首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
百合病毒的DNA芯片检测技术研究   总被引:9,自引:0,他引:9  
根据已知的黄瓜花叶病毒,百合无症病毒、百合斑驳病毒基因核苷酸序列,设计引物和探针,制备寡核苷酸芯片.用Cy3标记核苷酸引物,不对称RT-PCR扩增产物与芯片上的寡核苷酸探针杂交,荧光扫描仪检测并分析信号.研究制备的基因芯片能够检测侵染百合的3种重要病毒核酸的特异性荧光信号,该项技术具有特异、灵敏、快速的优点.  相似文献   

2.
研制和优化寡核苷酸芯片以初步实现对多种常见HPV(Human papillomavirus)病毒的分型检测.应用生物学软件对四型常见HPV病毒(6、11、16、18型)的全基因组序列进行分析,设计具有型特异性、熔解温度(Tm)相近的~60 mer寡核苷酸探针,对玻片片基进行优化处理后,点样制备成寡核苷酸基因芯片.将含HPV全长基因序列的质粒作为阳性标准品,利用梯度限制性荧光标记技术对其进行荧光标记,标记好的样品与芯片杂交.结果显示HPV样品与相应的型特异性探针杂交有明显的荧光信号,而与阴性对照探针和空白对照探针没有杂交信号.通过对芯片片基处理和样品荧光标记方法的优化,可以提高芯片检测的杂交特异性和荧光信号强度.  相似文献   

3.
百合病毒的DNA芯片检测技术研究   总被引:1,自引:0,他引:1  
根据已知的黄瓜花叶病毒,百合无症病毒、百合斑驳病毒基因核苷酸序列,设计引物和探针,制备寡核苷酸芯片。用Cy3标记核苷酸引物,不对称RT-PCR扩增产物与芯片上的寡核苷酸探针杂交,荧光扫描仪检测并分析信号。研究制备的基因芯片能够检测侵染百合的3种重要病毒核酸的特异性荧光信号,该项技术具有特异、灵敏、快速的优点。  相似文献   

4.
目的:建立一种质量控制芯片来监测样品标记、杂交和检测过程中的失误。方法:针对GFP基因设计的4条60mer寡核苷酸探针和1条阳性对照探针polv(U)与流感寡核苷酸探针一起打印在DAKO玻片上,并构建了GFP基因的克隆载体和体外表达载体,将从这两种重组载体上获得的绿色荧光蛋白(Green Fluorescent Protein,GFP)基因的ILNA、DNA片段和人的全血样品中的DNA用限制性显示技术(Restriction Display technology,RD)扩增标记,将标记的样品和荧光标记的通用引物U分别与芯片杂交、检测,并对扫描的结果进行统计分析。结果:GFP探针与相应的样品杂交时出现阳性信号,阳性对照探针在所有的杂交中均出现阳性信号,而空白对照则未检测荧光信号。结论:建立的质控芯片具有较好的敏感性和特异性,可以用于基因芯片中的质量监控。  相似文献   

5.
一种基于寡核苷酸微阵列芯片的多重可扩增探针杂交技术   总被引:2,自引:0,他引:2  
多重可扩增探针杂交技术(multiplex amplifiable probe hybridization,MAPH)是近年来发展起来的一种用于基因组中DNA拷贝数检测的新技术。并发展了一种基于寡核苷酸微阵列芯片的MAPH技术。该方法根据所检测的DNA序列,制备若干具有通用引物的FCR产物作为可扩增探针组,与固定在尼龙膜上待测的基因组DNA杂交。用磁珠回收特异性杂交的探针,经生物素标记的通用引物扩增后,与相应的寡核苷酸微阵列芯片杂交。该特异性的寡核苷酸微阵列芯片包括10个抗肌营养不良基因的外显子探针和阴性、阳性探针。杂交清冼后,链霉亲和素-Cy3染色用芯片扫描仪得到杂交的荧光图像。分析荧光信号的强度差异给出特定基因片段拷贝数的变化。该方法用微阵列技术代替MAPH中的电泳检测技术,可大幅度增加检测的通量。选择了一个正常男性、一个正常女性和一个肌营养不良症患者的基因组DNA来进行验证。结果表明,该方法能够同时给出抗肌营养不良基因多个外显子中的基因片段拷贝数差异信息。  相似文献   

6.
植物病毒检测芯片的杂交条件优化   总被引:1,自引:0,他引:1  
利用芯片点样仪将5种侵染马铃薯的病毒/类病毒(苜蓿花叶病毒、黄瓜花叶病毒、黄瓜花叶病毒-卫星病毒、马铃薯病毒Y、马铃薯块茎纺锤状类病毒)的保守区寡核苷酸(Oligonucleotide,oligo)探针和PCR探针点样于玻片,并以植物18S rRNA作为内参照制成基因芯片。研究探针浓度、杂交时间、杂交温度以及点样液对芯片杂交的影响,并验证优化后病毒检测芯片的特异性。结果表明,寡核苷酸探针浓度介于5-20 ?mol/L之间对杂交信号强度影响不大,PCR探针浓度与杂交信号强度间呈线性关系;在45℃杂交4 h时,芯片的杂交信号最强,且该条件下进行杂交对两种探针芯片的影响趋势一致;点样液中以DMSO的杂交效果最好。经过整体条件优化后的两种探针芯片在杂交检测上具有较高的特异性,适于检测植物病毒。  相似文献   

7.
银染增强的纳米金标记探针对微量核酸的检测   总被引:7,自引:3,他引:4  
本研究利用银染增强的纳米金技术建立了一种简单快速的核酸定量方法.该方法基于纳米金与烷巯基修饰的寡核苷酸分子共价键合作用,将纳米微粒报告基团标记在与靶核酸一端序列互补的寡核苷酸上,同时生物素化修饰另一端互补序列.靶核酸与两段寡核苷酸探针杂交后,借亲和素固定在酶标板孔内,通过纳米金催化的银染放大效应产生高灵敏的识别信号,适时记录其吸光度值从而实现核酸分子的定量.该检测方法检测单链核酸分子的灵敏度达0.1 fM,双链分子为10 fM.  相似文献   

8.
cDNA芯片阳性对照的制备及在芯片敏感性分析中的应用   总被引:2,自引:0,他引:2  
cDNA芯片是一种高通量基因表达谱分析技术,在生理病理条件下细胞基因表达谱分析,新基因发现和功能研究等方面具有广阔应用前景。CDNA芯片阳性对照的选取以及CDNA芯片检测敏感性是芯片成功应用的关键问题之一。以在系统发育上与人类基因同源性小的荧火虫荧光素酶基因材料,制备了用于人类和其他动物基因表达谱CDNA芯片的通用型阳性对照探针和相应的mRNA参照物,经反转录对mRNA参照物进行Cy3荧光标记并与DNA芯片杂交后发现,mRNA参照物能特异性地与荧光酶基因cDNA片断杂交,而与人β-肌动蛋白基因,人G3PDH基因以及λDNA/HINDⅢ无杂交反应。把mRNA参照物以不同比例加入HepG2总RNA中,以反转录荧光标记后与CDNA芯片杂交,结果发现当总RNA中的MRNA含量为1/10^4稀释(即mRNA分子个数约为10^8个)时,CDNA芯片基本检测不出mRNA标记产物的杂交信号。而且,cDNA芯片检测的信号强度与芯片上固定的探针浓度密切相关,当探针浓度为2g/L时,杂交信号最强,随着探针浓度下降芯片的杂交信号趋于减弱。CDNA芯片通用型阳性参照物的制备以及应用于CDNA芯片检测敏感性研究为CDNA芯片应用于人和其他动物基因表达谱高通量分析和新基因功能研究提供了技术基础和理论依据。  相似文献   

9.
利用基因芯片技术筛选HIV-1F亚型基因限制性显示探针   总被引:2,自引:0,他引:2  
为筛选限制性显示技术制备的HIV 1F亚型基因探针 ,应用基因芯片打印仪将其有序地打印在玻片上制备基因芯片 .在随机引物延伸的过程中进行HIV样品的荧光标记 ,然后与芯片进行杂交 .杂交后清洗玻片并干燥 ,对芯片进行扫描 ,分析各探针的杂交信号 .从中筛选了 14个基因片段作为芯片下一步研究的探针 .实验证明 ,限制性显示技术是一种制备基因芯片探针的实用方法  相似文献   

10.
目的探讨采用单核苷酸多态性(SNP)检测方法-双色荧光正相杂交芯片技术对近交系小鼠遗传质量监测及相关影响因素。方法运用基于芯片的双色荧光正相杂交检测SNP技术,进行芯片杂交动力学研究,考察信号值(Cy3,Cy5)和ratio值(Cy5/Cy3)与PCR产物点样浓度、PCR产物长度和荧光标记探针长度之间的关系,研究PCR产物点样浓度、PCR产物长度和荧光标记探针长度对SNP分型的影响。结果采用正反标记实验后,Ratio值随着PCR产物点样浓度的增加呈稳定趋势;PCR双链产物长度对信号值影响比较大,点样时其长度不宜太长,最好不超过450 bp;随荧光标记探针长度的增加,基因分型能力明显下降,长度为15 bp最佳,长度超过20 bp时,已基本没有区分能力。结论PCR产物点样浓度、PCR产物长度和荧光标记探针长度是双色荧光正相杂交SNP分型系统的重要影响因素,采取适当的PCR产物点样浓度、PCR产物长度和荧光标记探针长度,并采用正反标记实验,可以取得稳定、准确的基因分型效果。为进一步进行近交系小鼠遗传质量监测的研究奠定基础。  相似文献   

11.
DNA microarrays used as 'genomic sensors' have great potential in clinical diagnostics. Biases inherent in random PCR-amplification, cross-hybridization effects, and inadequate microarray analysis, however, limit detection sensitivity and specificity. Here, we have studied the relationships between viral amplification efficiency, hybridization signal, and target-probe annealing specificity using a customized microarray platform. Novel features of this platform include the development of a robust algorithm that accurately predicts PCR bias during DNA amplification and can be used to improve PCR primer design, as well as a powerful statistical concept for inferring pathogen identity from probe recognition signatures. Compared to real-time PCR, the microarray platform identified pathogens with 94% accuracy (76% sensitivity and 100% specificity) in a panel of 36 patient specimens. Our findings show that microarrays can be used for the robust and accurate diagnosis of pathogens, and further substantiate the use of microarray technology in clinical diagnostics.  相似文献   

12.
Wang D  Gao H  Zhang R  Ma X  Zhou Y  Cheng J 《BioTechniques》2003,35(2):300-2, 304, 306 passim
Efficiencies of mismatch discrimination using size-varied capture probes were examined at various hybridization temperatures. The probes were 17, 15, 13, 11, 9, and 7 nucleotides long and contained single-base mismatches at their 3' ends. The optimal signal intensity and efficiency of base stacking hybridization on mismatch discrimination were observed for capture probes with a melting temperature (Tm) value of 36 degrees C, in the detection of DNA sequence variations at 40 degrees C. We employed asymmetric PCR to prepare single-stranded target DNA labeled with a fluorescent dye, and the PCR product was hybridized on the DNA microarray with no further purification. Our efforts have enhanced the sensitivity and simplified the procedures of base stacking hybridization on mismatch discrimination. As a model experiment, this improved technology was used to identify plasmid templates of human leukocyte antigen (HLA)-A alleles 2601, 2902, and 0206 on oligonucleotide microarrays. It is now possible to apply this simple, rapid, sensitive, and reliable base stacking hybridization technology to detect DNA sequence variations on microarrays in clinical diagnosis and other applications.  相似文献   

13.
目的:建立并初步评价一种针对重要肠道病原菌的多重PCR 基因芯片检测方法。方法:对筛选出的特异引物进行多重PCR优化,将引物分别按种属内混合和种属间混合的方案排查引物间的竞争性抑制现象,再将不同菌属的模板混合,用相对应的混合引物扩增,探寻高效特异的引物组合。分别掺入和不掺入荧光素,验证其对混合PCR反应的影响,并与芯片杂交,探寻多重PCR扩增效率对芯片杂交的影响。分析不同数量引物组合产生的杂交结果,筛选出无交叉反应的最优引物组合。结果:种属内引物混合均得到特异性扩增结果。种属间混合霍乱弧菌和空肠弯曲菌得到部分预期条带,随着混合引物数量的增加,交叉抑制现象也增多。杂交信号强度随多重PCR扩增效率的增加而增强。反应中掺入荧光素的扩增条带产量低于无荧光素的产物。可将35对混合引物拆成3个体系分别标记样品,以避免假阴性结果。结论:PCR反应中掺入荧光素降低扩增效率和杂交效率,但并不影响对杂交结果的判读和数据分析。基因芯片杂交信号强度取决于多重PCR的扩增效率。肠道病原菌多重PCR 基因芯片检测方法具有较高的特异性,混合PCR可以分别按照种属内和种属间的引物组合方案用于多病原的筛检。该基因芯片检测可以采用3个引物体系完成样品标记。  相似文献   

14.
Hu L  Cogdell DE  Jia YJ  Hamilton SR  Zhang W 《BioTechniques》2002,32(3):528, 530-522, 534
Academic researchers are increasingly producing and using cDNA microarrays. Their quality and hybridization specificity are crucial in determining whether the generated data are accurate and interpretable. Here, we describe two methods of monitoring microarray production, the sustainability of DNA attachment, and the specificity of hybridization. The first method consists of labeling an oligonucleotide, which is one of the primers used to amplify all cDNA probes on the array (except for beta-actin and GAPDH) with fluorescent dye and hybridize it to the cDNA microarray. Attachment of the cDNAs on the array after the hybridization procedure was monitored by visualizing fluorescent signals from the spots on the array. In the second method, two selected DNA targets, beta-actin and GAPDH, were labeled with fluorescent dye to hybridize to the cDNA array. Hence, hybridization specificity was demonstrated by obtaining fluorescent signals solely from the genes corresponding to the target.  相似文献   

15.
Chromosomal amplifications and deletions are critical components of tumorigenesis and DNA copy-number variations also correlate with changes in mRNA expression levels. Genome-wide microarray comparative genomic hybridization (CGH) has become an important method for detecting and mapping chromosomal changes in tumors. Thus, the ability to detect twofold differences in fluorescent intensity between samples on microarrays depends on the generation of high-quality labeled probes. To enhance array-based CGH analysis, a random prime genomic DNA labeling method optimized for improved sensitivity, signal-to-noise ratios, and reproducibility has been developed. The labeling system comprises formulated random primers, nucleotide mixtures, and notably a high concentration of the double mutant exo-large fragment of DNA polymerase I (exo-Klenow). Microarray analyses indicate that the genomic DNA-labeled templates yield hybridization signals with higher fluorescent intensities and greater signal-to-noise ratios and detect more positive features than the standard random prime and conventional nick translation methods. Also, templates generated by this system have detected twofold differences in gene copy number between male and female genomic DNA and identified amplification and deletions from the BT474 breast cancer cell line in microarray hybridizations. Moreover, alterations in gene copy number were routinely detected with 0.5 microg of genomic DNA starting sample. The method is flexible and performs efficiently with different fluorescently labeled nucleotides. Application of the optimized CGH labeling system may enhance the resolution and sensitivity of array-based CGH analysis in cancer and medical genetic studies.  相似文献   

16.
The degenerate primer-based sequencing Was developed by a synthesis method(DP-SBS)for high-throughput DNA sequencing,in which a set of degenerate primers are hybridized on the arrayed DNA templates and extended by DNA polymerase on microarrays.In this method,adifferent set of degenerate primers containing a give nnumber(n)of degenerate nucleotides at the 3'-ends were annealed to the sequenced templates that were immobilized on the solid surface.The nucleotides(n 1)on the template sequences were determined by detecting the incorporation of fluorescent labeled nucleotides.The fluorescent labeled nucleotide was incorporated into the primer in a base-specific manner after the enzymatic primer extension reactions and nine-base length were read out accurately.The main advanmge of the DP-SBS is that the method only uses very conventional biochemical reagents and avoids the complicated special chemical reagents for removing the labeled nucleotides and reactivating the primer for further extension.From the present study,it is found that the DP-SBS method is reliable,simple,and cost-effective for laboratory-sequencing a large amount of short DNA fragments.  相似文献   

17.
As a first step toward building a comprehensive microarray, two low density DNA microarrays were constructed and evaluated for the accurate detection of wastewater pathogens. The first one involved the direct hybridization of wastewater microbial genomic DNA to the functional gene probes while the second involved PCR amplification of 23S ribosomal DNA. The genomic DNA microarray employed 10 functional genes as detection targets. Sensitivity of the microarray was determined to be approximately 1.0 microg of Esherichia coli genomic DNA, or 2 x 10(8) copies of the target gene, and only E. coli DNA was detected with the microarray assay using municipal raw sewage. Sensitivity of the microarray was enhanced approximately by 6 orders of magnitude when the target 23S rRNA gene sequences were PCR amplified with a novel universal primer set and allowed hybridization to 24 species-specific oligonucleotide probes. The minimum detection limit was estimated to be about 100 fg of E. coli genomic DNA or 1.4 x 10(2) copies of the 23S rRNA gene. The PCR amplified DNA microarray successfully detected multiple bacterial pathogens in wastewater. As a parallel study to verify efficiency of the DNA microarray, a real-time quantitative PCR assay was also developed based on the fluorescent TaqMan probes (Applied Biosystems).  相似文献   

18.
The efficiency of hybridization analysis with oligonucleotide microarrays depends heavily on the method of detection. Conventional methods based on labeling nucleic acids with fluorescent, chemiluminescent, enzyme, or radioactive reporters suffer from a number of serious drawbacks which demand development of new detection techniques. Here, we report two new approaches for detection of hybridization with oligonucleotide microarrays employing magnetic beads as active labels. In the first method streptavidin-coated magnetic beads are used to discover biotin-labeled DNA molecules hybridized with arrayed oligonucleotide probes. In the second method biotin-labeled DNA molecules are bound first to the surface of magnetic beads and then hybridized with arrayed complementary strands on bead-array contacts. Using a simple low-power microscope with a dark-field illumination and a pair of complementary primers as a model hybridization system we evaluated sensitivity, speed, and cost of the new detection method and compared its performance with the detection techniques employing enzyme and fluorescent labels. It was shown that the detection of microarray-hybridized DNA with magnetic beads combines low cost with high speed and enhanced assay sensitivity, opening a new way to routine hybridization assays which do not require precise measurements of DNA concentration.  相似文献   

19.
A microarray consisting of oligonucleotide probes targeting variable regions of the 16S rRNA gene was designed and tested for the investigation of microbial communities in compost. Probes were designed for microorganisms that have been previously reported in the composting process and for plant, animal and human pathogens. The oligonucleotide probes were between 17 and 25 bp in length and included mostly species-specific sequences. Validation of probe specificity and optimization of hybridization conditions were conducted using fluorescently labeled 16S rRNA gene PCR products of pure culture strains. A labeling method employing a Cy3 or Cy5-labeled forward primer together with a phosphate-conjugated reverse primer for the production of single stranded DNA after a digestion step was optimised and used to label target DNA. A combination of two different DNA extraction methods using both physical and chemical lysis was found to give the best DNA yields. Increased hybridization signal intensities were obtained for probes modified with a 12 mer T-spacer. The microarray was found to have a detection limit of 10(3) cells, although in compost spiking experiments, the detection limit was reduced to 10(5) cells. The application of the microarray to compost samples indicated the presence of Streptococcus, Acinetobacter lwoffii, and Clostridium tetani in various compost samples. The presence of A. lwoffii in those compost samples was confirmed by PCR using primers specific for the organism. The aim of this study was to develop a molecular tool that would allow screening for the presence or absence of different microorganisms within compost samples.  相似文献   

20.
A small-oligonucleotide microarray prototype was designed with probes specific for the universal 16S rRNA and cpn60 genes of several pathogens that are usually encountered in wastewaters. In addition to these two targets, wecE-specific oligonucleotide probes were included in the microarray to enhance its discriminating power within the Enterobacteriaceae family. Universal PCR primers were used to amplify variable regions of 16S rRNA, cpn60, and wecE genes directly in Escherichia coli and Salmonella enterica serovar Typhimurium genomic DNA mixtures (binary); E. coli, S. enterica serovar Typhimurium, and Yersinia enterocolitica genomic DNA mixtures (ternary); or wastewater total DNA. Amplified products were fluorescently labeled and hybridized on the prototype chip. The detection sensitivity for S. enterica serovar Typhimurium was estimated to be on the order of 0.1% (10(4) S. enterica genomes) of the total DNA for the combination of PCR followed by microarray hybridization. The sensitivity of the prototype could be increased by hybridizing amplicons generated by PCR targeting genes specific for a bacterial subgroup, such as wecE genes, instead of universal taxonomic amplicons. However, there was evidence of PCR bias affecting the detection limits of a given pathogen as increasing amounts of a different pathogen were spiked into the test samples. These results demonstrate the feasibility of using DNA microarrays in the detection of waterborne pathogens within mixed populations but also raise the problem of PCR bias in such experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号