首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well established that impaired glucose metabolism is a frequent complication in patients with hepatic cirrhosis. We previously showed that leucine, one of the branched-chain amino acids (BCAA), promotes glucose uptake under insulin-free conditions in isolated skeletal muscle from normal rats. The aim of the present study was to evaluate the effects of BCAA on glucose metabolism in a rat model of CCl(4)-induced cirrhosis (CCl(4) rats). Oral glucose tolerance tests were performed on BCAA-treated CCl(4) rats. In the CCl(4) rats, treatment with leucine or isoleucine, but not valine, improved glucose tolerance significantly, with the effect of isoleucine being greater than the effect of leucine. Glucose uptake experiments using isolated soleus muscle from the CCl(4) rats revealed that leucine and isoleucine, but not valine, promoted glucose uptake under insulin-free conditions. To clarify the mechanism of the blood glucose-lowering effects of BCAA, we collected soleus muscles from BCAA-treated CCl(4) rats with or without a glucose load. These samples were used to determine the subcellular location of glucose transporter proteins and glycogen synthase (GS) activity. Oral administration of leucine or isoleucine without a glucose load induced GLUT4 and GLUT1 translocation to the plasma membrane. GS activity was augmented only in leucine-treated rats and was completely inhibited by rapamycin, an inhibitor of mammalian target of rapamycin. In summary, we found that leucine and isoleucine improved glucose metabolism in CCl(4) rats by promoting glucose uptake in skeletal muscle. This effect occurred as a result of upregulation of GLUT4 and GLUT1 and also by mammalian target of rapamycin-dependent activation of GS in skeletal muscle. From these results, we consider that BCAA treatment may have beneficial effects on glucose metabolism in cirrhotic patients.  相似文献   

2.
The functions of dendritic cells (DCs) are impaired in patients with liver cirrhosis. It is well-known that cirrhotic patients show decreased levels of plasma branched-chain amino acids (BCAA). Although amino acids are associated with maintaining the cell structure and function in many organs, limited data are available regarding the role of amino acids including BCAA in the immune system. We aimed to investigate the roles of BCAA in the function of human monocyte-derived DCs (MoDC). CD14-positive monocytes (CD14 (+)) were isolated from PBMC from healthy volunteers and hepatitis C virus (HCV) cirrhotic patients. In medium deprived of BCAA or valine, monocytes were able to differentiate into immature, but not into mature, DCs and showed weak expression of CD83. The deprivation of leucine or isoleucine did not affect this process. The MoDC allostimulatory capacity was significantly decreased in medium deprived of BCAA or valine (p = 0.017, p = 0.012, Bonferroni's analysis, respectively). Annexin V(FITC)/propidium iodide staining showed that the DC yield and viability were not significantly different under any medium. Immunoblotting demonstrated that depletion of valine or leucine decreased phospho-S6 kinase expression. Valine increased dose-dependently the allostimulatory capacity and IL-12 production of MoDC from both healthy volunteers and HCV cirrhotic patients. An elevated extracellular concentration of valine could improve the DC function in cirrhotic patients. These data provide a rationale for nutrition therapy that could be beneficial to patients with cirrhosis.  相似文献   

3.
Branched-chain amino acids (BCAAs) modulate various cellular functions, in addition to providing substrates for the production of proteins. In this study, we examined the effect of BCAAs on the secretion of hepatocyte growth factor (HGF) by hepatic stellate cells. A hepatic stellate cell clone was cultured in medium supplemented with various concentrations of valine, leucine, or isoleucine. Of these BCAAs, leucine markedly induced an increase in the levels of HGF in the medium in a dose-dependent manner. The addition of valine or isoleucine had no significant effect on HGF levels in the medium. The difference in levels of HGF in the medium between leucine-treated and non-treated cells was enhanced by the incubation period. These results demonstrate that, among BCAAs, leucine stimulates the secretion of HGF by cultured hepatic stellate cells.  相似文献   

4.
Comparative studies were performed on the role of branched-chain amino acids (BCAA) in juvenile hormone (JH) biosynthesis using several lepidopterous and nonlepidopterous insects. Corpora cardiaca-corpora allata complexes (CC-CA, the corpora allata being the organ of JH biogenesis) were maintained in culture medium containing a uniformly 14C-labeled BCAA, together with [methyl-3H]methionine as mass marker for JH quantification. BCAA catabolism was quantified by directly analyzing the medium for the presence of 14C-labeled propionate and/or acetate, while JHs were extracted, purified by liquid chromatography, and subjected to double-label liquid scintillation counting. Our results indicate that active BCAA catabolism occurs within the CC-CA of lepidopterans, and this efficiently provides propionyl-CoA (from isoleucine or valine) for the biosynthesis of the ethyl branches of JH I and II. Acetyl-CoA, formed from isoleucine or leucine catabolism, is also utilized by lepidopteran CC-CA for biosynthesizing JH III and the acetate-derived portions of the ethyl-branched JHs. In contrast, CC-CA of nonlepidopterans fail to catabolize BCAA. Consequently, exogenous isoleucine or leucine does not serve as a carbon source for the biosynthesis of JH III by these glands, and no propionyl-CoA is produced for genesis of ethyl-branched JHs. This is the first observation of a tissue-specific metabolic difference which in part explains why these novel homosesquiterpenoids exist in lepidopterans, but not in nonlepidopterans.  相似文献   

5.
Summary We studied the plasma amino acid profiles in four models of hepatic injury in rats. In partially hepatectomized rats (65% of liver was removed) we observed significant increase of aromatic amino acids (AAA; i.e. tyrosine and phenylalanine), taurine, aspartate, threonine, serine, asparagine, methionine, ornithine and histidine. Branched-chain amino acids (BCAA; i.e. valine, leucine and isoleucine) concentrations were unchanged. In ischemic and carbon tetrachloride acute liver damage we observed extreme elevation of most of amino acids (BCAA included) and very low concentration of arginine. In carbon tetrachloride induced liver cirrhosis we observed increased levels of AAA, aspartate, asparagine, methionine, ornithine and histidine and decrease of BCAA, threonine and cystine. BCAA/AAA ratio decreased significantly in partially hepatectomized and cirrhotic rats and was unchanged in ischemic and acute carbon tetrachloride liver damage. We conclude that a high increase of most of amino acids is characteristic of fulminant hepatic necrosis; decreased BCAA/AAA ratio is characteristic of liver cirrhosis; and decrease of BCAA/AAA ratio may not be used as an indicator of the severity of hepatic parenchymal damage.Abbreviations BCAA branched-chain amino acids (i.e. valine, leucine and isoleucine) - AAA aromatic amino acids (i.e. tyrosine and phenylalanine)  相似文献   

6.
The infusion of certain amino acids, such as serine, alanine, and proline (SAP), has been shown to increase the glomerular filtration rate, whereas branched chain amino acids (BCAA) leucine, isoleucine, and valine fail to modify the glomerular filtration rate. It has been suggested that this effect of amino acids on the glomerular filtration rate is mediated by the action of the hormone glomerulopressin. The purpose of this work was to study the action of SAP and BCAA on glomerulopressin production. Livers isolated from rats were perfused with (i) Krebs-Ringer-Bicarbonate, (ii) SAP, or (iii) BCAA. Results indicate that glomerulopressin production is stimulated by SAP, but inhibited by BCAA.  相似文献   

7.
Changes in plasma aromatic amino acids (AAA?=?phenylalanine, tryptophan, tyrosine) and branched chain amino acids (BCAA?=?isoleucine, leucine, valine) levels possibly influencing intracranial pressure (ICP) and cerebral oxygen consumption (SjvO(2)) were investigated in 19 sedated patients up to 14?days following severe traumatic brain injury (TBI). Compared to 44 healthy volunteers, jugular venous plasma BCAA were significantly decreased by 35% (p?相似文献   

8.
The protein anabolic effect of branched chain amino acids was studied in isolated quarter diaphragms of rats. Protein synthesis was estimated by measuring tyrosine incorporation into muscle proteins in vitro. Tyrosine release during incubation with cycloheximide served as an index of protein degradation. In muscles from normal rats the addition of 0.5 mM leucine stimulated protein synthesis 36--38% (P less than 0.01), while equimolar isoleucine or valine, singly or in combination were ineffective. The three branched chain amino acids together stimulated no more than leucine alone. The product of leucine transamination, alpha-keto-isocaproate, did not stmino norborane-2-carboxylic acid (a leucine analogue) were ineffective. Leucine and isoleucine stimulated protein synthesis in muscles from diabetic rats.Leucine, isoleucine, valine and the norbornane amino acid but not alpha-ketoisocaproate or beta-hydroxybutyrate decreased the concentration of free tyrosine in tissues during incubation with cycloheximide; tyrosine release into the medium did not decrease significantly. Leucine caused a small decrease in total tyrosine release, (measured as the sum of free tyrosine in tissues and media), suggesting inhibition of protein degradation. The data suggest that leucine may be rate limiting for protein synthesis in muscles. The branched chain amino acids may exert a restraining effect on muscle protein catabolism during prolonged fasting and diabetes.  相似文献   

9.
Branched-chain amino acid metabolism in higher plants   总被引:3,自引:0,他引:3  
Valine, leucine and isoleucine contain short branched carbohydrate residues responsible for their classification as branched-chain amino acids (BCAA). Among the proteinogenic amino acids, BCAA show the highest hydrophobicity and are accordingly the major constituents of transmembrane regions of membrane proteins. BCAA cannot be synthesized by humans and thus belong to the essential amino acids. In contrast, plants are able to synthesize these amino acids de novo and are an important source for these compounds in the human diet. However, BCAA cannot only be synthesized in plants, leucine and probably also valine and isoleucine can also be degraded. Many enzymes operating in turnover are found in mitochondria, while some catabolizing activities are located in peroxisomes. The breakdown of BCAA is physically separated from their biosynthesis in chloroplasts. Additionally, in the order of the Capparales, enzymes of the leucine metabolism seem to be evolutionary related to or may even participate in the methionine chain elongation pathway, the early part of the biosynthesis of aliphatic glucosinolates. In summary, in higher plants a complex network of pathways interferes with the homeostasis of Val, Leu and Ile.  相似文献   

10.
Nicotiana plumbaginifolia suspension cultured cells were grown on medium supplemented with valine, leucine and isoleucine, singly or in combination. The effects of the three branched-chain amino acids on cell growth rate and on the activity of acetohydroxyacid synthase (AHAS), the first enzyme (and the main regulative site) of their biosynthetic pathway, were studied. Results showed that valine and leucine, at concentrations ranging from 10–4 to 10–3 M, inhibit growth, and at higher doses (from 10–2 to 10–1 M) AHAS activity. Growth, but not AHAS activity, was affected also by isoleucine. The addition of ammonium succinate to the culture medium, in order to counteract a possible general inhibitory effect of these compounds on nitrogen metabolism, relieved only partially their cytotoxicity. Feeding cells with equimolar mixtures of the three amino acids resulted in a minor but reproducible decrease in AHAS level, which was proportional to the dose. A similar result was obtained also on N. plumbaginifolia seedlings, suggesting that in this species a modulation of enzyme level could play a role in controlling the flow of metabolites through the pathway.Abbreviations AHAS acetohydroxyacid synthase - BCAA branched-chain amino acids - FAD flavin adenine dinucleotide - GS glutamine synthetase - TPP thiamine pyrophosphate  相似文献   

11.
The regulation of synthesis of the valine-alanine-alpha-aminobutyrate transaminase (transaminase C) was studied in Escherichia coli mutants lacking the branched-chain amino acid transaminase (transaminase B). An investigation was made of two strains, CU2 and CU2002, each carrying the same transaminase B lesion but exhibiting different growth responses on a medium supplemented with branched-chain amino acids. Both had the absolute isoleucine requirement characteristic of ilvE auxotrophs, but growth of strain CU2 was stimulated by valine, whereas that of strain CU2002 was markedly inhibited by valine. Strain CU2002 behaved like a conditional leucine auxotroph in that the inhibition by valine was reversed by leucine. Results of enzymatic studies showed that synthesis of transaminase C was repressed by valine in strain CU2002 but not in strain CU2. Inhibition by valine in strain CU2002 appears to be the combined effect of repression on transaminase C synthesis and valine-dependent feedback inhibition of alpha-acetohydroxy acid synthase activity, causing alpha-ketoisovalerate (and hence leucine) limitation. The ilvE markers of strains CU2 and CU2002 were each transferred by transduction to a wild-type genetical background. All ilvE recombinants from both crosses resembled strain CU2002 and were inhibited by valine in the presence of isoleucine. Thus, strain CU2 carries an additional lesion that allows it to grow on a medium containing isoleucine plus valine. It is concluded that conditional leucine auxotrophy is characteristic of mutants carrying an ilvE lesion alone.  相似文献   

12.
The effect of amino acid on muscle protein degradation remains unclear. Recent studies have elucidated that proteolysis in catabolic conditions occurs through ubiquitin-proteasome proteolysis pathway and that muscle-specific ubiquitin ligases (atrogin-1 and MuRF1) play an important role in protein degradation. In the present study, we examined the direct effect of 5 mM amino acids (leucine, isoleucine, valine, glutamine and arginine) on atrogin-1 and MuRF1 levels in C2C12 muscle cells and the involved intracellular signal transduction pathway. Leucine, isoleucine and valine suppressed atrogin-1 and MuRF1 mRNA levels (approximately equal to 50%) at 6 and 24 h stimulations. Arginine showed a similar effect except at 24 h-treatment for atrogin-1 mRNA. However, glutamine failed to reduce atrogin-1 and MuRF1 mRNA levels. The inhibitory effect of leucine, isoleucine or arginine on atrogin-1 mRNA level was reversed by rapamycin, although wortmannin did not reverse the effect. PD98059 and HA89 reduced basal atrogin-1 level without influencing the inhibitory effects of those amino acids. The inhibitory effect of leucine, isoleucine or arginine on MuRF1 mRNA levels was not reversed by rapamycin. Taken together, these findings indicated that leucine, isoleucine and arginine decreased atrogin-1 mRNA levels via mTOR and that different pathways were involved in the effect of those amino acids on MuRF1 mRNA levels.  相似文献   

13.
Parameters of branched-chain amino acids (BCAA; leucine, isoleucine and valine) and protein metabolism were evaluated using L-[1-(14)C]leucine and alpha-keto[1-(14)C]isocaproate (KIC) in the whole body and in isolated perfused liver (IPL) of rats fed ad libitum or starved for 3 days. Starvation caused a significant increase in plasma BCAA levels and a decrease in leucine appearance from proteolysis, leucine incorporation into body proteins, leucine oxidation, leucine-oxidized fraction, and leucine clearance. Protein synthesis decreased significantly in skeletal muscle and the liver. There were no significant differences in leucine and KIC oxidation by IPL. In starved animals, a significant increase in net release of BCAA and tyrosine by IPL was observed, while the effect on other amino acids was non-significant. We conclude that the protein-sparing phase of uncomplicated starvation is associated with decreased whole-body proteolysis, protein synthesis, branched-chain amino acid (BCAA) oxidation, and BCAA clearance. The increase in plasma BCAA levels in starved animals results in part from decreased BCAA catabolism, particularly in heart and skeletal muscles, and from a net release of BCAA by the hepatic tissue.  相似文献   

14.
Regulation of the levels of the five enzymes required for the biosynthesis of isoleucine and valine was studied in a Saccharomyces sp. When a mixture of isoleucine, valine, and leucine was added to the medium, the enzymes in the wild-type strain were repressed from about 30% (transaminase B) to about 90% (acetohydroxy acid synthetase) relative to the level in minimal medium-grown cells. Repression was also observed when threonine replaced isoleucine in the mixture but not when it replaced the other two amino acids. Significant derepression relative to the level in minimal-grown cells was not obtained by growing suitably blocked auxotrophs on medium containing limiting amounts of valine, isoleucine, or leucine.  相似文献   

15.
Isoleucine, together with leucine and valine, constitutes the group of branched-chain amino acids (BCAAs). BCAAs are transported from the blood into the brain parenchyma, where they can serve several distinct functions. Since brain tissue is known to oxidatively metabolize BCAAs to CO2, they are considered as fuel material in brain energy metabolism. Also, in the case of leucine, cultured astrocytes have been reported to be able to completely oxidize BCAA. While the metabolism of leucine by astroglia-rich primary culture (APC) has already been studied in detail, the metabolic fates of isoleucine and valine in these cells remained to be identified. Therefore, in the present study an NMR analysis was performed of 13C-labelled metabolites generated in the catabolism of [U-13C]Ile by astrocytes and released by them into the incubation medium. APC potently removed isoleucine from the medium and metabolized it. The major isoleucine metabolites released from APC are 2-oxo-3-methylvalerate, 2-methylbutyrate, 3-hydroxy-2-methylbutyrate and propionate. To a lesser extent, APC generate and release also [2,3-13C]glutamine, [4,5-13C]glutamine and 13C-labelled isotopomers of lactate and citrate. These results show that APC can release into the extracellular milieu catabolites and several TCA cycle dependent metabolites resulting from the degradation of isoleucine. Special issue article in honor of Dr. George DeVries.  相似文献   

16.
This study was conducted using the piglet model to test the hypothesis that mucosal cells of the neonatal small intestine can degrade nutritionally essential amino acids (EAA). Enterocytes were isolated from the jejunum of 0-, 7-, 14-, and 21-day-old pigs, and incubated for 45 min in Krebs buffer containing plasma concentrations of amino acids and one of the following L-[1-14C]- or L-[U-14C]-amino acids plus unlabeled tracees at 0.5, 2, or 5 mM: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine. In these cells, branched-chain amino acids (BCAA) were extensively transaminated and 15–50% of decarboxylated branched-chain α-ketoacids (BCKA) were oxidized to CO2 depending on the age of piglets. BCAA transamination increased but their decarboxylation decreased between 0 and 14 days of age. Addition of 1 and 2 mM α-ketoglutarate to incubation medium dose-dependently stimulated BCAA transamination without affecting their decarboxylation. Western blot analysis revealed that the abundance of mitochondrial BCAA aminotransferase declined but cytosolic BCAA aminotransferase increased between 0 and 14 days of age, with the cytosolic protein being the major isoform in 7- to 21-day-old pigs. BCKA dehydrogenase protein existed primarily as the phosphorylated (inactive) form in enterocytes of newborn pigs and its levels were markedly reduced in older pigs. All measured parameters of BCAA metabolism did not differ between 14- and 21-day-old pigs. In contrast to BCAA, catabolism of methionine and phenylalanine was negligible and that of other EAA was absent in enterocytes from all ages of piglets due to the lack of key enzymes. These results indicate that enterocytes are an important site for substantial degradation of BCAA but not other EAA in the neonatal gut.  相似文献   

17.
To examine which branched-chain amino acids affect the plasma glucose levels, we investigated the effects of leucine, isoleucine, and valine (0.3 g/kg body weight p.o.) in normal rats using the oral glucose tolerance test (OGTT, 2 g/kg). A single oral administration of isoleucine significantly reduced plasma glucose levels 30 and 60 min after the glucose bolus, whereas administration of leucine and valine did not produce a significant decrease. Oral administration of valine significantly enhanced the plasma glucose level at 30 min after the glucose administration and leucine had a similar effect at 120 min. At each measurement timepoint, the insulin levels of the treated groups were lower than that of the control group. We then investigated the effects of leucine, isoleucine or valine at the same concentration (1 mM) on glucose metabolism in C(2)C(12) myotubes in the absence of insulin. Glucose consumption was elevated by 16.8% in the presence of 1 mM isoleucine compared with the control. Conversely, 1 mM leucine or valine caused no significant changes in glucose consumption in the C(2)C(12) myotubes. The 2-deoxyglucose uptake of C(2)C(12) myotubes significantly increased upon exposure to 1-10 mM isoleucine and 5-10 mM leucine. However, isoleucine caused no significant difference in glycogen synthesis in C(2)C(12) myotubes, although leucine and valine caused a significant increase in intracellular glycogen compared with the control. The isoleucine effect on glucose uptake was mediated by phosphatidylinositol 3-kinase (PI3K), but was independent of mammalian target of rapamycin (mTOR). These results suggest that isoleucine stimulates the insulin-independent glucose uptake in skeletal muscle cells, which may contribute to the plasma glucose-lowering effect of isoleucine in normal rats.  相似文献   

18.
A Nicotiana plumbaginifolia cell line able to grow in the presence of high doses of valine was isolated following -rays mutagenesis. The selected clone, named D5R5, showed a growth rate higher than that of wild-type. It was less sensitive also to an equimolar mixture of the three branched-chain amino acids, but did not display cross-resistance to isoleucine and leucine. The increased tolerance was due to neither a reduced valine uptake, nor a modification in the level or sensitivity to feed-back inhibition by valine of the first common enzyme (and the main regulative site) in isoleucine, leucine and valine synthesis, acetohydroxyacid synthase (AHAS). When wild-type cells were fed with valine or equimolar mixtures of the three aminoacids, a decrease in AHAS level was found. On the contrary, the level of extractable AHAS activity from D5R5 cells was significantly less affected by similar treatments, suggesting that some alteration in enzyme modulation mechanism(s) could account for valine resistance.Abbreviations AHAS acetohydroxyacid synthase - BCAA branched-chain amino acid - FAD flavin adenine dinucleotide - ILV equimolar mixture of isoleucine, leucine and valine - TPP thiamine pyrophosphate  相似文献   

19.
The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.  相似文献   

20.
  1. The influence of varying amounts of amino acids on the uptake of threonine, isoleucine, valine and leucine and their degradation to higher alcohols was investigated using a mutant strain of Saccharomyces cerevisiae, mating type a, genetic markers ade2, hom2, thr4, ilv2, leu1.
  2. The cell mass is increased by increasing concentrations of threonine, isoleucine, valine and leucine, the latter two resulting in a higher dry weight. The amino acids are completely utilised at low concentrations. At higher contents up to 20% of the amino acids remain in the medium. The uptake of threonine, isoleucine, valine and leucine depends on the relative amounts of the concentrations of these amino acids in the medium. A greater amount of an amino acid is taken up if its concentration is comparatively higher than those of the other amino acids. There is a competition between the amino acids for the uptake into the cells.
Higher amounts of intracellular isoleucine and leucine are converted to 2-and 3-methylbutanol when compared with the degradation of valine and threonine to isobutanol and n-propanol-1, isoleucine and leucine up to 90%, valine up to 24% and threonine up to 20%. There is a competition between the four amino acids for their degradation to the corresponding higher alcohols. This behaviour confirms the earlier assumption of a degradation of the four amino acids by unspecific enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号