首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mycorrhizal fungus colonization of roots may modify plant metal acquisition and tolerance. In the present study, the contribution of the extraradical mycelium of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae (BEG 107), to the uptake of metal cations (Cu, Zn, Cd and Ni) by cucumber (Cucumis sativus) plants was determined. The influence of the amount of P supplied to the hyphae on the acquisition and partitioning of metal cations in the mycorrhizal plants was also investigated. Pots with three compartments were used to separate root and root-free hyphal growing zones. The shoot concentration of Cd and Ni was decreased in mycorrhizal plants compared to non-mycorrhizal plants. In contrast, shoot Zn and Cu concentrations were increased in mycorrhizal plants. High P supply to hyphae resulted in decreased root Cu concentrations and shoot Cd and Ni concentrations in mycorrhizal plants. These results confirm that some elements required for plant growth (P, Zn, Cu) are taken up by mycorrhizal hyphae and are then transported to the plants. Conversely, Cd and Ni were transported in much smaller amounts by hyphae to the plant, so that arbuscular mycorrhizal fungus colonization could partly protect plants from toxic effects of these elements. Selective uptake and transport of plant essential elements over non-essential elements by AM hyphae, increased growth of mycorrhizal plants, and metal accumulation in the root may all contribute to the successful growth of mycorrhizal plants on metal-rich substrates. These effects are stimulated when hyphae can access sufficient P in soil.  相似文献   

2.
Human management practices and large detritivores such as earthworms incorporate plant litter into the soil, thereby forming a heterogeneous soil environment from which plant roots extract nutrients. In a greenhouse experiment we investigated effects of earthworms and spatial distribution of 15N-labelled grass litter on plants of different functional groups [Lolium perenne (grass), Plantago lanceolata (forb), Trifolium repens (legume)]. Earthworms enhanced shoot and root growth in L. perenne and P. lanceolata and N uptake from organic litter and soil in all plant species. Litter concentrated in a patch (compared with litter mixed homogeneously into the soil) increased shoot biomass and 15N uptake from the litter in L. perenne and enhanced root proliferation in P. lanceolata when earthworms were present. Growth of clover (T. repens) was rather independent of the presence of earthworms and organic litter distribution: nevertheless, clover took up more nitrogen in the presence of earthworms and exploited more 15N from the added litter than the other plant species. The magnitude of the effects of earthworms and organic litter distribution differed between the plant species, indicating different responses of plants with contrasting root morphology. Aphid (Myzus persicae) reproduction was reduced on P. lanceolata in the presence of earthworms. We suggest that earthworm activity may indirectly alter plant chemistry and hence defence mechanisms against herbivores.  相似文献   

3.
To elucidate the contributions of rice root morphology and phosphorus uptake kinetics to P uptake by rice from iron phosphate, a sand culture experiment with either sufficient P supply (control treatment, 10 mg P/l as NaH2PO4) or Fe-P as the only source of P (40 mg P/pot as FePO4 × 4H2O) and a solution culture experiment supplied with either sufficient P (10 mg P/l) or deficient P (0.5 mg P/l) were conducted. Eight rice cultivars, which differed in P uptake from Fe-P, were investigated. Plant P uptake, root morphology, and P uptake kinetics were determined. There were significant (P < 0.05) genotypic variations in both plant dry weight and P uptake per plant among eight rice (Oryza sativa L.) cultivars when supplied with Fe-P as the P source. The Fe-P treatment significantly (P < 0.05) decreased plant dry weight, P uptake per plant, and P concentration in plant dry matter of all cultivars in comparison with the control plants. In Fe-P treated plants, significant (P < 0.05) genotypic variation was shown in root morphology, including root length, surface area, volume, and number of lateral roots. The P uptake per plant from Fe-P by rice was significantly (P < 0.05) correlated with root surface area and root volume as well as with the number of lateral roots, suggesting that the ability of rice to absorb P from Fe-P was closely related to root morphology. Low P supply in solution significantly increased the I max (P < 0.05), but significantly decreased the K M (P < 0.05) for P absorption by all rice cultivars. We supposed that kinetic characteristics of root P uptake could not account for the ability of rice to absorb P from Fe-P. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 2, pp. 260–266. The text was submitted by the authors in English.  相似文献   

4.
The ammonium analogue, methylamine, is taken up rapidly from dilute solution by Macrocystis pyrifera (L.) C. A. Agardh. 14C-methylamine was used to characterize the transport system, with respect to dependence on external concentration, temperature, pH and substrate specificity. The results suggest that methylamine enters the algal tissue via a specific mediated transport system. Uptake of methylamine showed no consistent relation to the N content of the plant tissue, but was highly dependent on the portion of plant sampled and severely affected by cutting the tissue. The strong inhibition of methylamine uptake by ammonium and lesser inhibition by other alkylamines suggests that the uptake system functions as an “ammonium permease”. Uptake of 14C-methylamine can be used as a highly sensitive measure of NH4+ uptake activity and should be a useful tool for studying NH4+ uptake in the laboratory and field.  相似文献   

5.
The pollution of aquifers by NO?3 in temperate environments is aggravated by farming practices that leave the ground bare during winter. The use of catch crops during this time may decrease nitrate loss from the soil. Nitrate uptake by several catch crop species (Brassica napus L., Sinapis alba L., Brassica rapa L., Raphanus sativus L., Trifolium alexandrinum L., Trifolium incarnatum L., Phacelia tanacetifolia Benth., Lolium perenne L., Lolium multiflorum Lam. and Secale cereale L.) was here studied in relation to transpiration rate and low temperatures applied to the whole plant or to roots only. The Michaelis constant (Km), maximum uptake rate (Vmax), time of induction and contributions of inducible and constitutive mechanisms were estimated from measurements of NO?3 depletion in the uptake medium. There were large differences between species, with KmM) values ranging between 5.12 ± 0.64 (Trifolium incarnatum) and 36.4 ± 1.97 (Lolium perenne). Maximum NO?3 uptake rates expressed per unit root weight were influenced by ageing, temperature and previous NO?3 nutrition. They were also closely correlated with water flow through the roots and with shoot/root ratio of these species. The combined results from all species and treatments showed that Vmax increased with shoot/root ratio, suggesting a regulatory role for the shoots in NO?3 uptake. Overall, the results showed a great diversity in NO?3 uptake characteristics between species in terms of kinetic parameters, contribution of the constitutive system (100% of total uptake in ryegrass, nil in Fabaceae) and time of induction.  相似文献   

6.
Most terrestrial plant species form associations with arbuscular mycorrhizal fungi (AMF) that transfer soil P to the plant via their external hyphae. The distribution of nutrients in soils is typically patchy (heterogeneous) but little is known about the ability of AMF to exploit P patches in soil. This was studied by growing symbioses of Linum usitatissimum and three AMF (Glomus intraradices, G. mosseae and Gigaspora margarita) in pots with two side-arms, which were accessible to hyphae, but not to roots. Soil in one side-arm was either unamended (P0) or enriched with P; simultaneous labelling of this soil with 32P revealed that G. intraradices responded to P enrichment both in terms of hyphal proliferation and P uptake, whereas the other AMF did not. Labelling with 33P of P0 soil in the other side arm revealed that the increased P uptake by G. intraradices from the P-enriched patch was paralleled by decreased P uptake by other parts of the mycelium. This is the first demonstration of variation in growth and nutrient uptake by an AMF as influenced by a localized P enrichment of the soil. The results are discussed in the context of functional diversity of AMF.  相似文献   

7.
Boron in Plant Biology   总被引:6,自引:0,他引:6  
Abstract: The interest of biologists in boron (B) has largely been focused on its role in plants for which B was established as essential in 1923 (Warington, 1923[296]). Evidence that B has a biological role in other organisms was first indicated by the establishment of essentiality of B for diatoms (Smyth and Dugger, 1981[296]) and cyanobacteria (Bonilla et al., 1990[296]; Garcia‐Gonzalez et al., 1991[296]; Bonilla et al., 1997[296]). Recently, B was shown to stimulate growth in yeast (Bennett et al., 1999[296]) and to be essential for zebrafish (Danio rerio) (Eckhert and Rowe, 1999[296]; Rowe and Eckhert, 1999[296]) and possibly for trout (Oncorhynchus mykiss) (Eckhert, 1998[296]; Rowe et al., 1998[296]), frogs (Xenopus laevis) (Fort et al., 1998[296]) and mouse (Lanoue et al., 2000[296]). There is also preliminary evidence to suggest that B has at least a beneficial role in humans (Nielsen, 2000[296]). While research into the role of B in plants has been ongoing for 80 years it has only been in the past 5 years that the first function of B in plants has been defined. Boron is now known to be essential for cell wall structure and function, likely through its role as a stabilizer of the cell wall pectic network and subsequent regulation of cell wall pore size. A role for B in plant cell walls, however, is inadequate to explain all of the effects of B deficiency seen in plants. The suggestion that B plays a broader role in biology is supported by the discovery that B is essential for animals where a cellulose‐rich cell wall is not present. Careful consideration of the physical and chemical properties of B in biological systems, and of the experimental data from both plants and animals suggests that B plays a critical role in membrane structure and hence function. Verification of B association with membranes would represent an important advance in modern biology. For several decades there has been uncertainty as to the mechanisms of B uptake and transport within plants. This uncertainty has been driven by a lack of adequate methodology to measure membrane fluxes of B at physiologically relevant concentrations. Recent experimentation provides the first direct measurement of membrane permeability of B and illustrates that passive B permeation contributes sufficient B at adequate levels of B supply, but would be inadequate at conditions of marginal B supply. The hypothesis that an active, carrier mediated process is involved in B uptake at low B supply is supported by research demonstrating that B uptake can be stimulated by B deprivation, that uptake rates follow a Michaelis‐Menton kinetics, and can be inhibited by application of metabolic inhibitors. Since the mechanisms of element uptake are generally conserved between species, an understanding of the processes of B uptake is relevant to studies in both plants and animals. The study of B in plant biology has progressed markedly in the last decade and we are clearly on the cusp of additional, significant discoveries. Research in this field will be greatly stimulated by the discovery that B is essential for animals, a discovery that will not only encourage the participation of a wider cadre of scientists but will refocus the efforts of plant biologists toward a determination of roles for B outside the plant cell wall. Determination of the function of B in biology and of the mechanisms of B uptake in biological systems, is essential to our understanding and management of B deficiency and toxicity in plants and animals in both agricultural and natural environments. Through an analysis of existing data and the development of new hypotheses, this review aims to provide a vision of the future of research into the biology of boron.  相似文献   

8.
Summary Root parameters of three corn (Zea mays L.) genotypes influencing P and K uptake were investigated in solution culture and field experiments. The data for these parameters were used to simulate P and K uptake by plants grown in the field using the Claassen-Barber model5. Root characteristics for ion influx, maximum rate of influx,Imax; Michaelis-Menten constant,Km; and minimum concentration of solution below which no further net influx occurs,Cmin were determined in solution culture. These kinetic parameters varied 2 to 3 fold among genotypes. Variations among genotypes were different for K than for P.Three corn genotypes were grown in the field and harvested 47, 54 and 68 days after emergence. Yield and root surface per plant increased about 3 fold during this time. At 47 days, 2/3 of the total root surface was in the top soil whereas 3 weeks later, it was less than 50%. Genotypes differed in distribution of roots between the topsoil and subsoil as well as in root surface per unit of shoot.K uptake predicted by the Claassen-Barber model was 2 to 3 times the observed. The overprediction could be related to high root density (length of root per unit soil volume) which indicated that competition between roots occurred that was not considered in the simulation model. The predicted P uptake (y) was correlated (r=0.91) to observed uptake (x) byy=0.98+0.67x, indicating underprediction of P uptake. The presence of root hairs may have been the cause of the underprediction. The calculated contribution of the subsoil to the observed uptake was 10% for K and 1% in the case of P. It was concluded that the plant parameters used to simulate nutrient uptake were rated accurately when allowance was made for root competition and presence of root hairs.Journal Paper No. 7608. Purdue University, Agric. Exp. Station, West Lafayette, IN 47907. Contribution from the Department of Agronomy. This research was supported in part by the Tennessee Valley Authority and the Deutsche Forschungsgemeinschaft.  相似文献   

9.
Summary Uptake of water and magnesium chloride solution was investigated through the outer surface of twigs of Picea abies (L.) Karst. Water uptake was determined by using pressure/volume (P/V) curves of the twigs as a basis for calculation to avoid problems of superficial extraneous water. When water was sprayed on bark and needles of 3- to 7-year-old twigs at a xylem water potential of -1.00 MPa, they absorbed as much as 80 mm3 water in 200 min/g twig dry weight as the twig water potential recovered to -0.15 MPa. With fluorescent dyes, pathways for absorption of water and solutes through the twig bark were found, particularly through the radially orientated ray tissue. In addition to uptake by mass flow, magnesium could also diffuse along a concentration gradient from the twig surface into the xylem. In the field, the magnitude of these uptake processes would depend on the concentration of elements deposited by atmospheric precipitation, the concentration gradient between the plant surface and the xylem sap, the xylem water potential and the intensity and duration of each precipitation event.  相似文献   

10.
Intensive cropping of Italian ryegrass (Lolium multiforum L.) in pots was used to assess the contribution of non-exchangeable K to plant uptake. The soils used were: two soils high in mica (illite) developed on recent alluvium plus two smectitic (beidellitic) soils and a soil of mixed mineralogy rich in mica. Four K treatments were used (0, 28.6, 143, and 286 mg kg-1 soil) with 8 successive monthly cuttings. A response of plant K uptake to added K was observed in all soils. Both 1.0 M NH40Ac and 0.2 M CaCl2 extractable K were depleted to a minimum level specific for each soil. The minima were lower in the old upland soils compared to the young alluvial soils. Uptake of K by Italian ryegrass induced K release from the non-exchangeable K to replenish the plant available pool of K ions. The release of mica interlayer K in the alluvial and in the high K smectitic soil supplied sufficient K to plants even under intensive cropping. The rate of mobilization of interlayer K was low in the smectitic soil with lower K. The lowest release rate was in the old high mica soil. Iron coatings may have inhibited mobilization of interlayer K. The rates of mobilization cannot be predicted from mineralogical and K-extraction data only. The rates of K uptake and the rates of K release by ryegrass under intensive cropping are potential values which can be used for modelling K availability to plants in the soils studied.  相似文献   

11.
Although Azolla species are among the most promising plants for use in phytoremediation, more studies on their growth and nitrogen (N) uptake along the N gradients of growing media are required. In this study, N concentration-dependent growth in growing media and phosphorus (P) and N accumulation by Azolla japonica were studied by estimating direct N uptake from media by molybdenum-iron proteins. The doubling time of A. japonica was less than a week, regardless of the N concentration (0, 5, and 25 mg N/L) present in the growth media, indicating that this plant is suitable for remediation. Plants showed a high uptake of P, probably via plant-bacteria symbiosis, indicating their potential for effective P remediation. A. japonica also showed more than 4% N content regardless of the treatment and accumulated more than 40 mg of N per microcosm in 3 weeks. iron and molybdenum levels in plants were strongly associated with N fixation, and N uptake from media was estimated to be more than 25 mg per microcosm in 3 weeks, indicating that A. japonica has N remediation potential. As A. japonica is a rapidly growing plant, capable of efficient P and N remediation, it has great potential for use in phytoremediation of nutrient-enriched waters such as agricultural or urban wastewater and eutrophicated aquatic ecosystems.  相似文献   

12.
江西瑞昌石灰岩山地淡竹林植物元素分布与吸收特征   总被引:1,自引:0,他引:1  
为探究石灰岩山地淡竹林植物养分分布与吸收特征,辨析其与群落功能地位的关系,该研究通过测定江西瑞昌石灰岩山地淡竹林建群种淡竹(Phyllostachys glauca),伴生种胡颓子(Elaeagnus pungens)、油茶(Camellia oleifera)和枸骨(Ilex cornuta)不同器官9种元素含量,对比分析了元素分布与吸收特征。结果表明:(1)淡竹各器官大量元素(N、P、K、Ca、Mg)分布规律为叶根茎,微量元素(Fe、Mn、Zn、Cu)分布规律为根叶茎;其叶中N [(18.82±1.16) g·kg-1]、P [(1.17±0.19) g·kg-1]、Fe [(1.01±0.09) g·kg-1]元素含量高;各器官的元素生物吸收系数大小顺序与元素含量一致。(2)伴生种植物大量元素分布与生物吸收系数顺序均为叶茎根。微量元素在器官的分布顺序因物种而异,油茶叶的Mn含量最高,为(1.88±0.18) g·kg-1,而Ca、Mg、Zn元素在枸骨茎中富集最多。(3)群落上层植物淡竹和光照条件较好的胡颓子各元素含量及分配规律相近,而林下植物油茶和枸骨元素含量与之相比相差较大。研究认为,淡竹林建群种和伴生种在元素分布和吸收特征的差异与群落光照条件密切相关。  相似文献   

13.
Sustained increases in plant production in elevated CO2 depend on adequate belowground resources. Mechanisms for acquiring additional soil resources include increased root allocation and changes in root morphology or physiology. CO2 research to date has focused almost exclusively on changes in biomass and allocation. We examined physiological changes in nitrate and ammonium uptake in elevated CO2, hypothesizing that uptake rates would increase with the amount of available CO2. We combined our physiological estimates of nitrogen uptake with measurements of root biomass to assess whole root-system rates of nitrogen uptake. Surprisingly, physiological rates of ammonium uptake were unchanged with CO2, and rates of nitrate uptake actually decreased significantly (P<0.005). Root boomass increased 23% in elevated CO2 (P<0.005), but almost all of this increase came in fertilized replicates. Rates of root-system nitrogen uptake in elevated CO2 increased for ammonium in nutrient-rich soil (P<0.05) and were unchanged for nitrate (P>0.80). Root-system rates of nitrogen uptake were more strongly correlated with physiological uptake rates than with root biomass in unamended soil, but the reverse was true in fertilized replicates. We discuss nitrogen uptake and changes in root biomass in the context of root nutrient concentrations (which were generally unchanged with CO2) and standing pools of belowground plant nitrogen. In research to date, there appears to be a fairly general increase in root biomass with elevated CO2, and little evidence of up-regulation in root physiology.  相似文献   

14.
Linalool, a monoterpene compound prevalent in essential oil of plant species traditionally used as sedatives, has been characterized as anticonvulsant in several experimental models. Linalool inhibits the binding of [3H]glutamate and [3H]dizocilpine to brain cortical membranes, indicating a participation of the glutamatergic transmission its mechanism of action. In this study, we investigated the effects of linalool on [3H]glutamate release (basal and potassium-stimulated) and [3H]glutamate uptake in mice cortical synaptosomes. Linalool significantly reduced potassium-stimulated glutamate release as well as glutamate uptake, not interfering with basal glutamate release. The data indicates that linalool may interfere with several relevant elements of the glutamatergic transmission, including detriment of the K+-stimulated glutamate release.  相似文献   

15.
Stevens  D. P.  McLaughlin  M. J.  Randall  P. J.  Keerthisinghe  G. 《Plant and Soil》2000,227(1-2):223-233
Recent findings have highlighted the possibility of increased fluoride (F) concentrations in herbage through F taken up from soil via the plant root. This paper aimed to assess the risk of F concentrations reaching phytotoxic or zootoxic concentrations in pasture plants. Five plant species commonly found in improved pastures in Australia, the sown species subterranean clover (Trifolium subterranean) and cocksfoot (Dactylis glomerata), and weeds barley grass (Hordeum leporinum), scotch thistle (Onopordum acanthium) and sorrel (Rumex acetosella) were grown in complete nutrient solutions with graded levels of added F to determine the effects of F activity in solution on phytotoxicity and uptake of F by their roots. A model was developed using data from these solution culture experiments and data from the literature. The model assessed uptake of F by plants grown over a range of soil pH values and determined the risk of F taken up through the plant roots reaching phytotoxic concentrations, or concentrations potentially injurious to grazing animals, in the plant shoots. Modelling data suggested that the plants studied would not accumulate phytotoxic concentrations of F in shoots or concentrations of F deleterious to grazing animals through root uptake in neutral pH agricultural soils. The risks from F addition to soils in phosphatic fertilisers leading to reduction in pasture growth or animal health are therefore low. However, in highly F-polluted soil, as the soil becomes more acidic or alkaline, the risk of zootoxic concentrations of F in shoots of plants would increase. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Three contrasted genotypes of Musa spp. (M. acuminata cv Grande Naine, M. acuminata spp. Banksii and M. balbisiana spp. Tani) were grown for 6 weeks under optimal conditions in hydroponics and were submitted to a wide range of Si supply (0–1.66 mM Si) to quantify the Si uptake and distribution in banana, as well as the effect of Si on banana growth. The level of Si supply did not affect plant growth, nor the rate of water and nutrient uptake. The rate of Si uptake and the Si concentration in plant tissues increased markedly with the Si supply. At the highest Si concentrations (1.66 mM), silicon absorption was essentially driven by mass flow of water (passive transport). However, at lower Si concentrations (0.02–0.83 mM), it was higher than its uptake by mass flow and caused the depletion of silicon in the nutrient solution, suggesting the existence of active processes in silicon transport. The distribution of silicon among shoot organs (pseudostem < petiole and midrib < young lamina < old leaf) confirmed the major role of transpiration in silicon accumulation and was not dependent on silicon supply. However, other mechanisms of transport might be operating in the roots and in the petiole and midrib of young leaves, whose silicon concentration was unexpectedly high at low Si supply (0.02 mM) compared to higher levels of Si. The three genotypes did not exhibit consistent differences in their responses to silicon supply.  相似文献   

17.
Selenium (Se) removal from polluted waters and soils is especially complicated and highly expensive. Phytoremediation has been suggested as a low-cost, efficient technology for Se removal. Plants remove Se by uptake and accumulation in their tissues, and by volatilization into the atmosphere as a harmless gas. Unraveling the mechanisms of Se uptake and volatilization in plants may lead to ways of increasing the efficiency of the phytoremediation process. The objectives of this study were: (i) to determine the effect of different Se forms in the root substrate on the capacity of some plant species to take up and volatilize Se; (ii) to determine the chemical species of Se in different plant parts after the plants were supplied with various forms of Se; and (iii) to determine the influence of increasing sulfate levels on plant uptake, translocation, and volatilization of different Se species. Plants of broccoli (Brassica oleracea var. botrytis L.), Indian mustard (Brassica juncea L.), sugarbeet (Beta vulgaris L.) and rice (Oryza sativa L.) were grown hydroponically in growth chambers and treated for 1 week with 20 μM Se as Na2SeO4, Na2SeO3 or L-selenomethionine (SeMeth) and increasing sulfate levels. The data show that shoots of SeO4-supplied plants accumulated the greatest amount of Se, followed by those supplied with SeMeth then SeO3. In roots, the highest Se concentrations were attained when SeMeth was supplied, followed by SeO3, then SeO4. The rate of Se volatilization by plants followed the same pattern as that of Se accumulation in roots, but the differences were greater. Speciation analysis (X-ray absorption spectroscopy) showed that most of the Se taken up by SeO4-supplied plants remained unchanged, whereas plants supplied with SeO3 or SeMeth contained only SeMeth-like species. Increasing the sulfate level from 0.25 mM to 10 mM inhibited SeO3 and SeMeth uptake by 33% and 15–25%, respectively, as compared to an inhibition of 90% of SeO4 uptake. Similar results were observed with regard to sulfate effects on volatilization. We conclude that reduction from SeO4 to SeO3 appears to be a rate-limiting step in the production of volatile Se compounds by plants. Inhibitory effects of sulfate on the uptake and volatilization of Se may be reduced substantially if Se is supplied as, or converted to, SeO3 and/or SeMeth rather than SeO4. Received: 27 February 1998 / Accepted: 30 March 1998  相似文献   

18.
The effects of La3+ on the uptake of trace elements (Se, Co, V, and Tc) in cucumber plants were studied by a radioactive multitracer technique. It was observed that the uptake and distribution of these trace elements in roots, stems, and leaves are different under different La3+ treatments. Furthermore, in the control, the plant accumulates 75Se, 56Co, and 48V all in the order roots>leaves>stems, whereas 95mTc was in the order leaves>stems>roots. The accumulations of 75Se and 95mTc in plants treated with different La3+ concentration were in the same order as those in the control, but the uptakes percentages of other kinds of element changed differently. The results indicate that lanthanum treatments to a growing cucumber lead to the change of uptake of trace elements, which suggest that a rare earth element is directly or indirectly involved in the ion transport of the plant and affects plant growth by regulating the uptake and distribution of elements that influence the plant cell physiology and biochemistry.  相似文献   

19.
Abstract The uptake of ammonium and nitrate nitrogen by cultured plants of the green freshwater alga Chara hispida L. has been compared quantitatively with the contribution of its rhizoidal tissue. In the short-term, the rhizoid takes up 7–20% of the ammonium nitrogen, and about 15% of the nitrate that is taken up by whole plants under similar conditions. The uptake was studied over a range of both temperatures and external concentrations. The apparent activation energy for the uptake of NH4+ and NO3? by the whole plant was found to be 50 kJ mol?1 and 30 kJ mol?1, respectively. For the rhizoid, the values were similar for both nitrogenous ions, 106 kJ mol?1 and 70–100 kJ mol?1. The rhizoidal uptake mechanism for ammonium nitrogen operates more efficiently compared to that in the whole plant. Nitrate is taken up by the rhizoid by a mechanism with a substrate affinity higher than in the plant taken as a whole. The possible ecological significance of the results is discussed.  相似文献   

20.
The objective of this research was to screen and search for suitable plant species to phytoextract mercury-contaminated soil. Our effort focused on using some of the known metal-accumulating wild-type plants since no natural plant species with mercury-hyperaccumulat ing properties has yet been identified. Three plant species were evaluated for their uptake efficiency for mercury: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). Four sets of experiments were conducted to evaluate the phytoremediation potential of these three plant species: a pot study with potting mix where mercury was provided daily as HgCl2 solution; experiments with freshly mercury-spiked soil; and a study with aged soils contaminated with different mercury sources (HgCl2, Hg(NO3)2, and HgS). Homemade sunlit chambers were also used to study foliar uptake of Hg from ambient air. Among the three plant species, Chinese brake fern showed the least stress symptoms resulting from mercury exposure and had the highest mercury accumulation. Our results indicate that Chinese brake fern may be a potential candidate for mercury phytoextraction. We found that mercury contamination is biologically available for plant uptake and accumulation, even if the original and predominating mercury form is HgS, and also after multiple phytoremediation cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号