首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Arai S  Miyazaki T 《The EMBO journal》2005,24(10):1863-1873
Polycomb group (PcG) proteins participate in DNA-binding complexes with gene-repressing activity, many of which have been highlighted for their involvement in hematopoiesis. We have identified a putative PcG protein, termed MBT-1, that is associated with Rnf2, an in vivo interactor of PcG proteins. MBT-1 structurally resembles the H-L(3)MBT protein, whose deletion is predicted to be responsible for myeloid hematopoietic malignancies. The human MBT-1 gene is located on chromosome 6q23, a region frequently deleted in leukemia cells, and shows a transient expression spike in response to maturation-inducing stimuli in myeloid leukemia cells. MBT-1(-/-) myeloid progenitor cells exhibit a maturational deficiency but maintain normal proliferative activities. This results in the accumulation of immature myeloid progenitors and hence, a marked decrease of mature myeloid blood cells, causing the MBT-1(-/-) mice to die of anemia during a late embryonic stage. Together, we conclude that MBT-1 specifically regulates the maturational advancement of myeloid progenitor cells during transitions between two developmental stages. We also show that MBT-1 appears to influence myelopoiesis by transiently enhancing p57(KIP2) expression levels.  相似文献   

2.
3.
4.
5.
Lysosomal acid lipase (LAL) cleaves cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in lysosomes. LAL deficiency causes expansion of CD11b(+)Gr-1(+) immature myeloid cells, loss of T cells, and impairment of T cell function. To test how myeloid cell LAL controls myelopoiesis and lymphopoiesis, a myeloid-specific doxycycline-inducible transgenic system was used to reintroduce human lysosomal acid lipase (hLAL) expression into LAL gene knockout (lal(-/-)) mice. Expression of hLAL in myeloid cells of lal(-/-) mice reversed abnormal myelopoiesis in the bone marrow starting at the granulocyte-monocyte progenitor stage and reduced systemic expansion of myeloid-derived suppressor cells (MDSCs). Myeloid hLAL expression inhibited reactive oxygen species production and arginase expression in CD11b(+)Gr-1(+) cells of lal(-/-) mice. Structural organization of the thymus and spleen was partially restored in association with reduced infiltration of CD11b(+)Gr-1(+) cells in these mice. In the thymus, reconstitution of myeloid cell LAL restored development of thymocytes at the double-negative DN3 stage. Myeloid cell LAL expression improved the proliferation and function of peripheral T cells. In vitro coculture experiments showed that myeloid hLAL expression in lal(-/-) mice reversed CD11b(+)Gr-1(+) myeloid cell suppression of CD4(+) T cell proliferation, T cell signaling activation, and lymphokine secretion. Blocking stat3 and NF-κB p65 signaling by small-molecule inhibitors in MDSCs achieved a similar effect. Injection of anti-Gr-1 Ab into lal(-/-) mice to deplete MDSCs restored T cell proliferation. These studies demonstrate that LAL in myeloid cells plays a critical role in maintaining normal hematopoietic cell development and balancing immunosuppression and inflammation.  相似文献   

6.
Otsuka, K., Koana, T., Tomita, M., Ogata, H. and Tauchi, H. Rapid Myeloid Recovery as a Possible Mechanism of Whole-Body Radioadaptive Response. Radiat. Res. 170, 307- 315 (2008).We investigated the mechanism underlying the radioadaptive response that rescues mice from hematopoietic failure. C57BL/6 mice were irradiated with low-dose acute X rays (0.5 Gy) for priming 2 weeks prior to a high-dose (6 Gy) challenge irradiation. Bone marrow cells, erythrocytes and platelets in low-dose-preirradiated mice showed earlier recovery after the challenge irradiation than those in mice subjected only to the challenge irradiation. This suggests that hematopoiesis is enhanced after a challenge irradiation in preirradiated mice. The rapid recovery of bone marrow cells after the challenge irradiation was consistent with the proliferation of hematopoietic progenitors expressing the cell surface markers Lin(-), Sca-1(-) and c-Kit(+) in low-dose-preirradiated mice. A subpopulation of myeloid (Mac-1(+)/Gr-1(+)) cells, which were descendants of Lin(-), Sca-1(-) and c-Kit(+) cells, rapidly recovered in the bone marrow of low-dose-preirradiated mice, whereas the number of B-lymphoid (CD19(+)/B220(+)) cells did not show a statistically significant increase. Plasma cytokine profiles were analyzed using antibody arrays, and results indicated that the concentrations of several growth factors for myelopoiesis after the challenge irradiation were considerably increased by low-dose preirradiation. The rapid recovery of erythrocytes and platelets but not leukocytes was observed in the peripheral blood of preirradiated mice, suggesting that low-dose preirradiation triggered the differentiation to myelopoiesis. Thus the adaptive response induced by low-dose preirradiation in terms of the recovery kinetics of the number of hematopoietic cells may be due to the rapid recovery of the number of myeloid cells after high-dose irradiation.  相似文献   

7.
8.
Interleukin (IL)-6 plays an important role in a wide range of biological activities, including differentiation of murine M1 myeloid leukemic cells into mature macrophages. At the onset of M1 differentiation, a set of myeloid differentiation primary response (MyD) genes are induced, including the proto-oncogene for JunB. In order to examine the molecular nature of the mechanisms by which IL-6 activates the immediate early expression of MyD genes, JunB was used as a paradigm. A novel IL-6 response element, -65/-52 IL-6RE, to which a 100-kDa protein complex is bound, has been identified on the JunB promoter. Leukemia inhibitory factor (LIF)-induced activation of JunB in M1 cells was also mediated via the -65/-52 IL-6RE. The STAT3 and CRE-like binding sites of the JunB promoter, identified as IL-6-responsive elements in HepG2 liver cells were found, however, to play no role in JunB inducibility by IL-6 in M1 myeloid cells. Conversely, the -65/-52 IL-6RE is shown not to be necessary for JunB inducibility by IL-6 or LIF in liver cells. It appears, therefore, that immediate early activation of JunB is regulated differently in M1 myeloid cells than in HepG2 liver cells. This indicates that distinct cis-acting control elements participate in cell type-specific induction of JunB by members of the IL-6 cytokine superfamily.  相似文献   

9.
Because JunB is an essential gene for placentation, it was conditionally deleted in the embryo proper. JunBDelta/Delta mice are born viable, but develop severe low turnover osteopenia caused by apparent cell-autonomous osteoblast and osteoclast defects before a chronic myeloid leukemia-like disease. Although JunB was reported to be a negative regulator of cell proliferation, junBDelta/Delta osteoclast precursors and osteoblasts show reduced proliferation along with a differentiation defect in vivo and in vitro. Mutant osteoblasts express elevated p16(INK4a) levels, but exhibit decreased cyclin D1 and cyclin A expression. Runx2 is transiently increased during osteoblast differentiation in vitro, whereas mature osteoblast markers such as osteocalcin and bone sialoprotein are strongly reduced. To support a cell-autonomous function of JunB in osteoclasts, junB was inactivated specifically in the macrophage-osteoclast lineage. Mutant mice develop an osteopetrosis-like phenotype with increased bone mass and reduced numbers of osteoclasts. Thus, these data reveal a novel function of JunB as a positive regulator controlling primarily osteoblast as well as osteoclast activity.  相似文献   

10.
11.
12.
To assess the combined role of G-CSF, GM-CSF, and M-CSF in myeloid cell production, mice deficient in all three myeloid CSFs were generated (G-/-GM-/-M-/- mice). G-/-GM-/-M-/- mice share characteristics found in mice lacking individual cytokines: they are toothless and osteopetrotic and furthermore acquire alveolar proteinosis that is more severe than that found in either GM-/- or G-/-GM-/- mice. G-/-GM-/-M-/- mice have a significantly reduced lifespan, which is prolonged by antibiotic administration, suggesting compromised ability to control bacterial infection. G-/-GM-/-M-/- mice have circulating neutrophils and monocytes, albeit at significantly reduced numbers compared with wild-type mice, but surprisingly, have more circulating monocytes than M-/- mice and more circulating neutrophils than G-/-GM-/- mice. Due to severe osteopetrosis, G-/-GM-/-M-/- mice show diminished numbers of myeloid cells, myeloid progenitors, and B lymphocytes in the bone marrow, but have significantly enhanced compensatory splenic hemopoiesis. Although G-/-GM-/-M-/- mice have a profound deficiency of myeloid cells in the resting peritoneal cavity, the animals mount a moderate cellular response in a model of sterile peritonitis. These data establish that in the absence of G-CSF, GM-CSF, and M-CSF, additional growth factor(s) can stimulate myelopoiesis and acute inflammatory responses.  相似文献   

13.
In vertebrates, myeloid cells arise from multiple waves of development: the first or embryonic wave of myelopoiesis initiates early from non-hematopoietic stem cell(HSC) precursors and gives rise to myeloid cells transiently during early development; whereas the second or adult wave of myelopoiesis emerges later from HSCs and produces myeloid cells continually during fetal and adult life. In the past decades, a great deal has been learnt about the development of myeloid cells from adult myelopoiesis, yet the genetic network governing embryonic myelopoiesis remains poorly defined. In this report, we present an in vivo study to delineate the role of Cebpa during zebrafish embryonic myelopoiesis. We show that embryonic myelopoiesis in cebpa-deficient zebrafish mutants initiates properly but fails to produce macrophages and neutrophils. The lack of macrophages and neutrophils in the mutants is largely attributed to the cell cycle arrest of embryonic myeloid progenitors, resulting in the impairment of their maintenance and subsequent differentiation. We further show that Cebpa, perhaps acting cooperatively with Runx1, plays a critical role in embryonic neutrophil maintenance. Our findings reveal a new role of Cebpa in embryonic myelopoiesis.  相似文献   

14.
15.
16.
Mature macrophages, neutrophils and lymphoid cells do not develop in PU.1(-/-) mice. In contrast, mice lacking the highly related protein Spi-B generate all hematopoietic lineages but display a B-cell receptor signaling defect. These distinct phenotypes could result from functional differences between PU.1 and Spi-B or their unique temporal and tissue-specific expression (PU.1: myeloid and B cells; Spi-B: B cells only). To address this question, we introduced the Spi-B cDNA into the murine PU.1 locus by homologous recombination. In the absence of PU.1, Spi-B rescued macrophage and granulocyte development when assayed by in vitro differentiation of embryonic stem cells. Adherent, CD11b(+)/F4/80(+) cells capable of phagocytosis were detected in PU.1(Spi-B/Spi-B) embryoid bodies, and myeloid colonies were present in hematopoietic progenitor assays. Despite its ability to rescue myeloid differentiation, Spi-B did not rescue lymphoid development in a RAG-2(-/-) complementation assay. These results demonstrate an important difference between PU.1 and Spi-B. Careful comparison of these Ets factors will delineate important functional domains of PU.1 involved in lymphocyte lineage commitment and/or maturation.  相似文献   

17.
18.
Developmental biology of zebrafish myeloid cells   总被引:7,自引:0,他引:7  
The zebrafish (Danio rerio) has emerged as an informative vertebrate model for developmental studies, particularly those employing genetic approaches such as mutagenesis and screening. Zebrafish myelopoiesis has recently been characterized, paving the way for the experimental strengths of this model organism to contribute to an improved understanding of the genetic regulation of myeloid development. Zebrafish have a multi-lineage myeloid compartment with two types of granulocyte (heterophil/neutrophil and eosinophil granulocytes), and monocyte/macrophages, each with characteristic morphological features and histochemical staining properties. Molecular markers have been characterised for various myeloid cell types and their precursor cells, for example: stem cells (scl, hhex, lmo2), myeloid lineage precursors (spi1/pu.1, c/ebp1), heterophil granulocytes (mpx/mpo), macrophages (L-plastin, fms). In zebrafish, the sites of early myeloid and erythroid commitment are anatomically separated, being located in the rostral and caudal lateral plate mesoderm respectively. Functional macrophages appear before cells displaying granulocytic markers. By the second day of life, cells expressing granulocyte- and macrophage-specific genes are scattered throughout the embryo, but tend to aggregate in the ventral venous plexus, which may be a site of their production or a preferred site for their residence. Even in early embryos, macrophages are phagocytically active, and granulocytes participate in acute inflammation. Equipped with an understanding of the developmental biology of these various myeloid cells and a set of tools for their identification and functional study, we will now be able to exploit the experimental strengths of this model organism to better understand the genetic regulation of myelopoiesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号