首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
The blood–brain barrier (BBB) is highly restrictive of the transport of substances between blood and the central nervous system. Brain pericytes are one of the important cellular constituents of the BBB and are multifunctional, polymorphic cells that lie within the microvessel basal lamina. The present study aimed to evaluate the role of pericytes in the mediation of BBB disruption using a lipopolysaccharide (LPS)-induced model of septic encephalopathy in mice. ICR mice were injected intraperitoneally with LPS or saline and were sacrificed at 1, 3, 6, and 24 h after injection. Sodium fluorescein accumulated with time in the hippocampus after LPS injection; this hyperpermeability was supported by detecting the extravasation of fibrinogen. Microglia were activated and the number of microglia increased with time after LPS injection. LPS-treated mice exhibited a broken basal lamina and pericyte detachment from the basal lamina at 6–24 h after LPS injection. The disorganization in the pericyte and basal lamina unit was well correlated with increased microglial activation and increased cerebrovascular permeability in LPS-treated mice. These findings suggest that pericyte detachment and microglial activation may be involved in the mediation of BBB disruption due to inflammatory responses in the damaged brain.  相似文献   

2.
The protective effect of melatonin on lipopolysaccharide (LPS)-induced oxidative damage in phenobarbital-treated rats was measured using the following parameters: changes in total glutathione (tGSH) concentration, levels of oxidized glutathione (GSSG), the activity of the antioxidant enzyme glutathione peroxidase (GSH-PX) in both brain and liver, and the content of cytochrome P450 reductase in liver. Melatonin was injected intraperitoneally (ip, 4mg/kg BW) every hour for 4 h after LPS administration; control animals received 4 injections of diluent. LPS was given (ip, 4 mg/kg) 6 h before the animals were killed. Prior to the LPS injection, animals were pretreated with phenobarbital (PB), a stimulator of cytochrome P450 reductase, at a dose 80 mg/kg BW ip for 3 consecutive days. One group of animals received LPS together with Nw-nitro-L-arginine methyl ester (L-NAME), a blocker of nitric oxide synthase (NOS) (for 4 days given in drinking water at a concentration of 50 mM). In liver, PB, in all groups, increased significantly both the concentration of tGSH and the activity of GSH-PX. When the animals were injected with LPS the levels of tGSH and GSSG were significantly higher compared with other groups while melatonin and L-NAME significantly enhanced tGSH when compared with that in the LPS-treated rats. Melatonin alone reduced GSSG levels and enhanced the activity of GSH-PX in LPS-treated animals. Additionally, LPS diminished the content of cytochrome P450 reductase with this effect being largely prevented by L-NAME administration. Melatonin did not change the content of P450 either in PB- or LPS-treated animals. In brain, melatonin and L-NAME increased both tGSH levels and the activity of GSH-PX in LPS-treated animals. The results suggest that melatonin protects against LPS-induced oxidative toxicity in PB-treated animals in both liver and brain, and the findings are consistent with previously published observations related to the antioxidant activity of the pineal hormone.  相似文献   

3.
The potential role of endogenous sex hormones in regulating hypothalamo-pituitary-adrenal (HPA) axis function was investigated after a single injection of endotoxin in adult (8 week old) BALB/c mice of both sexes. The effect of LPS on plasma ACTH, corticosterone (B), testosterone and oestradiol (E) levels and on anterior pituitary (AP) ACTH and adrenal B contents at different times after treatment was studied. The results indicate that: (a) basal B but not ACTH plasma levels were significantly higher in female than in male mice; (b) LPS significantly increased both ACTH and B plasma levels over the baseline 2 h after injection, both hormone levels being higher in female than in male mice; (c) although plasma ACTH concentrations recovered the basal value at 72 h after LPS in animals of both sexes, plasma B levels returned to the baseline only at 120 h after treatment; (d) E plasma levels significantly increased 2 h after LPS and returned to the baseline at 72 h post-treatment, in both sexes; (e) at 2 h after LPS, testosterone plasma levels significantly decreased in male mice and increased in female mice, recovering the baseline level at 120 and 72 h after LPS, respectively; (f) AP ACTH content was similar in both sexes in basal condition and it was significantly diminished 72 h post-treatment without sex difference; whereas AP ACTH returned to basal content 120 h after LPS in males, it remained significantly decreased in females; (g) basal adrenal B content was higher in female than in male mice, and it significantly increased in both sexes 2 h post-LPS, maintaining this sex difference. Whereas adrenal B returned to basal content 72 h after treatment in male mice, it remained significantly enhanced up to 120 h post-LPS in female animals. The data demonstrate the existence of a clear sexual dimorphism in basal condition and during the acute phase response as well as in the recovery of the HPA axis function shortly after infection.  相似文献   

4.
The present study deals with whether lipopolysaccharide (LPS)-induced intra-uterine fetal death (IUFD) is related to LPS-susceptibility of either mother or fetus and how LPS or LPS-induced TNF causes IUFD. LPS-susceptible C3H/HeN or -hypo-susceptible C3H/HeJ pregnant mice and the mice mated reciprocally with these mice were used on days 14 to 16 of gestation for experiments. All of fetuses in pregnant C3H/HeN mice mated with either C3H/HeN males [HeN(HeN)] or C3H/HeJ males [HeN(HeJ)] were killed within 24 hr when injected intravenously (i.v.) with 50 or 100 microg of LPS. On the other hand, the majority of fetuses in C3H/HeJ females mated with either C3H/HeJ males [HeJ(HeJ)] or C3H/HeN males [HeJ(HeN)] survived when injected i.v. with even 400 microg of LPS. These findings indicate that LPS-induced IUFD depends on the maternal LPS-responsiveness. LPS injected into mothers could pass through placenta to fetuses, since an injection with 125I-labeled LPS or IgG into pregnant mice resulted in considerable levels of radioactivity in fetuses as well as placenta. Cultured peritoneal macrophages derived from F1 mice of HeJ(HeN) or HeN(HeJ) mice, produced nitric oxide (NO) and tumor necrosis factor (TNF) in response to LPS, although the levels of NO and TNF were lower in comparison with those of C3H/HeN macrophage cultures, suggesting a possibility that the fetus as well as F1 cells might be responsible to LPS. LPS-induced IUFD was not blocked by treatment with anti-TNF antibody which inhibited LPS-induced TNF production in pregnant females, although an injection of recombinant TNFalpha instead of LPS could induce IUFD, suggesting that the cause of IUFD cannot be attributed to mother-derived TNF alone. The roles of LPS passed through placenta and LPS-induced mediators on IUFD were discussed.  相似文献   

5.
Phenyl N-tert-butylnitrone (PBN) is a spin trapping agent previously shown to exert a neuroprotective effect in infant rat brain during bacterial meningitis. In the present study, we investigated the effect of systemic PBN administration on nitric oxide (NO) production in a rat model of experimental meningitis induced by lipopolysaccharide (LPS). We assessed the NO concentration in rat brain tissues with an electron paramagnetic resonance (EPR) NO trapping technique. In this model, rats receiving intracisternal LPS administration showed symptoms of meningitis and cerebrospinal fluid (CSF) pleocytosis. The time course study indicated that the concentration of NO in the brain reached the maximum level 8.5h after injection of LPS, and returned to the control level 24 h after the injection. When various doses of PBN (125-400 mg/kg) were injected intraperitoneally 30 min prior to LPS, NO production in the brain was reduced with increasing PBN dose (250 mg/kg suppressed 80% at 8.5h after LPS injection), and white blood cells (WBC) in CSF were significantly decreased. We concluded that reduction of NO generation during bacterial meningitis contributes to the neuroprotective effect of PBN in addition to its possible direct scavenging of reactive oxygen intermediate (ROI).  相似文献   

6.
The effect of female sex hormones on nitric oxide (NO) production was studied in alveolar macrophages (AMs). Male rats were treated with endotoxin (LPS) intratracheally or saline as control. AMs were obtained by bronchoalveolar lavage 90 min later and were cultured in the presence or in the absence of LPS and 17β-estradiol or progesterone (10−9to 10−4M). NO production was assessed by measurement of nitrites in the medium. In some experiments, NO production by AMs was measured in intratracheally LPS-treated orchidectomized rats or in female control and ovariectomized rats. Both spontaneous and stimulated NO production were higher in AMs from female than from male rats, but without statistical significance. However, ovariectomy induced significant inhibition in spontaneous production of NO by AMs. In orchidectomized rats, the NO response by AMs to LPS stimulation relative to spontaneous NO production was significantly downregulated. Female sex hormones in physiological concentrations seem to be necessary for spontaneous NO production in female rats. Pharmacological doses of estradiol inhibitedin vitroLPS-stimulated NO production in AMs of both saline- and LPS-treated rats, and basal NO production only in LPS-treated male rats. Progesterone at 10−4M inhibited basal andin vitroLPS-stimulated NO generation by AMs of both saline- and LPS-treated male rats. In LPS-treated female ratsin vitroLPS-stimulated NO production was not affected by estradiol treatment. In ovariectomized LPS-treated female rats progesterone at 10−5M significantly inhibited NO production byin vitro-stimulated AMs. Thus female sex hormones may contribute to the gender-related differences in the immune response.  相似文献   

7.
In vivo electron spin resonance (ESR) spectroscopy is a noninvasive technique that measures the oxidative stress in living experimental animals. The rate of decay of the ESR signal right after an injection of nitroxyl radical has been measured to evaluate the oxidative stress in animals, although the probe’s disposition could also affect this rate. Because the amount of probes forming the redox pair of hydroxyl amine and its corresponding nitroxyl radical was shown to be nearly constant in most organs or tissues 10 min after the injection of 1-acetoxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine (ACP) in mice, we evaluated the oxidative stress in sepsis model mice induced by lipopolysaccharide (LPS) by intravenously injecting ACP as a precursor of redox probes. The in vivo ESR signal increased up to 7–8 min after the ACP injection and then decreased. Decay of the in vivo signal in LPS-treated mice was significantly slower than that in healthy mice, whereas no significant difference was observed in the rate of change in the total amount of redox probes in the blood and liver between these groups. ESR imaging showed that the in vivo signals observed at the chest and upper abdomen decayed slowly in LPS-treated mice. Suppression of the decay in LPS-treated mice was canceled by the administration of a combination of pegylated superoxide dismutase and catalase, or an inhibitor of nitric oxide synthase, or gadolinium chloride. These results indicate that the LPS-treated mouse is under oxidative stress and that reactive oxygen species, such as superoxide and peroxynitrite, related to macrophages are mainly involved in the oxidative stress.  相似文献   

8.
The precise molecular mechanisms responsible for sepsis-induced myocardial dysfunction remain undefined. Toll-like receptor-4 (TLR-4) engages lipopolysaccharide (LPS) and activates signaling pathways leading to the expression of proinflammatory cytokines implicated in myocardial dysfunction. We determined whether TLR-4 was necessary for LPS-induced myocardial dysfunction in vivo. The effects of LPS on left ventricular (LV) function were studied in mice with defective TLR-4 signaling (C3H/HeJ, TLR-4 deficient) and wild-type mice (C3HeB/FeJ). Mice (n = 5/group) were injected with LPS or diluent, and LV function was examined by using two-dimensional echocardiography and conductance catheters. LPS significantly decreased all indexes of LV function in wild-type mice when compared with controls; LV function was not depressed in the LPS-treated TLR-4-deficient mice relative to controls. LPS increased myocardial nitric oxide synthase-2 expression and cGMP only in wild-type mice. This study suggests that TLR-4 mediates the LV dysfunction that occurs in LPS-induced shock. Therefore, TLR-4 might be a therapeutic target for attenuating the effects of LPS on the heart.  相似文献   

9.
Saia RS  Carnio EC 《Life sciences》2006,79(15):1473-1478
We have tested the hypothesis that nitric oxide (NO) arising from inducible nitric oxide synthase (iNOS) plays a role in hypothermia during endotoxemia by regulating vasopressin (AVP) release. Wild-type (WT) and iNOS knockout mice (KO) were intraperitoneally injected with either saline or Escherichia coli lipopolysaccharide (LPS) 10.0 mg/kg in a final volume of 0.02 mL. Body temperature was measured continuously by biotelemetry during 24 h after injection. Three hours after LPS administration, we observed a significant drop in body temperature (hypothermic response) in WT mice, which remained until the seventh hour, returning then close to the basal level. In iNOS KO mice, we found a significant fall in body temperature after the fourth hour of LPS administration; however, the hypothermic response persisted until the end of the 24 h of the experiment. The pre-treatment with beta-mercapto-beta,beta-cyclopentamethylenepropionyl(1), O-Et-Tyr2, Val4, Arg8-Vasopressin, an AVP V1 receptor antagonist (10 microg/kg) administered intraperitoneally, abolished the persistent hypothermia induced by LPS in iNOS KO mice, suggesting the regulation of iNOS under the vasopressin release in this experimental model. In conclusion, our data suggest that the iNOS isoform plays a role in LPS-induced hypothermia, apparently through the regulation of AVP release.  相似文献   

10.
Phenyl N-tert-butylnitrone (PBN) is a spin trapping agent previously shown to exert a neuroprotective effect in infant rat brain during bacterial meningitis. In the present study, we investigated the effect of systemic PBN administration on nitric oxide (NO) production in a rat model of experimental meningitis induced by lipopolysaccharide (LPS). We assessed the NO concentration in rat brain tissues with an electron paramagnetic resonance (EPR) NO trapping technique. In this model, rats receiving intracisternal LPS administration showed symptoms of meningitis and cerebrospinal fluid (CSF) pleocytosis. The time course study indicated that the concentration of NO in the brain reached the maximum level 8.5h after injection of LPS, and returned to the control level 24 h after the injection. When various doses of PBN (125–400 mg/kg) were injected intraperitoneally 30 min prior to LPS, NO production in the brain was reduced with increasing PBN dose (250 mg/kg suppressed 80% at 8.5h after LPS injection), and white blood cells (WBC) in CSF were significantly decreased. We concluded that reduction of NO generation during bacterial meningitis contributes to the neuroprotective effect of PBN in addition to its possible direct scavenging of reactive oxygen intermediate (ROI).  相似文献   

11.
The effect of L-carnitine and some of its acyl derivatives on serum TNF production and lethality in a murine experimental endotoxin shock model was investigated. In some instances, serum IL-6 production was also evaluated. In this experimental model, C57BL/6 mice received 30 mg/kg LPS (E. cell 055:B5) injected intraperitoneally, while L-carnitine and its derivatives were administered according to different schedules. Serum levels of TNF and IL-6 were evaluated 1 h following LPS injection. The treated animals were also monitored daily for differences in body temperature, feeding, and survival for 10 days after LPS injection. Although some derivatives were able to significantly affect TNF production, the marked decrease in serum TNF levels of LPS-treated mice was not paralleled by a substantial increase in survival.  相似文献   

12.
—Monosodium l -glutamate was injected subcutaneously into 4-day-old mice at a dose of 2 mg/g body wt. The infants were killed at sequential intervals after injection, the brains were frozen, and samples of the arcuate nucleus (NA), ventromedial hypothalamus (VMH) and lateral thalamus (LT) were micro-dissected from lyophilized sections for glutamate assay. Blood glutamate levels were also determined for comparison with brain levels of glutamate at corresponding post-injection intervals. Glutamate levels in the NA steadily increased to reach a peak value of 110.9 mmol/kg dry wt. at 3 h following injection, whereas the highest levels reached in the VMH or LT were about 41.7 mmol/kg dry wt. Return to control values of about 25 mmol/kg dry wt. occurred gradually over a period of 12–15 h in all three brain regions. Blood glutamate concentrations peaked rapidly, reaching a maximum of 40 mm within 15 min but returned precipitously to near-baseline values (below 1 mm ) in the 1–3 h interval after injection. We discuss possible mechanisms to account for the transient marked accumulation of subcutaneously administered glutamate in the NA and how this might relate to the selective destruction of arcuate neurons which occurs simultaneously.  相似文献   

13.
The aims of thisstudy were to assess the role of nitric oxide (NO) and the contributionof different NO synthase (NOS) isoforms in skeletal muscle contractiledysfunction in septic shock. Four groups of conscious rats wereexamined. Group 1 served as control; groups 2, 3, and4 were injected withEscherichia coli endotoxin [lipopolysaccharide (LPS), 20 mg/kg ip] and killed after 6, 12, and 24 h, respectively. Protein expression was assessed byimmunoblotting and immunostaining. LPS injection elicited a transientexpression of the inducible NOS isoform, which peaked 12 h after LPSinjection and disappeared within 24 h. This expression coincided with a significant increase in nitrotyrosine formation (peroxynitrite footprint). Muscle expression of the endothelial and neuronal NOSisoforms, by comparison, rose significantly and remained higher thancontrol levels 24 h after LPS injection. In vitro measurement of musclecontractility 24 h after LPS injection showed that incubation with NOSinhibitor (S-methyliosothiourea)restored the decline in submaximal force generation, whereas maximalmuscle force remained unaffected. We conclude that NO plays asignificant role in muscle contractile dysfunction in septic animalsand that increased NO production is due to induction of the inducibleNOS isoform and upregulation of constitutive NOS isoforms.

  相似文献   

14.
Lipopolysaccharide of E. coli (LPS) injected to mice one day before the total gamma-irradiation caused a substantial increase in the level of endogeneous colonies formed in the spleen. It is known that this type of endotoxin may result in considerable production of nitric oxide from macrophages in different tissues. Therefore it is possible that the activation of hemopoietic stem cells after LPS-treatment was completely or partially stimulated by nitric oxide, which is the most important physiological mediator, or by action some other mediators (cytokines and growth factors) produced by hemopoietic microenvironment elements in response to the action of nitric oxide. This assumption was checked in experience with combined treatment of mice by LPS and a nonspecific inhibitor of nitric oxide production--N omega-nitro-1-arginine (NA). NA used in high dose (250 mg/kg) reduced partially (approximately by 30%) the LPS-increased level of spleen endogeneous colonies. When LPS was injected to mice 15 minutes after gamma-irradiation, this led to a slight increase in level of spleen colonies. In case when LPS was used together with NA after gamma-irradiation, this increase was still found.  相似文献   

15.
We mapped the dynamic distribution of fluoro-gold (FG) within rat brain following intracerebroventricular (icv) injection into the lateral ventricle and observed its interrelation with neural nitric oxide synthase (nNOS) using FG fluorescent microphotography combined with nNOS immunohistochemistry. We also detected the amount of icv administered FG entering the peripheral circulation using a fluorescence microplate assay. The degree of periventricular penetration of FG was significantly increased over time. At 2 min after icv injection, FG primarily labeled the choroid plexus in the lateral and third ventricles, with limited penetration into the ependyma and the subependyma of the same ventricles. Some FG/nNOS-double labeled cerebrospinal fluid-contacting neurons were observed in these ventricles as well. At 15 and 30 min, FG penetrated mainly into forebrain ventricular organs and parenchymal structures. Many FG/nNOS double labeled neurons were found at each of these sites. In addition, at 30 min intense FG labeling was found in the hypophysis, while limited periventricular penetration of FG was detected in the hindbrain circumventricular areas. In the peripheral circulation, a low concentration of FG was detected 2 min after icv injection. The concentration increased slowly, peaked at 20 min, then gradually decreased until the end of the experiment at 30 min. These findings indicate that dynamic penetration of icv administrated agents into the periventricular tissues and peripheral circulation should be considered when designing icv experiments.  相似文献   

16.
We mapped the dynamic distribution of fluoro-gold (FG) within rat brain following intracerebroventricular (icv) injection into the lateral ventricle and observed its interrelation with neural nitric oxide synthase (nNOS) using FG fluorescent microphotography combined with nNOS immunohistochemistry. We also detected the amount of icv administered FG entering the peripheral circulation using a fluorescence microplate assay. The degree of periventricular penetration of FG was significantly increased over time. At 2 min after icv injection, FG primarily labeled the choroid plexus in the lateral and third ventricles, with limited penetration into the ependyma and the subependyma of the same ventricles. Some FG/nNOS-double labeled cerebrospinal fluid-contacting neurons were observed in these ventricles as well. At 15 and 30 min, FG penetrated mainly into forebrain ventricular organs and parenchymal structures. Many FG/nNOS double labeled neurons were found at each of these sites. In addition, at 30 min intense FG labeling was found in the hypophysis, while limited periventricular penetration of FG was detected in the hindbrain circumventricular areas. In the peripheral circulation, a low concentration of FG was detected 2 min after icv injection. The concentration increased slowly, peaked at 20 min, then gradually decreased until the end of the experiment at 30 min. These findings indicate that dynamic penetration of icv administrated agents into the periventricular tissues and peripheral circulation should be considered when designing icv experiments.  相似文献   

17.
The effects of centimeter waves (8.15-18 GHz, 1 microW/cm2, 1 h daily for 10 days; MW) on the production of the tumor necrosis factor alpha, interleukin-lalpha, interleukin-1beta, interleukin-2, and the expression of interleukin-6, interleukin-10, interferon-gamma, nitric oxide and HSP27, HSP72 and HSP90alpha in mice irradiated before or after LPS injection were studied. An acute endotoxic model was produced by a single LPS injection. The effects of microwaves on nitric oxide, interleukin-6, tumor necrosis factor-alpha, and interferon-gamma were dependent on the functional status of exposed animals. Thus, an exposure of healthy mice to microwaves for 10 days was followed by a decrease in nitric oxide and interferon-gamma production, and an increase in the production of the tumor necrosis factor-alpha and interleukin-6. On the contrary, an exposure to MW before intoxication resulted in an increase in the synthesis of nitric oxide and interferon-gamma as well as a decrease in the concentration of the tumor necrosis factor-alpha and interleukin-6 in blood of mice in endotoxic shock. When microwave exposure was used after LPS injection, it did not provide any protective effect, and preliminary irradiation enhanced the resistance of the organism to endotoxic shock.  相似文献   

18.
Nitrotyrosine formation and apoptosis in rat models of ocular injury   总被引:2,自引:0,他引:2  
This study was performed to examine inducible nitric oxide synthase (NOS-2) expression, nitrotyrosine formation and apoptosis in rats with elevated intraocular pressure (IOP) and/or ocular inflammation. Ocular inflammation was induced via injection of intra-vitreal lipopolysaccharide (LPS) while IOP was elevated by episcleral vessel cauterization. Animals were randomized to one of the following conditions: elevated IOP, LPS, elevated IOP+LPS, and control. Immunohistochemical staining and western blot analysis of retinal lysates revealed NOS-2 and nitrotyrosine immunoreactivity in all disease groups. NOS-2 expression and protein nitration was significantly greater in rats with elevated IOP+LPS compared to elevated IOP, LPS, and control groups. Nitrite levels in the retina affirmed significantly increased levels of nitric oxide generation in LPS-treated rats with elevated IOP (346 ± 23.8 μM) vs LPS-treated, elevated IOP and control groups (195.6 ± 12.6, 130 ± 2.5 and 76.6 ± 15.6 μM, respectively). Retinal TUNEL staining showed apoptosis in all diseased groups. Percent of apoptotic cells was significantly greater in the elevated IOP+LPS group compared to LPS-treated or elevated IOP groups. Presented data illustrates that both elevated IOP and ocular inflammation augment NOS-2 expression, retinal protein nitration and apoptosis in rats.  相似文献   

19.
Acute inflammation induced by endotoxin (LPS) administration inhibits insulin-like growth factor (IGF-I) and growth hormone (GH) secretion. The aim of this study was to elucidate the role of glucocorticoids and nitric oxide (NO) in the effect of LPS on hypothalamic somatostatin gene expression. Adult male Wistar rats were injected with different doses of LPS (5, 10 and 100 microg/kg). Rats received two i.p. injections of LPS (at 17:30 and 8:30 h the following day) and were killed 4 h after the second injection. LPS administration at the dose of 100 microg/kg increased the hypothalamic somatostatin mRNA content, as well as the serum concentrations of corticosterone. Glucocorticoids do not seem to be involved in LPS-induced increase in hypothalamic somatostatin mRNA since adrenalectomy did not prevent this effect. In order to analyze the possible effect of NO, aminoguanidine, an inducible nitric oxide synthase inhibitor, was injected (100 mg/kg s.c.) simultaneously with LPS injection. Aminoguanidine administration did not modify somatostatin mRNA in saline injected rats, but it prevented LPS-induced increase in hypothalamic somatostatin mRNA. These data suggest that the stimulatory effect of endotoxin on hypothalamic somatostatin gene expression is not mediated by glucocorticoids, but instead by the increase in NO release.  相似文献   

20.
Clinical features of certain immuno-inflammatory disorders exhibit time-dependent fluctuations, which could be related to circadian rhythmicity of proinflammatory mediator production. Many biologically active substances including nitric oxide (NO) and eicosanoids are released into the circulation in sepsis. Increased NO and eicosanoid levels have been reported to be responsible from death in septic shock. The aim of this study was to investigate the variations in the NO and eicosanoid production and mortality induced by bacterial endotoxin, lipopolysaccharide (LPS) injected either in the morning or in the evening. Experiments were performed on mice synchronised to 12 h light and 12 h dark (lights on at 09:00 h). Animals were injected intraperitoneally with LPS (10 mg/kg) at 09:00 (morning) and 21:00 h (evening) alone or in combination with aminoguanidine (NO synthase (NOS) inhibitor) (100 mg/kg) or indomethacin (cyclooxygenase (COX) inhibitor) (100 mg/kg). The serum was separated from blood samples obtained at nine different time points. Nitrite (stable product of NO), 6-keto-prostaglandin F (6-keto-PGF, stable product of prostacyclin) and thromboxane B2 (TxB2, stable product of thromboxane) concentrations in serum samples were measured. Serum nitrite levels showed a 24 h circadian rhythmicity depending on LPS injection time. Morning injection caused a peak after 15 h, while evening injection had two peaks after 9 and 18 h. The peak values obtained from morning and evening injections were significantly decreased by aminoguanidine and indomethacin. When LPS injected to mice in the morning and in the evening, it gradually increased the mortality rate within 24 h which could be abolished by aminoguanidine, but not indomethacin. Indomethacin-induced inhibition on LPS-induced nitrite levels was higher in the morning than in the evening. 6-keto-PGF and TxB2 levels were decreased by indomethacin when injected with LPS at both injection times, but not aminoguanidine. These results showed that there is an interaction between NO and eicosanoids, and LPS may produce different effects on NOS activity, but not eicosanoid production and mortality, depending on injection time in the experimental septic shock model in mice. Chronopharmacological manipulations of NOS and COX pathways and interactions between them could lead to novel therapeutic approaches for the treatment of septic shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号