首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Toll‐like receptors (TLRs) are a family of highly conserved transmembrane proteins expressed in epithelial and immune cells that recognize pathogen associated molecular patterns. Besides their role in immune response against infections, numerous studies have shown an important role of different TLRs in cancer, indicating these receptors as potential targets for cancer therapy. We previously demonstrated that the activation of TLR3 by the synthetic double‐stranded RNA analogue poly I:C induces apoptosis of androgen‐sensitive prostate cancer (PCa) LNCaP cells and, much less efficiently, of the more aggressive PC3 cell line. Therefore, in this study we selected LNCaP cells to investigate the mechanism of TLR3‐mediated apoptosis and the in vivo efficacy of poly I:C‐based therapy. We show that interferon regulatory factor‐3 (IRF‐3) signalling plays an essential role in TLR3‐mediated apoptosis in LNCaP cells through the activation of the intrinsic and extrinsic apoptotic pathways. Interestingly, hardly any apoptosis was induced by poly I:C in normal prostate epithelial cells RWPE‐1. We also demonstrate for the first time the direct anticancer effect of poly I:C as a single therapeutic agent in a well‐established human androgen‐sensitive PCa xenograft model, by showing that tumour growth is highly impaired in poly I:C‐treated immunodeficient mice. Immunohistochemical analysis of PCa xenografts highlights the antitumour role of poly I:C in vivo both on cancer cells and, indirectly, on endothelial cells. Notably, we show the presence of TLR3 and IRF‐3 in both human normal and PCa clinical samples, potentially envisaging poly I:C‐based therapy for PCa.  相似文献   

3.
4.
5.
6.
Galectin-9 is a member of the galectin family, which induces various biological reactions such as chemotaxis of eosinophils and apoptosis of T cells. We previously reported that polyinosinic-polycytidylic acid (poly IC), an authentic double-stranded RNA (dsRNA), induces the expression of galectin-9 in human umbilical vein endothelial cells (HUVECs). In the present study, we addressed the possible involvement of two potential receptors for dsRNA, Toll-like receptor (TLR) 3 and retinoic acid-inducible gene-I (RIG-I), in the expression of galectin-9 in HUVECs. Poly IC-induced galectin-9 expression was almost completely suppressed by RNA interference (RNAi) against TLR3, but not against RIG-I. LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited the induction of galectin-9 by poly IC. RNAi against interferon regulatory factor 3 (IRF3) also inhibited poly IC-induced galectin-9 expression. We conclude that TLR3, PI3K, and IRF3 are involved in the poly IC-induced galectin-9 expression in HUVECs.  相似文献   

7.
Neutrophils, historically known for their involvement in acute inflammation, are also targets for infection by many different DNA and RNA viruses. However, the mechanisms by which they recognize and respond to viral components are poorly understood. Polyinosinic:polycytidylic acid (poly(I:C)) is a synthetic mimetic of viral dsRNA that is known to interact either with endosomal TLR3 (not expressed by human neutrophils) or with cytoplasmic RNA helicases such as melanoma differentiation-associated gene 5 (MDA5) and retinoic acid-inducible gene I (RIG-I). In this study, we report that intracellularly administered poly(I:C) stimulates human neutrophils to specifically express elevated mRNA levels encoding type I IFNs, immunoregulatory cytokines, and chemokines, such as TNF-alpha, IL-12p40, CXCL10, CXCL8, CCL4, and CCL20, as well as classical IFN-responsive genes (IRG), including IFIT1 (IFN-induced protein with tetratricopeptide repeats 1)/IFN-stimulated gene (ISG)56, G1P2/ISG15, PKR (dsRNA-dependent protein kinase), and IFN-regulatory factor (IRF)7. Investigations into the mechanisms whereby transfected poly(I:C) promotes gene expression in neutrophils uncovered a crucial involvement of the MAPK-, PKR-, NF-kappaB-, and TANK (TNF receptor-associated NF-kappaB kinase)-binding kinase (TBK1)/IRF3-signaling transduction pathways, as illustrated by the use of specific pharmacological inhibitors. Consistent with the requirement of the cytoplasmic dsRNA pathway for antiviral signaling, human neutrophils were found to constitutively express significant levels of both MDA5 and RIG-I, but not TLR3. Accordingly, neutrophils isolated from MDA5-deficient mice had a partial impairment in the production of IFN-beta and TNF-alpha upon infection with encephalomyocarditis virus. Taken together, our data demonstrate that neutrophils are able to activate antiviral responses via helicase recognition, thus acting at the frontline of immunity against viruses.  相似文献   

8.
Toll-like receptors (TLRs) are widely expressed in immune cells and play a crucial role in many aspects of the immune response. Although some types of TLRs are also expressed in cancer cells, the effects and mechanisms of TLR signaling in cancer cells have not yet been fully elucidated. In the present study, we analyzed the effects of polyinosinic-polycytidylic acid [poly(I:C)], a TLR3 ligand, on three TLR3-expressing human prostate cancer cell lines (LNCaP, PC3, and DU145). We then further characterized the underlying mechanisms, focusing on the poly(I:C)-sensitive LNCaP cell line. Poly(I:C) significantly reduced the viability of LNCaP cells TLR3 and endosome dependently. One mechanism for the antitumor effect was caspase-dependent apoptosis, and another mechanism was poly(I:C)-induced growth arrest. Cell survival and proliferation of LNCaP cells depended on the PI3K/Akt pathway, and PI3K/Akt inhibitors induced apoptosis and growth arrest similar to poly(I:C) treatment. Additionally, poly(I:C) treatment caused dephosphorylation of Akt in LNCaP cells, but transduction of the constitutively active form of Akt rendered LNCaP cells resistant to poly(I:C). Immunoblot analysis of proliferation- and apoptosis-related molecules in poly(I:C)-treated LNCaP cells revealed participation of cyclinD1, c-Myc, p53, and NOXA. Interestingly, poly(I:C) treatment of LNCaP cells was accompanied by autophagy, which was cytoprotective toward poly(I:C)-induced apoptosis. Together, these findings indicate that TLR3 signaling triggers apoptosis and growth arrest of LNCaP cells partially through inactivation of the PI3K/Akt pathway and that treatment-associated autophagy plays a cytoprotective role.  相似文献   

9.
Rhinovirus (RV) infections cause exacerbations and development of severe asthma highlighting the importance of antiviral interferon (IFN) defence by airway cells. Little is known about bronchial smooth muscle cell (BSMC) production of IFNs and whether BSMCs have dsRNA-sensing receptors besides TLR3. dsRNA is a rhinoviral replication intermediate and necrotic cell effect mimic that mediates innate immune responses in bronchial epithelial cells. We have explored dsRNA-evoked IFN-β and IFN-λ1 production in human BSMCs and potential involvement of TLR3 and RIG-I-like receptors (RLRs). Primary BSMCs were stimulated with 0.1–10 µg/ml dsRNA, 0.1–1 µg/ml dsRNA in complex with the transfection agent LyoVec (dsRNA/LyoVec; selectively activating cytosolic RLRs) or infected with 0.05–0.5 MOI RV1B. Both dsRNA stimuli evoked early (3 h), concentration-dependent IFN-β and IFN-λ1 mRNA expression, which with dsRNA/LyoVec was much greater, and with dsRNA was much less, after 24 h. The effects were inhibited by dexamethasone. Further, dsRNA and dsRNA/LyoVec concentration-dependently upregulated RIG-I and MDA5 mRNA and protein. dsRNA and particularly dsRNA/LyoVec caused IFN-β and IFN-λ1 protein production (24 h). dsRNA- but not dsRNA/LyoVec-induced IFN expression was partly inhibited by chloroquine that suppresses endosomal TLR3 activation. RV1B dose-dependently increased BSMC expression of RIG-I, MDA5, IFN-β, and IFN-λ1 mRNA. We suggest that BSMCs express functional RLRs and that both RLRs and TLR3 are involved in viral stimulus-induced BSMC expression of IFN-β and IFN-λ1.  相似文献   

10.
Vascular endothelial growth factor (VEGF) plays a key role in formation of pleural effusions and in tumorigenesis and progression of malignant mesothelioma. Mesothelial cells (MC) express the viral receptors Toll-like receptor 3 (TLR3), RIG-I and MDA5. Activation of these receptors by viral RNA exemplified by poly(I:C) RNA leads to a time- and dose-dependent increase of mesothelial VEGF synthesis. To show the specific effect of viral receptors knockdown experiments with siRNA for TLR3, RIG-I and MDA5 were performed. This finding of viral induced mesothelial VEGF synthesis may indicate a novel link between viral infections and formation of pleural effusions and progression of malignant mesothelioma.  相似文献   

11.
12.
Kaposi’s sarcoma (KS) is strongly associated with KS herpes virus infection, and inflammation plays an important role in this disease. We have shown that human KS biopsy-derived SLK cells, which are of endothelial origin and form KS-like tumors in nude mice, express the viral RNA pattern recognition receptors Toll-like receptor 3 (TLR3), retinoic acid-inducible gene-I (RIG-I), and melanoma-differentiation-associated gene 5 (MDA5). Furthermore, SLK cells have enhanced release of IL-6, IL-8 (CXCL8), RANTES (CCL5), and IP-10 (CXCL10) proteins in response to the synthetic viral RNA analog poly(I:C). SiRNA knockdowns demonstrated that TLR3 mediates this inflammatory response to poly(I:C) in SLK cells. Furthermore, knockdown of the RNA receptor RIG-I resulted in enhanced chemokine release, in a TLR3 pathway-dependent manner. Thus, exposure of KS cells to viral RNA ligands can result in a TLR3-mediated increase in the secretion of inflammatory proteins associated with KS cell growth that may contribute to disease.  相似文献   

13.
Recognition of viral dsRNA by Toll-like receptor 3 (TLR3) leads to induction of interferons (IFNs) and proinflammatory cytokines, and innate antiviral response. Here we identified the RNA-binding protein Mex3B as a positive regulator of TLR3-mediated signaling by expression cloning screens. Cells from Mex3b−/− mice exhibited reduced production of IFN-β in response to the dsRNA analog poly(I:C) but not infection with RNA viruses. Mex3b−/− mice injected with poly(I:C) was more resistant to poly(I:C)-induced death. Mex3B was associated with TLR3 in the endosomes. It bound to dsRNA and increased the dsRNA-binding activity of TLR3. Mex3B also promoted the proteolytic processing of TLR3, which is critical for its activation. Mutants of Mex3B lacking its RNA-binding activity inhibited TLR3-mediated IFN-β induction. These findings suggest that Mex3B acts as a coreceptor of TLR3 in innate antiviral response.  相似文献   

14.
15.
Type I interferons (IFN-alpha/beta) play an essential role in both innate and adaptive antiviral immune responses. IFN- beta is produced by fibroblasts and myeloid dendritic cells (DCs) upon viral infection or in response to doublestranded RNA (dsRNA). Several intracellular molecules having a dsRNA-binding motif such as dsRNA-dependent protein kinase recognize dsRNA in a sequence-independent manner and induce antiviral innate responses. Toll-like receptor (TLR) 3, a member of TLR family proteins, recognizes extracellular dsRNA and activates NF- kappaB and the IFN-beta promoter leading to the induction of IFN-beta production. Here we analyzed the dsRNA structure capable of inducing TLR3-mediated IFN-beta production using various synthetic RNA duplexes. In contrast to the recognition of dsRNA by intracellular molecules, TLR3 preferentially recognizes polyriboinocinic:polyribocytidylic acid (poly(I:C)) rather than synthetic virus-derived dsRNAs. 2'-O-methyl or 2'-fluoro modification of cytidylic acid abolished the IFN-beta-inducing ability of the poly(I:C) duplex, and these modified dsRNAs inhibited poly(I:C)-induced TLR3-mediated IFN-beta production by fibroblasts and DCs. In addition, poly(dI:dC), a non-IFN inducer, also blocked poly(I:C)-induced IFN-beta induction. Since TLR3 is localized in the intracellular compartment of DCs where signaling occurs, modified dsRNAs may compete with poly(I:C) for binding to the cell-surface receptor that transfers dsRNA into TLR3-enriched vesicles. Thus, TLR3 recognizes a unique dsRNA structure that largely differs from those recognized by other dsRNA-binding proteins.  相似文献   

16.
17.
18.
Toll-like receptors are a family of pattern-recognition receptors that contribute to the innate immune response. Toll-like receptor 3 (TLR3) signals in response to foreign, endogenous and synthetic ligands including viral dsRNA, bacterial RNA, mitochondrial RNA, endogenous necrotic cell mRNA and the synthetic dsRNA analog, poly(I:C). We have generated a monoclonal antibody (mAb CNTO2424) that recognizes the extracellular domain (ECD) of human TLR3 in a conformation-dependent manner. CNTO2424 down-regulates poly(I:C)-induced production of IL-6, IL-8, MCP-1, RANTES, and IP-10 in human lung epithelial cells. In addition, mAb CNTO2424 was able to interfere with the known TLR3-dependent signaling pathways, namely NF-κB, IRF-3/ISRE, and p38 MAPK. The generation of this neutralizing anti-TLR3 mAb provides a unique tool to better understand TLR3 signaling and potential cross-talk between TLR3 and other molecules.  相似文献   

19.
20.
Double-stranded RNA (dsRNA) can mediate its therapeutic effect through Toll-like receptor 3 (TLR3) expressed on tumor cells including neuroblastoma. We used synthetic dsRNA polyinosinic-polycytidylic acid [Poly(I:C)] as a TLR3 agonist to treat TLR3-expressing SK-N-AS neuroblatoma (NB) cells. We found up-regulation of endoplasmic reticulum (ER) stress proteins glucose-regulated protein 78 and inositol-requiring enzyme 1. Bafilomycin A1, an inhibitor of ER function, effectively blocked poly(I:C)-induced activation of caspase-8, -9, and -3, MnSOD and glutathione peroxidase 1 and reduced poly(I:C)-induced SK-N-AS apoptosis. Pan caspase inhibitor and inhibitor of caspase-9, but not of caspase-8, inhibited poly(I:C)-induced activated caspase-3 expression. Rho zero (ρ0)-SK-N-AS cells were resistant to poly(I:C)-induced mitochondrial reactive oxygen species production and apoptosis, but not to inhibition of cell growth, as compared to parent SK-N-AS cells. Taking together, these findings suggest that mitochondria are preferentially involved in poly(I:C)-induced NB cell apoptosis, but not in inhibition of cell growth. A crosstalk between mitochondria and ER is implicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号