首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
Bacteria that inhabit the respiratory and genitourinary tracts of mammals encounter an iron-deficient environment on the mucosal surface where iron is complexed by the host iron-binding proteins transferrin and lactoferrin. Lactoferrin is also present in high concentrations at sites of inflammation where the cationic anti-microbial peptide lactoferricin is produced by proteolysis of lactoferrin. Several members of the Neisseriaceae and Moraxellaceae families express surface receptors, capable of specifically binding host lactoferrin and extracting the iron from lactoferrin as a source of iron for growth. The receptor is comprised of an integral outer membrane protein, lactoferrin binding protein A (LbpA), and a largely exposed surface lipoprotein, lactoferrin binding protein B (LbpB). LbpA is essential for mediating growth using lactoferrin as a sole iron source whereas LbpB only plays a facilitating role. LbpB, with the presence of a large tract of negatively charged residues, appears to protect the bacterial cell from the bactericidal effects of the lactoferricin. The lactoferrin receptors in these species appear to be essential for survival and thus may serve as potential vaccine targets.  相似文献   

3.
Unmethylated CpG dinucleotide motifs in bacterial DNA, as well as oligodeoxynucleotides (ODN) containing these motifs, are potent stimuli for many host immunological responses. These CpG motifs may enhance host responses to bacterial infection and are being examined as immune activators for therapeutic applications in cancer, allergy/asthma, and infectious diseases. However, little attention has been given to processes that down-modulate this response. The iron-binding protein lactoferrin is present at mucosal surfaces and at sites of infection. Since lactoferrin is known to bind DNA, we tested the hypothesis that lactoferrin will bind CpG-containing ODN and modulate their biological activity. Physiological concentrations of lactoferrin (regardless of iron content) rapidly bound CpG ODN. The related iron-binding protein transferrin lacked this capacity. ODN binding by lactoferrin did not require the presence of CpG motifs and was calcium independent. The process was inhibited by high salt, and the highly cationic N-terminal sequence of lactoferrin (lactoferricin B) was equivalent to lactoferrin in its ODN-binding ability, suggesting that ODN binding by lactoferrin occurs via charge-charge interaction. Heparin and bacterial LPS, known to bind to the lactoferricin component of lactoferrin, also inhibited ODN binding. Lactoferrin and lactoferricin B, but not transferrin, inhibited CpG ODN stimulation of CD86 expression in the human Ramos B cell line and decreased cellular uptake of ODN, a process required for CpG bioactivity. Lactoferrin binding of CpG-containing ODN may serve to modulate and terminate host response to these potent immunostimulatory molecules at mucosal surfaces and sites of bacterial infection.  相似文献   

4.
Bacteria that inhabit the mucosal surfaces of the respiratory and genitourinary tracts of mammals encounter an iron-deficient environment because of iron sequestration by the host iron-binding proteins transferrin and lactoferrin. Lactoferrin is also present in high concentrations at sites of inflammation where the cationic, antimicrobial peptide lactoferricin is produced by proteolysis of lactoferrin. Several Gram-negative pathogens express a lactoferrin receptor that enables the bacteria to use lactoferrin as an iron source. The receptor is composed of an integral membrane protein, lactoferrin binding protein A (LbpA), and a membrane-bound lipoprotein, lactoferrin binding protein B (LbpB). LbpA is essential for growth with lactoferrin as the sole iron source, whereas the role of LbpB in iron acquisition is not yet known. In this study, we demonstrate that LbpB from 2 different species is capable of providing protection against the killing activity of a human lactoferrin-derived peptide. We investigated the prevalence of lactoferrin receptors in bacteria and examined their sequence diversity. We propose that the protection against the cationic antimicrobial human lactoferrin-derived peptide is associated with clusters of negatively charged amino acids in the C-terminal lobe of LbpB that is a common feature of this protein.  相似文献   

5.
Lactoferrin (Lf) is a bi-lobed, iron-binding protein found on mucosal surfaces and at sites of inflammation. Gram-negative pathogens from the Neisseriaceae and Moraxellaceae families are capable of using Lf as a source of iron for growth through a process mediated by a bacterial surface receptor that directly binds host Lf. This receptor consists of an integral outer membrane protein, lactoferrin binding protein A (LbpA), and a surface lipoprotein, lactoferrin binding protein B (LbpB). The N-lobe of the homologous transferrin binding protein B, TbpB, has been shown to facilitate transferrin binding in the process of iron acquisition. Currently there is little known about the role of LbpB in iron acquisition or how Lf interacts with the bacterial receptor proteins. No structural information on any LbpB or domain is available. In this study, we express and purify from Escherichia coli the full-length LbpB and the N-lobe of LbpB from the bovine pathogen Moraxella bovis for crystallization trials. We demonstrate that M. bovis LbpB binds to bovine but not human Lf. We also report the crystal structure of the N-terminal lobe of LbpB from M. bovis and compare it with the published structures of TbpB to speculate on the process of Lf mediated iron acquisition.  相似文献   

6.
Lactoferrin is an 80kDa iron-binding glycoprotein. It is secreted by exocrine glands. Many functions such as iron sequestering, anti-bacterial activity, regulation of gene expression, and immunomodulation are attributed to it. In the present study, we report the production of recombinant equine lactoferrin (ELF) in the methylotropic yeast Pichia pastoris using pPIC9K vector. The recombinant protein was purified by one-step affinity chromatography using heparin-Sepharose column. The purified protein has a molecular weight of 80kDa and reacted with antibody raised against the native equine lactoferrin. Its N-terminal sequence was identical to that of the native ELF. The iron-binding behavior and circular dichroism studies of the purified protein indicate that it has folded properly. The recombinant protein appears to be hyperglycosylated by the host strain, GS115. This is the first heterologous expression of equine lactoferrin and also the first report of intact lactoferrin expression using P. pastoris system. An yield of 40mg/l obtained in shake-flask cultures with this system, which is higher than the reported values for other systems.  相似文献   

7.
Lactoferrin, an iron-binding protein found in high concentrations in mammalian exocrine secretions, is an important component of the host defense system. It is also a major protein of the secondary granules of neutrophils from which is released upon activation. Due to its potential clinical utility, recombinant human lactoferrin (rhLF) has been produced in various eukaryotic expression systems; however, none of these are fully compatible with humans. Most of the biopharmaceuticals approved by the FDA for use in humans are produced in mammalian expression systems. The Chinese hamster ovary cells (CHO) have become the system of choice for proteins that require post-translational modifications, such as glycoproteins.  相似文献   

8.
Lactoferrin, an iron-binding glycoprotein, kills bacteria and modulates inflammatory and immune responses. Presence of lactoferrin in the female reproductive tract suggests that the protein may be part of the mucosal immune system and act as the first line of defense against pathogenic organisms. We have discovered that lactoferrin is a major estrogen-inducible protein in the uterus of immature mice and is up-regulated by physiological levels of estrogen during proestrous in mature mice. In the present study, we examined lactoferrin gene expression and its response to estrogen stimulation in the female reproductive tract of several strains of immature mouse, rat, and hamster. The lactoferrin expression in the cycling adult female rat was also evaluated. Lactoferrin gene polymorphism exists among the different mouse strains. In the three inbred mouse strains studied, lactoferrin gene expression is stimulated by estrogen in the immature uterus, although it is less robust than in the outbred CD-1 mouse. We found that the lactoferrin gene is constitutively expressed in the epithelium of the vagina and the isthmus oviduct; however, it is estrogen inducible in the uterus of immature mice and rats. Furthermore, lactoferrin is elevated in the uterine epithelium of the mature rat during the proestrous and estrous stages of the estrous cycle. Estrogen stimulation of lactoferrin gene expression in the reproductive tract of an immature hamster is limited to the vaginal epithelium. The present study demonstrates differential expression and estrogen responsiveness of the lactoferrin gene in different regions of the female rodent reproductive tract and variation among the rodent species studied.  相似文献   

9.
Lactoferrin is a member of the transferrin family of iron-binding glycoproteins that is abundantly expressed and secreted from glandular epithelial cells. In secretions, such as milk and fluids of the intestinal tract, lactoferrin is an important component of the first line of host defence. During the inflammatory process, lactoferrin, a prominent component of the secondary granules of neutrophils (PMNs), is released in infected tissues and in blood and then it is rapidly cleared by the liver. In addition to the antimicrobial properties of lactoferrin, a set of studies has focused on its ability to modulate the inflammatory process and the overall immune response. Though many in vitro and in vivo studies report clear regulation of the immune response and protective effect against infection and septic shock by lactoferrin, elucidation of all the cellular and molecular mechanisms of action is far from being achieved. At the cellular level, lactoferrin modulates the migration, maturation and function of immune cells. At the molecular level and in addition to iron binding, interactions of lactoferrin with a plethora of compounds, either soluble or membrane molecules, account for its modulatory properties. This paper reviews our current understanding of the cellular and molecular mechanisms that explain the regulatory properties of lactoferrin in host defence.  相似文献   

10.
Lactoferrin shares many structural and functional features with serum transferrin, including an ability to bind iron very tightly, but reversibly, a highly-conserved three-dimensional structure, and essentially identical iron-binding sites. Nevertheless, lactoferrin has some unique properties that differentiate it: an ability to retain iron to much lower pH, a positively charged surface, and other surface features that give it additional functions. Here, we review the structural basis for these similarities and differences, including the importance of dynamics and conformational change, and specific interactions that regulate iron binding and release.  相似文献   

11.
Ochoa TJ  Cleary TG 《Biochimie》2009,91(1):30-34
Much has been learned in recent years about the mechanisms by which breastfeeding improves child health and survival. However, there has been little progress in using these insights to improve pediatric care. Factors that are important for protecting the breast fed infant might be expected to decrease the adverse effects of weaning on diarrhea, growth, and development. Lactoferrin, an iron-binding protein with multiple physiological functions (anti-microbial, anti-inflammatory, and immunomodulatory), is one of the most important proteins present in mammalian milk. Protection against gastroenteritis is the most likely biologically relevant activity of lactoferrin. Multiple in vitro and animal studies have shown a protective effect of lactoferrin on infections with enteric microorganisms, including rotavirus, Giardia, Shigella, Salmonella and the diarrheagenic Escherichia coli. Lactoferrin has two major effects on enteric pathogens: it inhibits growth and it impairs function of surface expressed virulence factors thereby decreasing their ability to adhere or to invade mammalian cells. Thus, lactoferrin may protect infants from gastrointestinal infection by preventing the attachment by enteropathogens in the gut. Recently several clinical trials in children have started to address this issue. Whether lactoferrin can prevent a significant portion of diarrheal disease remains to be determined.  相似文献   

12.
Lactoferrin, a non-heme iron-binding protein was isolated from pig neutrophils. The purification procedure included initial extraction of the protein in the presence of cetyltrimethylammonium bromide followed by chromatography on carboxymethyl-cellulose and Sephadex G-100. The thus obtained protein was found to be homogeneous on polyacrylamide gel (PAAG) electrophoresis at acidic values of pH. PAAG electrophoresis in the presence of sodium dodecyl sulfate revealed a single component with a molecular weight of 75 000-80 000. The resulting protein is capable of binding two atoms of iron molecule. The absorbance spectra for the pig neutrophil lactoferrin are identical to those for cow milk lactoferrin in the visible region and have a maximum at 465 nm. The amino acid composition of pig lactoferrin was determined. Isoelectric focusing of the protein obtained in a PAAG stabilized pH gradient revealed a component with pI of about 6.8. A single precipitin line was observed with rabbit antipig lactoferrin when examined by immunodiffusion. No immunological cross-reactions were observed between pig lactoferrin and bovine lactoferrin.  相似文献   

13.
Puddu P  Valenti P  Gessani S 《Biochimie》2009,91(1):11-18
Lactoferrin (Lf) is an 80 kDa iron-binding protein of the transferrin family that is abundantly expressed in most biological fluids. It is now recognized that this glycoprotein is a key element in the mammalian immune system, playing an important role in host defence against infection and excessive inflammation. Although the mechanisms underlying Lf immunomodulatory properties have not been fully elucidated yet, evidence indicates that the capacity of this molecule to directly interact with antigen presenting cells (APCs), i.e. monocytes/macrophages and dendritic cells (DCs), may play a critical role. At the cellular level, Lf modulates important aspects of APC biology, including migration and cell activation, whereas at the molecular level it affects expression of soluble immune mediators, such as cytokines, chemokines and other effector molecules, thus contributing to the regulation of inflammation and immunity. While the iron-binding property was originally believed to be solely responsible for the plethora of host defence activities ascribed to Lf, it is now known that other mechanisms contribute to the broad spectrum of anti-infective and anti-inflammatory properties of this protein. Recent results suggest that at least some of the immunomodulatory effects of Lf rely on its capacity to form complexes with lipopolysaccharide (LPS). This review focuses on the effects of Lf on APC biology and function, highlighting known and putative mechanisms that underlie Lf immunomodulatory effects. The importance of LPS-binding capacity of Lf and LPS receptors, as well as of Lf-induced type 1 interferon (IFN) expression in some of these effects is also discussed.  相似文献   

14.
庞晓楠  弘笑  魏璇  陈喜文  刘佳  陈德富 《遗传》2015,37(9):873-884
乳铁蛋白(Lactoferrin, Lf)是分子量大小约为80 kDa的铁离子结合糖蛋白,是转铁蛋白(Transferrin, Tf)家族的成员之一。其理化性质独特,具有抑菌、抗病毒、抗癌、免疫调节、调节铁离子的吸收等诸多生物学功能。获得高产且有生物活性的重组乳铁蛋白,并用于临床治疗,一直是研究热点。随着基因工程技术的发展,已获得多个可表达重组乳铁蛋白的表达系统。本文对乳铁蛋白的理化性质、生物学活性、临床研究以及目前的重组表达系统进行综述,以期为乳铁蛋白的临床应用提供参考。  相似文献   

15.
Lactoferrin, an iron-binding protein of the transferrin family, is a highly basic protein which interacts with many acidic molecules, including heparin proteoglycans. Such interactions may modify some of the biological properties of lactoferrin. In the present work we found that heparin caused a dose-dependent inhibition of specific binding of both human and bovine lactoferrin to human monocytic THP-1 cells. Low-affinity binding sites (Kd 500 nM) were more susceptible to inhibition by heparin than the high-affinity sites (Kd 100 nM). The effect was mediated by interaction between lactoferrin and heparin rather than by competition between heparin and lactoferrin for common binding sites on the cells. Pretreatment of cells with NaClO3 to prevent sulphation of surface glycosaminoglycans reduced lactoferrin binding, and de-N-sulphated heparin did not inhibit binding of lactoferrin to THP-1 cells. These results suggest that heparin binding and monocyte/macrophage binding by lactoferrin both involve interactions between basic regions in the N1 domain of lactoferrin and sulphate groups. The N-terminal Arg2-Arg5 sequence of human lactoferrin may be involved, but it does not seem to be the key element in these interactions.  相似文献   

16.
Skin wound healing is a complex biological process that requires the regulation of different cell types, including immune cells, keratinocytes, fibroblasts, and endothelial cells. It consists of 5 stages: hemostasis, inflammation, granulation tissue formation, re-epithelialization, and wound remodeling. While inflammation is essential for successful wound healing, prolonged or excess inflammation can result in nonhealing chronic wounds. Lactoferrin, an iron-binding glycoprotein secreted from glandular epithelial cells into body fluids, promotes skin wound healing by enhancing the initial inflammatory phase. Lactoferrin also exhibits anti-inflammatory activity that neutralizes overabundant immune response. Accumulating evidence suggests that lactoferrin directly promotes both the formation of granulation tissue and re-epithelialization. Lactoferrin stimulates the proliferation and migration of fibroblasts and keratinocytes and enhances the synthesis of extracellular matrix components, such as collagen and hyaluronan. In an in vitro model of wound contraction, lactoferrin promoted fibroblast-mediated collagen gel contraction. These observations indicate that lactoferrin supports multiple biological processes involved in wound healing.  相似文献   

17.
Lactoferrin is a member of the transferrin family of iron-binding glycoproteins present in milk, mucosal secretions, and the secondary granules of neutrophils. While several physiological functions have been proposed for lactoferrin, including the regulation of intestinal iron uptake, the exact function of this protein in vivo remains to be established. To directly assess the physiological functions of lactoferrin, we have generated lactoferrin knockout (LFKO(-/-)) mice by homologous gene targeting. LFKO(-/-) mice are viable and fertile, develop normally, and display no overt abnormalities. A comparison of the iron status of suckling offspring from LFKO(-/-) intercrosses and from wild-type (WT) intercrosses showed that lactoferrin is not essential for iron delivery during the postnatal period. Further, analysis of adult mice on a basal or a high-iron diet revealed no differences in transferrin saturation or tissue iron stores between WT and LFKO(-/-) mice on either diet, although the serum iron levels were slightly elevated in LFKO-/- mice on the basal diet. Consistent with the relatively normal iron status, in situ hybridization analysis demonstrated that lactoferrin is not expressed in the postnatal or adult intestine. Collectively, these results support the conclusion that lactoferrin does not play a major role in the regulation of iron homeostasis.  相似文献   

18.
Lactoferrin is a member of the lactotransferrin family of non-haem, iron-binding glycoproteins and is found at high concentrations in all human secretions, where it plays a major role in mucosal defence. In recent work, we observed that lactoferrin has proteolytic activity and attenuates the pathogenic potential of Haemophilus influenzae by cleaving and removing two putative colonization factors, namely the IgA1 protease protein and the Hap adhesin. Experiments with protease inhibitors further suggested that lactoferrin may belong to a serine protease family. In the present study we explored the mechanism of lactoferrin protease activity and discovered that mutation of either Ser259 or Lys73 results in a dramatic decrease in proteolysis. Examination of the crystal structure revealed that these two residues are located in the N-terminal lobe of the protein, adjacent to a 12-15 A cleft that separates the N-lobe and the C-lobe and that can readily accommodate large polypeptide substrates. In additional work, we found that lactoferrin cleaves IgA1 protease at an arginine-rich region defined by amino acids 1379-1386 (RRSRRSVR) and digests Hap at an arginine-rich sequence between amino acids 1016 and 1023 (VRSRRAAR). Based on our results, we conclude that lactoferrin is a serine protease capable of cleaving arginine-rich sequences. We speculate that Ser259 and Lys73 form a catalytic dyad, reminiscent of a number of bacterial serine proteases. In addition, we speculate that lactoferrin may cleave arginine-rich sequences in a variety of microbial virulence proteins, contributing to its long-recognized antimicrobial properties.  相似文献   

19.
Lactoferrin is a multifunctional, iron-binding glycoprotein found in physiological fluids of mammals. In the present study, a gene encoding the N-terminal half (N-lobe) of bovine lactoferrin was cloned and expressed in cultured insect cells using a baculovirus expression system. One mutation was found in the lactoferrin N-lobe gene, but it resulted in no amino acid substitution. The recombinant lactoferrin N-lobe was secreted into the culture medium and partially purified by means of an immobilized heparin column. The recombinant lactoferrin N-lobe secreted was not glycosylated, but it possessed antimicrobial activity toward Escherichia coli O111. The recombinant product synthesized and accumulated in the host cells exhibited greater electrophoretic mobility on SDS-PAGE than the secreted product and showed no potency to inhibit the growth of bacteria. It is thought that the product accumulated intracellularly lacks antimicrobial ability due to its degradation in the host cells or due to disruption of the active conformation.  相似文献   

20.
Nonresolving inflammatory processes affect all stages of carcinogenesis. Lactoferrin, a member of the transferrin family, is involved in the innate immune response and anti-inflammatory, anti-microbial, and anti-tumor activities. We previously found that lactoferrin is significantly down-regulated in specimens of nasopharyngeal carcinoma (NPC) and negatively associated with tumor progression, metastasis, and prognosis of patients with NPC. Additionally, lactoferrin expression levels are decreased in colorectal cancer as compared with normal tissue. Lactoferrin levels are also increased in the various phases of inflammation and dysplasia in an azoxymethane–dextran sulfate sodium (AOM-DSS) model of colitis-associated colon cancer (CAC). We thus hypothesized that the anti-inflammatory function of lactoferrin may contribute to its anti-tumor activity. Here we generated a new Lactoferrin knockout mouse model in which the mice are fertile, develop normally, and display no gross morphological abnormalities. We then challenged these mice with chemically induced intestinal inflammation to investigate the role of lactoferrin in inflammation and cancer development. Lactoferrin knockout mice demonstrated a great susceptibility to inflammation-induced colorectal dysplasia, and this characteristic may be related to inhibition of NF-κB and AKT/mTOR signaling as well as regulation of cell apoptosis and proliferation. Our results suggest that the protective roles of lactoferrin in colorectal mucosal immunity and inflammation-related malignant transformation, along with a deficiency in certain components of the innate immune system, may lead to serious consequences under conditions of inflammatory insult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号