首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Radial distribution functions were deduced by Fourier transform analysis of angular dependences of diffuse x-ray scattering intensities for the following proteins with different hydration degree: water-soluble a-protein myoglobin, water-soluble alpha+beta protein lysozyme, and transmembrane proteins of photosynthetic reaction centers from purple bacteria Rhodobacter sphaeroides and Blastochlorii viridis. The results of Fourier analysis of x-ray scattering intensities give the quantitative characteristics of the mechanisms underlying the influence of water on the formation of biomacromolecules. Water, on the one hand, weakens the intraglobular hydrogen bond net, loosens the protein structure, and increases the internal conformational dynamics. Concurrently water arranges the stability and ordering of the macromolecule. A sharp correlation is observed between the shift of the "first" peak of radial distribution functions, the weakening of the intraglobular hydrogen bond net, the increase in intraglobular mobility, and the appearance of functional activity in macromolecules. The behavior of the "first" peak is similar to that observed in transmembrane protein of reaction center and water-soluble proteins. The "first" peak for transmembrane protein of reaction center reaches its maximum value much faster (at smaller hydration degrees) than for water-soluble proteins. The fast transfer of reaction center protein to its native state during hydration is due to the fact that the dehydrated conformation of reaction center protein is very close to the native one. From a comparison of the radial distribution functions for water, water-soluble proteins and transmembrane proteins, one may conclude that water has the lowest packing density and the lowest order; water-soluble proteins have a larger packing density and are more ordered than water, and transmembrane proteins have the highest degree of packing density and ordering.  相似文献   

2.
The angle dependencies of diffuse x-ray scattering intensities were studied in a wide range of angles from 3 to 80 degrees for water-soluble and membrane proteins with a different structural organization: alpha-helical protein myoglobin, alpha-helical protein serum albumen, alpha + beta protein lysozyme, and transmembrane proteins of photosynthetic reaction centers (RC) from purple bacteria Rhodobacter sphaeroides, and Blastochlorii (Rhodopseudomonas) viridis containing cytocrome c, situated out side the membrane, and for H and L+M subunits of membrane protein of reaction center from Rb. sphaeroides for various hydration degrees. The hydration/dehydration process was studied for water-soluble proteins (within hydration range from h = 0.05 to h = 1). The hydration/dehydration process appears to be reversible. All water-soluble proteins show a 10 angstroms peak, and proteins of reaction center do not show this peak. A quantitative comparable study of the behaviour for of the 10 angstroms peak different proteins the degree of lysozyme hydration increases from h = 0.05 to h = 0.45, the protein structure slightly changes (most probably the motifoffolding), the structure of myoglobin in solution is slightly different from the structure in crystal. By taking into account the changes in the shape and intensity of the 10 angstroms peak only, it is impossible to make the conclusion about structural changes in other proteins studied. A correlation between the structural changes observed and dynamic and functional properties of proteins is discussed.  相似文献   

3.
The angular dependencies of inelastic intensities of Rayleigh scattering of Moessbauer radiation were measured for myoglobin and lysozyme (in the hydration range h = 0.05-0.7). The data were fitted within the framework of model, when two types of intraglobular motions were taken into account: individual motions of small side-chain groups and cooperative motions of segments. The best agreement with the experiment at h > 0.05 was obtained when individual motions of small groups together with the cooperative motions of alpha-helices and beta-sheets for lysozyme, and alpha-helices for myoglobin were considered. At further hydration (h = 0.45), mean-square displacements (x2) of both types of motions strongly increase with the increase in hydration degree, while the motions with a large correlation radius (not less than macromolecule radius) remain nearly the same as for h = 0.05. The results of the study of the radial distribution function deduced by Fourier-transform from the diffuse x-ray measurements together with RSMR data allow one to conclude that the water during protein hydration competes with the intramolecular hydrogen bonds, loosens the protein and increases the internal dynamics. Concurrently, water arranges the ordering of macromolecule, which takes the native structure at h = 0.4-0.7. The analysis of auto and cross-correlation functions of bending fluctuations of alpha-helices in the large domain of lysozyme performed by molecular dynamics allows one to come to the final conclusion that it is the difference in the structural organization of myoglobin and lysozyme and not the presence of SS-bonds in lysozyme macromolecule that is responsible for different structural fluctuations in these proteins.  相似文献   

4.
The angular dependencies of inelastic intensities of Rayleigh scatteringof Moessbauer radiation were measured for lysozyme and myoglobin (fordifferent degrees of hydration: from h = 0.05 till h = 0.7). The treating ofthe data at h > 0.05 approves the existence of segmental motions(-helices for myoglobin, -helices and -sheets forlysozyme) as well as of individual motions. Further hydration increase themean-square displacements for both types of intraglobular motions for theseproteins, while the motions of the globule as a whole remain nearlythe same as for h = 0.05. Results of the study of the radial distributionfunction deduced by Fourier – transform from the diffuse x-raymeasurements together with RSMR data allow to conclude that the waterduring hydration of proteins competes with the intramolecular hydrogenbonds, loosens the protein and increases the internal dynamics. At the sametime water arranges the ordering of macromolecule from `glassy' state ath 0.02 to the native state at h = 0.4–0.7. Differentarchitecture of proteins leads to the different structural dynamics as in thecase of lysozyme and myoglobin.  相似文献   

5.
A theoretical framework is presented to analyze how solvent water contributes to the X-ray scattering profile of protein solution. Molecular dynamics simulations were carried out on pure water and an aqueous solution of myoglobin to determine the spatial distribution of water molecules in each of them. Their solution X-ray scattering (SXS) profiles were numerically evaluated with obtained atomic-coordinate data. It is shown that two kinds of contributions from solvent water must be considered to predict the SXS profile of a solution accurately. One is the excluded solvent scattering originating in exclusion of water molecules from the space occupied by solutes. The other is the hydration effect resulting from formation of a specific distribution of water around solutes. Explicit consideration of only two molecular layers of water is practically enough to incorporate the hydration effect. Care should be given to using an approximation in which an averaged electron density distribution is assumed for the structure factor because it may predict profiles considerably deviating from the correct profile at large K.  相似文献   

6.
M Diehl  W Doster  W Petry    H Schober 《Biophysical journal》1997,73(5):2726-2732
Conformational changes of proteins often involve the relative motion of rigid structural domains. Normal mode analysis and molecular dynamics simulations of small globular proteins predict delocalized vibrations with frequencies below 20 cm(-1), which may be overdamped in solution due to solvent friction. In search of these modes, we have studied deuterium-exchanged myoglobin and lysozyme using inelastic neutron scattering in the low-frequency range at full and low hydration to modify the degree of damping. At room temperature, the hydrated samples exhibit a more pronounced quasielastic spectrum due to diffusive motions than the dehydrated samples. The analysis of the corresponding lineshapes suggests that water modifies mainly the amplitude, but not the characteristic time of fast protein motions. At low temperatures, in contrast, the dehydrated samples exhibit larger motional amplitudes than the hydrated ones. The excess scattering, culminating at 16 cm(-1), is suggested to reflect water-coupled librations of polar side chains that are depressed in the hydrated system by strong intermolecular hydrogen bonding. Both myoglobin and lysozyme exhibit ultra-low-frequency modes below 10 cm(-1) in the dry state, possibly related to the breathing modes predicted by harmonic analysis.  相似文献   

7.
2H NMR spin-lattice relaxation and line-shape analyses are performed to study the temperature-dependent dynamics of water in the hydration shells of myoglobin, elastin, and collagen. The results show that the dynamical behaviors of the hydration waters are similar for these proteins when using comparable hydration levels of h = 0.25–0.43. Since water dynamics is characterized by strongly nonexponential correlation functions, we use a Cole–Cole spectral density for spin-lattice relaxation analysis, leading to correlation times, which are in nice agreement with results for the main dielectric relaxation process observed for various proteins in the literature. The temperature dependence can roughly be described by an Arrhenius law, with the possibility of a weak crossover in the vicinity of 220 K. Near ambient temperatures, the results substantially depend on the exact shape of the spectral density so that deviations from an Arrhenius behavior cannot be excluded in the high-temperature regime. However, for the studied proteins, the data give no evidence for the existence of a sharp fragile-to-strong transition reported for lysozyme at about 220 K. Line-shape analysis reveals that the mechanism for the rotational motion of hydration waters changes in the vicinity of 220 K. For myoglobin, we observe an isotropic motion at high temperatures and an anisotropic large-amplitude motion at low temperatures. Both mechanisms coexist in the vicinity of 220 K. 13C CP MAS spectra show that hydration results in enhanced elastin dynamics at ambient temperatures, where the enhancement varies among different amino acids. Upon cooling, the enhanced mobility decreases. Comparison of 2H and 13C NMR data reveals that the observed protein dynamics is slower than the water dynamics.  相似文献   

8.
The conformation of heparin in water was investigated by intermediate-angle x-ray scattering (IAXS). The theoretical scattering function for the coil conformation was calculated by the Monte Carlo method using the approximation of separable conformation energies and the conformation energies computed for two disaccharide pairs in heparin. From x-ray scattering in a relatively small-angle region, the conformation of heparin is not the ordered 21 helix conformation but the coil conformation obtained by the Monte Carlo calculation. It is expected, from x-ray scattering in a relatively wide-angel region, that the sulfate groups of heparin maintain about 7 Å between them.  相似文献   

9.
Summary Ultrastructural details of dry (7% moisture content) and hydratedPyrus communis L. pollen are revealed following freezesubstitution preparation for electron microscopy. Dry pollen is characterized by tightly packed, multilamellate membranous profiles found in association with plasma membrane, vesicles, ER, dictyosomes and some double-membrane bound organelles. Dry pollen also shows unit-membrane bound, densely osmiophilic bodies often with tightly packed multilamellations contained within and, at times, in their bounding membranes. These features are not evident in hydrated pollen. Results suggest that multilamellate membranes form as the plasma membrane, vesicles, ER, and double-membrane bound organelles undergo dehydration, and that upon hydration they rapidly resume normal unilamellate structure.Abbreviations DOB densely osmiophilic body - IMP intramembrane particles - MO multilamellate organelle  相似文献   

10.
The influence of three chemical chaperones: glycerol, 4-hexylresorcinol, and 5-methylresorcinol on the structure, equilibrium fluctuations, and the functional activity of the hydrophilic enzyme lysozyme and the transmembrane reaction center (RC) protein from Rb. sphaeroides in a broad range of concentrations has been studied. Selected chemical chaperones are strongly different by the structure and action on hydrophilic and membrane proteins. The influence of the chemical chaperones (except methylresorcinol) on the structure, dynamics, and functional properties of lysozyme and RC protein are well described within the frames of extended models of preferential hydration and preferential interaction of protein with a chemical chaperone. A molecule of hexylresorcinol consists of a hydrophobic (alkyl radical) and a hydrophilic (aromatic nuclus) moieties. This fact provides additional regulation of functional activity of lysozyme and RC by hexylresorcinol. The influence of methylresorcinol on proteins differs from that of glycerol and hexylresorcinol. Methylresorcinol interacts with the surface of lysozyme directly, not via water hydrogen bonds. This leads to a decrease in denaturation temperature T(d), and an increase in the amplitude of equilibrium fluctuation, which allows him to be a powerful activator. Methylresorcinol interacts with the membrane RC protein only by the condensation of hydration water, which is negligible in the case of methylresorcinol. Therefore, methylresorcinol does not effect the functional properties of the RC protein. It was concluded that various chaperones at one and the same concentration and chaperones at different concentrations form diverse 3D structures of proteins, which differ by dynamic and functional characteristics.  相似文献   

11.
The dielectric behavior of the aqueous solutions of three widely differing macromolecules has been investigated: myoglobin, polyvinylpyrrolidone (PVP), and human serum low-density lipoprotein (LDL). It was not possible to interpret unambiguously the dielectric properties of the PVP solution in terms of water structure. The best interpretation of the dielectric data on the myoglobin and LDL solutions was that, in both cases, the macromolecule attracts a layer of water of hydration one or two water molecules in width. For LDL, this corresponds to a hydration factor of only 0.05 g/g, whereas for myoglobin the figure is nearer 0.6 g/g. With myoglobin, part of the water of hydration exhibits its dispersion at frequencies of a few GHz, and the rest disperses at lower frequencies, perhaps as low as 10-12 MHz. The approximate constancy of the width of the hydration shell for two molecules as dissimilar in size as LDL and myoglobin confirms that the proportion of water existing as water of hydration in a biological solution depends critically on the size of the macromolecules as well as on their concentration.  相似文献   

12.
A systematic method for the analysis of the hydration structure of proteins is demonstrated on the case study of lysozyme. The method utilises multiple structural data of the same protein deposited in the protein data bank. Clusters of high water occupancy are localised and characterised in terms of their interaction with protein. It is shown that they constitute a network of interconnected hydrogen bonds anchored to the protein molecule. The high occupancy of the clusters does not directly correlate with water–protein interaction energy as was originally hypothesised. The highly occupied clusters rather correspond to the nodes of the hydration network that have the maximum number of hydrogen bonds including both the protein atoms and the surrounding water clusters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
We present an efficient algorithm to compute X-ray intensities scattered by macromolecules in solution, from atomic positions found in crystal structures. The algorithm applied the FAst Fourier Transform to an electron density map created from the atomic coordinates and corrected for solvent density. We compute scattering curves for both allosteric forms of E. coli aspartate carbamoyltransferase. Calculated intensities are in agreement with the ones measured by Moddy et al. [1,2] which shows that the structures observed in solution in the presence or in the absence of a substrate analogue do correspond to those of two crystal forms analyzea by Lipscomb and collaborators [3,4,5].  相似文献   

14.
The structures at protein-water interface, i.e. the hydration structure of proteins, have been investigated by cryogenic X-ray crystal structure analyses. Hydration structures appeared far clearer at cryogenic temperature than at ambient temperature, presumably because the motions of hydration water molecules were quenched by cooling. Based on the structural models obtained, the hydration structures were systematically analyzed with respect to the amount of water molecules, the interaction modes between water molecules and proteins, the local and the global distribution of them on the surface of proteins. The standard tetrahedral interaction geometry of water in bulk retained at the interface and enabled the three-dimensional chain connection of hydrogen bonds between hydration water molecules and polar protein atoms. Large-scale networks of hydrogen bonds covering the entire surface of proteins were quite flexible to accommodate to the large-scale conformational changes of proteins and seemed to have great influences on the dynamics and function of proteins. The present observation may provide a new concept for discussing the dynamics of proteins in aqueous solution.  相似文献   

15.
P L Poole  J L Finney 《Biopolymers》1984,23(9):1647-1666
Direct difference ir spectra are presented as a function of hydration for lysozyme and α-lactalbumin, and detailed sequential hydration molecular events identified. Despite the strong sequence homology between the two proteins, and their expected conformational similarity, the hydration behaviour of the polar groups is different for the two proteins. Using a Hill-type analysis, we conclude that the acid groups ionize and hydrate rapidly and noncooperatively in both proteins, consistent with the known (lysozyme) and postulated (α-lactalbumin) surface chemistry. The polar group hydration shows a clear cooperativity, which is quantitatively different in the two proteins. Complementary work suggests this cooperativity relates to a hydration-induced “loosening up” of the lysozyme conformation at about 55 mol water/mol protein. α-Lactalbumin appears to “open up” more easily for hydration than does lysozyme, consistent with its lower stability against thermal and acid denaturation.  相似文献   

16.
Mollusc shell formation takes place in a preformed extracellular matrix, composed of insoluble chitin, coated with proteins and dissolved macromolecules. The water-soluble matrix is known to have a strong influence on the growth of CaCO(3), whereas the role of the insoluble matrix on mineralization is unclear. Therefore, we mineralized the EDTA (ethylenediaminetetraacetic acid) insoluble organic matrix of abalone nacre with a modified double-diffusion set-up, where the diffusing solutions were constantly renewed. Control experiments were performed with cellulose and chitosan foils. The mineralized matrices/foils were analyzed with SEM. We show that the insoluble matrix of abalone nacre induces the growth of flat and roughly polygonal CaCO(3) crystals. In some of the experiments with the insoluble matrix, the growth of three-dimensional parallel sheets of densely packed platelets inside the insoluble matrix was observed. XRD on these samples revealed that they consist of oriented aragonite.  相似文献   

17.
Ca2+-transporting adenosine triphosphatase (ATPase) of sarcoplasmic reticulum couples ATP hydrolysis with ion transport. Phosphorylation of the cytosolic region of the calcium-bound conformation (E1) of the protein leads to drastic conformational rearrangements of the transmembrane helices and the release of Ca2+. The resulting calcium-free conformation (E2) is less stable than the E1 form. The changes in van der Waals interactions and interhelical hydrogen bonding in the E1 and E2 conformations were compared. Conformational changes in the transmembrane region concomitant with the release of Ca2+ mainly affect the number of interhelical hydrogen bonds, which is reduced to half of that in E1 form, whereas the number of interhelical atomic pairwise contacts reflecting van der Waals interactions experience little change. The interhelical hydrogen bonds in Ca2+-transporting ATPase can be divided into two groups according to their roles: those that play a structural stabilizing role and those that are important for the correct geometry of the Ca2+ binding site. Interhelical hydrogen bonds in the transmembrane regions play important roles for the stability and specificity of helix-helix interactions in proteins where change of conformation is required for transport of ions or small molecules.  相似文献   

18.
J L Koenig  B G Frushour 《Biopolymers》1972,11(12):2505-2520
The Raman spectra of three globular proteins, beef pancreas chymotrypsinogen A, beef pancreas ribonuclease, and hen egg white ovalbumin have been obtained in the solid state and aqueous solution. X-ray diffraction and circular dichroism evidence have indicated that these proteins have a low α-helical content and a large fraction of the residues in the unordered and β-sheet conformation. The frequencies and intensities of the amide I and amide III lines are consistent with assignments based on the Raman spectra of polypeptides. The intense amide III lines observed in all the spectra would be expected for proteins with a low fraction of the residues in the α-helical conformation. Several spectra changes occur upon dissolution of the proteins in water and may be associated with further hydration of the proteins. The spectrum of thermally denatured chymotrypsinogen is presented. A 3 cm–1 decrease in the frequency of the amide I line of the protein dissolved in D2O upon heating was observed. This observation is consistent with a denaturation mechanism allowing only slight changes in the secondary structure but an increase in solvent penetration upon going from the native to the reversibly denatured state.  相似文献   

19.
For biological molecules in aqueous solution, the hydration pressure as a function of distance from the molecular surface represents a very short-range repulsive pressure that limits atom-atom contact, opposing the attractive van der Waals pressure. Whereas the separation distance for molecules that easily arrange into ordered arrays (e.g., lipids, DNA, collagen fibers) can be determined from x-ray diffraction, many globular proteins are not as easily structured. Using a new micropipette technique, spherical, glassified protein microbeads can be made that allow determination of protein hydration as a function of the water activity (aw) in a surrounding medium (decanol). By adjusting aw of the dehydration medium, the final protein concentration of the solid microbead is controlled, and ranges from 700 to 1150 mg/mL. By controlling aw (and thus the osmotic pressure) around lysozyme, the repulsive pressure was determined as a function of distance between each globular, ellipsoid protein. For separation distances, d, between 2.5 and 9 Å, the repulsive decay length was 1.7 Å and the pressure extrapolated to d = 0 was 2.2 × 108 N/m2, indicating that the hydration pressure for lysozyme is similar to other biological interfaces such as phospholipid bilayers.  相似文献   

20.
The influence of three chemical chaperones: glycerol, 4-hexylresorcinol, and 5-methylresorcinol on the structure, equilibrium fluctuations, and functional activity of the hydrophilic enzyme lysozyme and the transmembrane reaction center (RC) protein from Rb. sphaeroides in a broad range of concentrations has been studied. The chosen chemical chaperones differ strongly in their structure and action on hydrophilic and membrane proteins. The influence of the chemical chaperones (except methylresorcinol) on the structure, dynamics, and functional properties of lysozyme and RC protein are well described in the framework of extended models of preferential hydration and preferential interaction of protein with a chemical chaperone. A molecule of hexylresorcinol consists of a hydrophobic (alkyl radical) and a hydrophilic (aromatic core) moieties; this provides for additional regulation of the functional activity of lysozyme and RC by hexylresorcinol. The influence of methylresorcinol on proteins differs from that of glycerol and hexylresorcinol. Methylresorcinol interacts with the surface of lysozyme directly, not via water hydrogen bonds. This leads to a decrease in the denaturation temperature and an increase in the amplitude of equilibrium fluctuations, allowing it to be a powerful activator. Methylresorcinol interacts with the membrane RC protein only by the condensation of hydration water, which is negligible in this case. Therefore, methylresorcinol does not affect the functional properties of the RC protein. It is concluded that different chaperones at the same concentration as well as one and the same chaperone at different concentrations produce protein 3D structures differing in dynamic and functional characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号