. The DC protonic conductivity shows explosive growth above a threshold hydration level hc= 0.082 g g−1 and hc= 0.12 g g−1, for embryo and endosperm, respectively. Protonic conduction can be considered within the framework of a percolation modell characterized by a hydration threshold and by a power law increase in conductivity with further hydration. The critical exponent of the power law is in agreement with theory for a two-dimensional percolative process. This percolative water-assisted behavior reflects the presence of an extended network of water molecules adsorbed on the surface of proteins and/or membranes inside cells. We consider this percolative protonic conduction as being a prerequisite to respiration processes.  相似文献   

9.
The size and configuration of the hydration layer of solutes play a major role in their thermodynamic features. With respect to amino acids in water, a series of indirect evidence strongly suggest that their hydration layer acquires a chiral configuration induced by their chiral centers. Such a chiral hydration may act as a recognition factor in the various biochemical interactions, but information on it remains rather scarce. In this study, we determined by dilution microcalorimetry the fraction of the hydration energy invested in the chiral distortion of the hydration layer surrounding D ‐ and I ‐alanine in water. The results indicate that in dilute solutions, a multilayered chiral hydration surrounds each of these solutes and amounts to over 100 water molecules. In concentrated solutions, the immediate chiral hydration layer decreases to ~30 water molecules. The energy invested in the induction of the chiral twist in the hydration layer is predominantly attributed to TΔS, the energy associated with “configurational entropy,” which amounts to only several cal/mol, about a thousandth of the total energy of the hydration shell. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
The relative self-diffusion coefficients D/Do, of water in various solutions, in fresh barnacle muscle fibers, and in membrane-damaged fibers equilibrated with several media have been estimated from NMR relaxation rates in the presence of applied field gradients. A model has been developed to account for the contributions to the observed reduction in D/Do from small organic solutes, and from the hydration and obstruction effect of both soluble macromolecules and myofilament proteins. Intracellular ions do not affect D/Do, but all tested organic solutes do. Solute effects are additive. When artificially combined in the proportions found in barnacle muscle ultracentrifugate (measured D/Do = 0.77), organic acids, small nitrogenous solutes, and proteins give D/Do = 0.77. After correcting the D/Do measured in fibers for this value, we calculate the myofilament hydration, Hm, in fresh muscle to be 0.65 g H2O/g macromolecule. Only in membrane-damaged fibers, highly swollen by salt-rich media, was this significantly increased. Because our earlier NMR relaxation measurements indicate only 0.07 g H2O bound/g myofilament protein, we conclude that the "hydration" water measured by reduction of D/Do cannot be described by stationary layers of water molecules; instead, we propose that nonpolar groups on the proteins cause extensive, hydrophobically-induced interactions among a large fraction of solvent molecules, slowing their translational motion.  相似文献   

11.
Sun WQ 《Plant physiology》2000,124(3):1203-1216
To understand the relationship between the organization of cellular water, molecular interactions, and desiccation tolerance, dielectric behaviors of water and water-plasticized biomolecules in red oak (Quercus rubra) seeds were studied during dehydration. The thermally stimulated current study showed three dielectric dispersions: (a) the relaxation of loosely-bound water and small polar groups, (b) the relaxation of tightly-bound water, carbohydrate chains, large polar groups of macromolecules, and (c) the "freezing in" of molecular mobility (glassy state). Seven discrete hydration levels (water contents of 1.40, 0.55, 0.41, 0.31, 0.21, 0.13, and 0.08 g/g dry weight, corresponding to -1.5, -8, -11, -14, -24, -74, and -195 MPa, respectively) were identified according to the changes in thermodynamic and dielectric properties of water and water-plasticized biomolecules during dehydration. The implications of intracellular water organization for desiccation tolerance were discussed. Cytoplasmic viscosity increased exponentially at water content < 0.40 g/g dry weight, which was correlated with the great relaxation slowdown of water-plasticized biomolecules, supporting a role for viscosity in metabolic shutdown during dehydration.  相似文献   

12.
The proton nuclear magnetic resonance (NMR) titration method (which requires measurement of the relaxation rate at multiple measured levels of dehydration) was applied to the analysis of human erythrocytes, a hemoglobin solution, plasma, and serum. The results allowed identification of bulk water and four motionally perturbed water of hydration subfractions. Based on previous NMR studies of homopolypeptides we designated these subfractions as superbound, irrotationally bound, rotationally bound, and structured. The total water of hydration (sum of both structured and bound water subfractions) in plasma, serum, and hemoglobin ranged from 2.78 to 3.77 g H2O/g dry mass and the sum of the three bound water subfractions ranged from 1.23 to 1.72 g H2O/g dry mass. The total water of hydration on hemoglobin, as determined by (i) spin-lattice (T1) and spin-spin (T2) NMR data, (ii) quench ice-crystal imprint size, (iii) calculations based on osmotic pressure data, and (iv) two other methods, ranged from 2.26 to 3.45 g H2O/g dry mass. In contrast, the estimates of total water of hydration in the intact erythrocytes ranged from 0.34 to 1.44 g H2O/g dry mass, as determined by osmotic activity and spin-lattice titration, respectively. Studies on the magnetic-field dependence of the spin-lattice relaxation rate (1/T1 rho) of solvent water nuclei in protein solutions and in intact and disrupted erythrocytes indicated that hemoglobin aggregation exists in the intact erythrocytes and that erythrocyte disruption decreases the extent of hemoglobin aggregation. Together, the present and past data indicate that the extent of water of hydration associated with hemoglobin depends on the amount of salt present and the degree of aggregation of the hemoglobin molecules.  相似文献   

13.
Protein-water dynamics in mixtures of water and a globular protein, bovine serum albumin (BSA), was studied over wide ranges of composition, in the form of solutions or hydrated solid pellets, by differential scanning calorimetry (DSC), thermally stimulated depolarization current technique (TSDC) and dielectric relaxation spectroscopy (DRS). Additionally, water equilibrium sorption isotherm (ESI) measurements were performed at room temperature. The crystallization and melting events were studied by DSC and the amount of uncrystallized water was calculated by the enthalpy of melting during heating. The glass transition of the system was detected by DSC for water contents higher than the critical water content corresponding to the formation of the first sorption layer of water molecules directly bound to primary hydration sites, namely 0.073 (grams of water per grams of dry protein), estimated by ESI. A strong plasticization of the T(g) was observed by DSC for hydration levels lower than those necessary for crystallization of water during cooling, i.e. lower than about 0.3 (grams of water per grams of hydrated protein) followed by a stabilization of T(g) at about -80°C for higher water contents. The α relaxation associated with the glass transition was also observed in dielectric measurements. In TSDC a microphase separation could be detected resulting in double T(g) for some hydration levels. A dielectric relaxation of small polar groups of the protein plasticized by water, overlapped by relaxations of uncrystallized water molecules, and a separate relaxation of water in the crystallized water phase (bulk ice crystals) were also recorded.  相似文献   

14.
The contribution of hydrogen bonds to protein-solvent interactions and their impact on structural flexibility and dynamics of myoglobin are discussed. The shift of vibrational peak frequencies with the temperature of myoglobin in sucrose/water and glycerol/water solutions is used to probe the expansion of the hydrogen bond network. We observe a characteristic change in the temperature slope of the O–H stretching frequency at the glass transition which correlates with the discontinuity of the thermal expansion coefficient. The temperature-difference spectra of the amide bands show the same tendency, indicating that stronger hydrogen bonding in the bulk affects the main-chain solvent interactions in parallel. However, the hydrogen bond strength decreases relative to the bulk solvent with increasing cosolvent concentration near the protein surface, which suggests preferential hydration. Weaker and/or fewer hydrogen bonds are observed at low degrees of hydration. The central O–H stretching frequency of protein hydration water is red-shifted by 40 cm–1 relative to the bulk. The shift increases towards lower temperatures, consistent with contraction and increasing strength of the protein-water bonds. The temperature slope shows a discontinuity near 180 K. The contraction of the network has reached a critical limit which leads to frozen-in structures. This effect may represent the molecular mechanism underlying the dynamic transition observed for the mean square displacements of the protein atoms and the heme iron of myoglobin. Received: 10 July 1996 / Accepted: 10 April 1997  相似文献   

15.
F Bruni  G Careri    J S Clegg 《Biophysical journal》1989,55(2):331-338
Cellular cysts of the crustacean Artemia provide a useful model for studies on water-dependent mechanisms in cellular function because they can undergo reversible cycles of dehydration-rehydration. We explored their dielectric behavior over the frequency range of 10 kHz to 1 MHz, at water contents between near zero and 0.5 g H2O/g dry weight (g/g). The dc conductivity and static dielectric permittivity were evaluated from electrostatic analysis of data obtained with a three-layered capacitor. Below cyst hydrations of 0.05 g/g, negligible dielectric response was observed at all frequencies. Between 0.05 and 0.25 g/g the permittivity increased sharply then reached a near plateau up to cyst hydrations close to 0.35 g/g, above which a second abrupt increase occurred. Values for the dielectric loss (tan delta) exhibited frequency-dependent peaks over the hydration range of 0.05-0.3 g/g, followed by an abrupt increase near 0.35 g/g, an hydration at which metabolism is first initiated in this system. These hydration-dependent dielectric changes are compared with previous studies on the biology and physics of this system, and evaluated by a model involving percolative ionic (likely protonic) conduction. Percolative behavior is characterized by a sharp increase in conductivity at a critical threshold of hydration (hc) according to a power law in which the exponent, t, equals 1.65 for a three-dimensional infinite lattice. For the Artemia cyst, t = 1.64 above hc = 0.35 g/g, which is in excellent agreement with theory. These results are compared to similar studies on lysozyme which also exhibits percolative behavior connected with the onset of biological function.  相似文献   

16.
The permittivities of three solutions of sperm-whale myoglobin of different concentrations were measured in the frequency range 300-1300MHz at 20 degrees C by using a coaxial-line technique. These results were combined with those measured previously at frequencies below 10MHz. Two methods are described for calculating the extent of macromolecular hydration from the data. The more reliable method yields results of approx. 0.25g of H(2)O/g of protein, which is in satisfactory agreement with the theoretically calculated value. Agreement with the value found from the rotational motion of the molecule is not so close, which is probably caused by the different meanings that may be ascribed to the term hydration.  相似文献   

17.
This study was carried out to evaluate the stability of the 89 bound water molecules that were observed in the neutron diffraction study of CO myoglobin. The myoglobin structure derived from the neutron analysis was used as the starting point in the molecular dynamics simulation using the software package CHARMM. After solvation of the protein, energy minimization and equilibration of the system, 50 ps of Newtonian dynamics was performed. This data showed that only 4 water molecules are continously bound during the length of this simulation while the other solvent molecules exhibit considerable mobility and are breaking and reforming hydrogen bonds with the protein. At any instant during the simulation, 73 of the hydration sites observed in the neutron structure are occupied by water. © 1995 Wiley-Liss, Inc.  相似文献   

18.
An analysis of a molecular dynamics simulation of metmyoglobin in an explicit solvent environment of 3,128 water molecules has been performed. Both statics and dynamics of the protein-solvent interface are addressed in a comparison with experiment. Three-dimensional density distributions, temperature factors, and occupancy weights are computed for the solvent by using the trajectory coordinates. Analysis of the hydration leads to the localization of more than 500 hydration sites distributed into multiple layers of solvation located between 2.6 and 6.8 Å from the atomic protein surface. After locating the local solvent density maxima or hydration sites we conclude that water molecules of hydration positions and hydration sites are distinct concepts. Both global and detailed properties of the hydration cluster around myoglobin are compared with recent neutron and X-ray data on myoglobin. Questions arising from differences between X-ray and neutron data concerning the locations of the protein-bound water are investigated. Analysis of water site differences found from X-ray and neutron experiments compared with our simulation shows that the simulation gives a way to unify the hydration picture given by the two experiments. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Radial distribution functions were deduced by Fourier transform analysis of the angular dependences of diffuse X-ray scattering intensities for the following proteins with different hydration degrees: water-soluble α-protein myoglobin, water-soluble (α + β) protein lysozyme, and transmembrane proteins from the photosynthetic reaction centers of purple bacteria Rhodobacter sphaeroides and Blastochlorii (Rhodopseudomonas) viridis. The results of Fourier transform analysis of X-ray scattering intensities give quantitative characteristics of the mechanism underlying the influence of water on the formation of biological macromolecules. On the one hand, water loosens the network of hydrogen bonds, which results in a considerable conformational mobility in the molecules of lysozyme and myoglobin and the reaction centers. On the other hand, water stabilizes and orders the protein globule. A strict correlation was found between the shift of the “first” maximum of the radial distribution function, loosening of the intraglobular hydrogen bonds, increase in the intramolecular mobility, and appearance of pronounced functional activity in macromolecules. The pattern of behavior of the first maximum in the transmembrane proteins of the reaction center was similar to that observed for the water-soluble proteins. However, the first maximum reached the limiting value of 2.9 Å at a considerably lower hydration degree compared with the water-soluble proteins. A quick transition of the protein complex of the reaction center to its native state is due to the fact that the dehydrated conformation of this complex is very close to the native conformation. Comparison of the radial distribution function for water, water-soluble proteins, and transmembrane proteins suggests a quantitative conclusion that water is the least densely packed and ordered system, the water-soluble proteins are more densely packed than water, and the transmembrane proteins are the most densely packed and ordered system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号