首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
It has been reported that hypothermia induced by arginine vasopressin (AVP) is brought about by a coordinated response of reduced thermogenesis in brown adipose tissue (BAT) and increased heat loss through the tail of rats. However, it is well known that AVP is one of the strongest peripheral vasoconstrictors. Whether the AVP-induced hypothermia is associated with an increase in heat loss through the tail is questionable. Therefore, the present study assessed the relationship between the effects of AVP on tail skin temperature and the induced hypothermic response, and to determine if peripheral AVP administration increases heat loss from the tail. Core, BAT and tail skin temperature were monitored by telemetry in male Sprague–Dawley rats before and after intraperitoneal administration of AVP or vasopressin receptor antagonist. We also analyzed simultaneously of the time-course of AVP-induced hypothermic response and its relationship with changes in BAT temperature, and effect of AVP on grooming behavior. The key observations in this study were: (1) rats dosed with AVP induced a decrease in heat production (i.e., a reduction of BAT thermogenesis) and an increase of saliva spreading for evaporative heat loss (i.e., grooming behavior); (2) AVP caused a marked decrease in tail skin temperature and this effect was prevented by the peripheral administration of the vasopressin V1a receptor antagonist, suggesting that exogenous AVP does not increase heat loss in the tail of rats; (3) the vasopressin V1a receptor antagonist could elevate core temperature without affecting tail skin temperature, suggesting that endogenous AVP is involved in suppression of thermogenesis, but not mediates heat loss in the tail of rats. Overall, the present study does not support the conclusion of previous reports that AVP increased tail heat loss in rats, because AVP-induced hypothermia in the rat is accompanied by a decrease in tail skin temperature. The data indicate that exogenous AVP-induced hypothermia attributed to the suppression of thermoregulatory heat production and the increase of saliva spreading for evaporative heat loss.  相似文献   

3.
AimsOxytocin (OT) is the strongest uterotonic substance and has been used widely to induce labor. The physiological importance of OT in modulating the initiation and progression of labor remains unclear. In this study, we showed the roles of OT with onset of labor and also the arginine vasopressin (AVP) effect on urine volume in vivo using both wild type (WT) and placental leucine aminopeptidase (P-LAP)-deficient (KO) mice.Main methodsOT (1, 2, 2.5 U/day) or recombinant P-LAP (0.01 U/day) was continuously infused from gestation day 15.5 in WT and P-LAP KO mice. Duration until onset of labor was observed. Before and after administration of AVP (1 U/day) in WT and P-LAP KO mice, urine volume was measured.Key findingsA significant shortening of pregnancy term was observed in P-LAP KO mice. Continuous infusion of OT (1 U/day) revealed that P-LAP KO mice resulted in premature delivery (OT hypersensitivity). We could observe a significant decrease of urine volume in P-LAP KO mice by administration of AVP. Administration of recombinant P-LAP in WT mice resulted in the delay of the onset of labor about 1.5 days compared with control mice.SignificanceOur present study shows that the regulation of the onset of labor mainly depends on OT and its degradation by P-LAP and also the possible role of P-LAP in the regulation of urine output. P-LAP might be involved in the increased OT sensitivity just prior to onset of labor and also in the onset of labor by degradation of OT.  相似文献   

4.
Role of nitric oxide in tolerance to lipopolysaccharide in mice.   总被引:2,自引:0,他引:2  
The injection of repeated doses of lipopolysaccharide (LPS) results in attenuation of the febrile response, which is called endotoxin tolerance. We tested the hypothesis that nitric oxide (NO) arising from inducible NO synthase (iNOS) plays a role in endotoxin tolerance, using not only pharmacological trials but also genetically engineered mice. Body core temperature was measured by biotelemetry in mice treated with NG-monomethyl-L-arginine (L-NMMA, 40 mg/kg; a nonselective NO synthase inhibitor) or aminoguanidine (AG, 10 mg/kg; a selective iNOS inhibitor) and in mice deficient in the iNOS gene (iNOS KO) mice. Tolerance to LPS was induced by means of three consecutive LPS (100 microg/kg) intraperitoneal injections at 24-h intervals. In wild-type mice, we observed a significant reduction of the febrile response to repeated administration of LPS. Injection of L-NMMA and AG markedly enhanced the febrile response to LPS in tolerant animals. Conversely, iNOS-KO mice repeatedly injected with LPS did not become tolerant to the pyrogenic effect of LPS. These data are consistent with the notion that NO modulates LPS tolerance in mice and that iNOS isoform is involved in NO synthesis during LPS tolerance.  相似文献   

5.
Mycobacterial infection in TLR2 and TLR6 knockout mice   总被引:11,自引:0,他引:11  
To investigate the role of TLR in the development of murine tuberculosis in vivo, TLR2 and TLR6 knockout (KO) mice were infected with Mycobacterium tuberculosis by placing them in the exposure chamber of an airborne infection apparatus. Both TLR2 and TLR6 KO mice survived until sacrifice at 12 weeks after infection. Infected TLR2 KO mice developed granulomatous pulmonary lesions with neutrophil infiltration, which were slightly larger in size than those in wild-type mice. Pulmonary levels of the mRNAs for inducible nitric oxide synthase (iNOS), TNF-alpha, TGF-beta, IL-1beta, and IL-2 were significantly lower, but levels of the mRNAs for IL-4 and IL-6 were higher, than in wild-type (WT) mice. No significant difference was recognized in cytokine mRNA expression between TLR2 KO and WT mice at 12 weeks after infection. DNA binding by NF-kappaB was low in TLR2 KO mice. On the other hand, TLR6 KO mice were not different from WT mice in terms of pulmonary histopathology, mRNA expression and CFU assay. Therefore, TLR2 does not play an essential role in the pathogenesis of murine tuberculosis, although it is important for defense against mycobacterial infection.  相似文献   

6.
The present study examined the effects of inducible nitric oxide synthase (iNOS) deficiency on skeletal muscle atrophy in single leg-immobilized iNOS knockout (KO) and wild-type (WT) mice. The left leg was immobilized for 1 wk, and the right leg was used as the control. Muscle weight and contraction-stimulated glucose uptake were reduced by immobilization in WT mice, which was accompanied with increased iNOS expression in skeletal muscle. Deficiency of iNOS attenuated muscle weight loss and the reduction in contraction-stimulated glucose uptake by immobilization. Phosphorylation of Akt, mTOR, and p70S6K was reduced to a similar extent by immobilization in both WT and iNOS KO mice. Immobilization decreased FoxO1 phosphorylation and increased mRNA and protein levels of MuRF1 and atrogin-1 in WT mice, which were attenuated in iNOS KO mice. Aconitase and superoxide dismutase activities were reduced by immobilization in WT mice, and deficiency of iNOS normalized these enzyme activities. Increased nitrotyrosine and carbonylated protein levels by immobilization in WT mice were reversed in iNOS KO mice. Phosphorylation of ERK and p38 was increased by immobilization in WT mice, which was reduced in iNOS KO mice. Immobilization-induced muscle atrophy was also attenuated by an iNOS-specific inhibitor N(6)-(1-iminoethyl)-l-lysine, and this finding was accompanied by increased FoxO1 phosphorylation and reduced MuRF1 and atrogin-1 levels. These results suggest that deficiency of iNOS attenuates immobilization-induced skeletal muscle atrophy through reduced oxidative stress, and iNOS-induced oxidative stress may be required for immobilization-induced skeletal muscle atrophy.  相似文献   

7.
Inducible nitric oxide synthase (iNOS) plays an important role in the inflammatory process of certain major cardiac disorders including myocardial infarction and allograft rejection. However, the role of iNOS in acute myocardial ischemia has not been well defined. We determined the effects of genetically disruption of the intact iNOS system on cardiac tolerance to ischemia/reperfusion injury. Adult male wild-type (WT) and iNOS knockout (KO) B6,129 mice were subjected to 20 min global ischemia and 30 min reperfusion in a Langendorff isolated perfused heart model (37 degrees C, n = 10/each group). Ventricular contractile function, heart rate, coronary flow, and leakage of intracellular enzymes (CK and LDH) were not significantly different between the groups during pre-ischemia as well as reperfusion period (P > 0.05). Myocardial infarct size was also not significantly different between WT (20.2+/-2.0% of risk area) and KO mice (23.5+/-3.8%; Mean+/-SEM, P > 0.05). However, the post-ischemic heart rate was significantly preserved in KO as compared to WT (P < 0.05). We conclude that disruption of iNOS gene does not exacerbate ischemia/ reperfusion injury in the heart.  相似文献   

8.
9.
Increased nitric oxide (NO) production is the cause of hypotension and shock during sepsis. In the present experiments, we have measured the contribution of endothelial (e) and inducible (i) nitric oxide synthase (NOS) to systemic NO production in mice under baseline conditions and upon LPS treatment (100 microg/10 g ip LPS). NO synthesis was measured by the rate of conversion of l-[guanidino-15N2]arginine to l-[ureido-15N]citrulline, and the contribution of the specific NOS isoforms was evaluated by comparing NO production in eNOS-deficient [(-/-)] and iNOS(-/-) mice with that in wild-type (WT) mice. Under baseline conditions, NO production was similar in WT and iNOS(-/-) mice but lower in eNOS(-/-) mice [WT: 1.2 +/- 0.2; iNOS(-/-): 1.2 +/- 0.2; eNOS(-/-): 0.6 +/- 0.3 nmol. 10 g body wt-1. min-1]. In response to the challenge with LPS (5 h), systemic NO production increased in WT and eNOS(-/-) mice but fell in iNOS(-/-) mice [WT: 2.7 +/- 0.3; eNOS(-/-): 2.2 +/- 0.6; iNOS(-/-): 0.7 +/- 0.1 nmol. 10 g body wt-1. min-1]. After 5 h of LPS treatment, blood pressure had dropped 14 mmHg in WT but not in iNOS(-/-) mice. The present findings provide firm evidence that, upon treatment with bacterial LPS, the increase of NO production is solely dependent on iNOS, whereas that mediated by cNOS is reduced. Furthermore, the data show that the LPS-induced blood pressure response is dependent on iNOS.  相似文献   

10.
Fan YH  Zhao LY  Zheng QS  Dong H  Wang HC  Yang XD 《Life sciences》2007,81(4):327-335
Previous studies have shown that arginine vasopressin (AVP) promotes myocardial fibrosis (MF), whereas nitric oxide (NO) inhibits MF. Cardiac fibroblasts (CFs) are the main target cells of MF. However, the modulatory effect of AVP on NO production in CFs and the role of this effect in MF are still unknown. In the present study, CFs obtained from Sprague-Dawley rats were stimulated with or without AVP and pyrrolidine dithiocarbamate (PDTC), a specific inhibitor of nuclear factor kappa-B (NF-kappaB). NO production and NOS activity were detected with absorption spectrometry, inducible nitric oxide synthase (iNOS) protein with Western blot analysis, iNOS mRNA with real-time PCR, CF collagen synthesis with [(3)H]proline incorporation, and NF-kappaB activation with immunofluorescence staining and Western blot analysis. The results showed that AVP increased NO production in a dose- and time-dependent manner, with maximal effects at 10(-7) mol/l after 24-h stimulation. AVP also increased NOS activity, protein and mRNA levels of iNOS in a coincident manner. Furthermore, AVP also increased CF collagen synthesis in a dose- and time-dependent manner. In addition, it was found that NF-kappaB was activated by AVP, and that PDTC could inhibit NO production, NOS activity, protein and mRNA levels of iNOS stimulated by AVP in a dose-dependent manner. The inhibitory effects of PDTC on NF-kappaB translocation were coincident with the effects of PDTC on iNOS-NO system activity. It is suggested that AVP increases NO production via the regulation of iNOS gene expression, and the upregulation of iNOS gene expression stimulated by AVP is mediated through NF-kappaB activation. NO production induced by AVP may counteract the profibrotic effects of AVP, thus the development of MF perhaps depends on the balance between profibrotic AVP and antifibrotic NO effects on MF.  相似文献   

11.
This in vivo study evaluates the effect of N-acetylcysteine (NAC) administration on nitric oxide (NO) production by the inducible form of nitric oxide synthase (iNOS). NO production was induced in the rat by the ip administration of 2 mg/100 g lipopolysaccharide (LPS). This treatment caused: (1) a decrease in body temperature within 90 min, followed by a slow return to normal levels; (2) an increase in plasma levels of urea, nitrite/nitrate, and citrulline; (3) the appearance in blood of nitrosyl-hemoglobin (NO-Hb) and in liver of dinitrosyl-iron-dithiolate complexes (DNIC); and (4) increased expression of iNOS mRNA in peripheral blood mononuclear cells (PBMC). Rat treatment with 15 mg/100 g NAC ip, 30 min before LPS, resulted in a significant decrease in blood NO-Hb levels, plasma nitrite/nitrate and citrulline concentrations, and liver DNIC complexes. PBMC also showed a decreased expression of iNOS mRNA. NAC pretreatment did not modify the increased levels of plasma urea or the hypothermic effect induced by the endotoxin. The administration of NAC following LPS intoxication (15 min prior to sacrifice) did not affect NO-Hb levels. These results demonstrate that NAC administration can modulate the massive NO production induced by LPS. This can be attributed mostly to the inhibitory effect of NAC on one of the events leading to iNOS protein expression. This hypothesis is also supported by the lack of effect of late NAC administration.  相似文献   

12.
The pathogenesis of sepsis is complex and, unfortunately, poorly understood. The cellular process of autophagy is believed to play a protective role in sepsis; however, the mechanisms responsible for its regulation in this setting are ill defined. In the present study, interferon regulatory factor 1 (IRF-1) was found to regulate the autophagic response in lipopolysaccharide (LPS)-stimulated macrophages. In vivo, tissue macrophages obtained from LPS-stimulated IRF-1 knockout (KO) mice demonstrated increased autophagy and decreased apoptosis compared to those isolated from IRF-1 wild-type (WT) mice. In vitro, LPS-stimulated peritoneal macrophages obtained from IRF-1 KO mice experienced increased autophagy and decreased apoptosis. IRF-1 mediates the inhibition of autophagy by modulating the activation of the mammalian target of rapamycin (mTOR). LPS induced the activation of mTOR in WT peritoneal macrophages, but not in IRF-1 KO macrophages. In contrast, overexpression of IRF-1 alone increased the activation of mTOR and consequently decreased autophagic flux. Furthermore, the inhibitory effects of IRF-1 mTOR activity were mediated by nitric oxide (NO). Therefore, we propose a novel role for IRF-1 and NO in the regulation of macrophage autophagy during LPS stimulation in which IRF-1/NO inhibits autophagy through mTOR activation.  相似文献   

13.
The present study was designed to assess the hypothesis that dexamethasone (DEX) through the control of nitric oxide (NO) synthesis could regulate the release of vasopressin (AVP), which plays an important role in the regulation of arterial pressure and plasma osmolality. Endotoxemic shock was induced by intravenous (i.v.) injection of 1.5 mg/kg lipopolisaccharide (LPS) in male Wistar rats weighing 250–300 g. After LPS administration, a group of animals were treated with DEX (1.0 mg/kg of body weight), whereas saline-injected rats served as controls. The LPS administration induced a significant decrease in mean arterial pressure (MAP) with a concomitant increase in heart rate (HR) (ΔVMAP: − 16.1 ± 4.2 mm Hg; ΔVHR: 47.3 ± 8.1 bpm). An increase in plasma AVP concentration occurred and was present for 2 h after LPS administration (11.1 ± 0.9 pg/mL) returning close to basal levels thereafter and remaining unchanged until the end of the experiment. When LPS was combined with i.v. administration of a low dose of DEX, we observed an attenuation in the drop of MAP (ΔVMAP: − 2.2 ± 1.9 mm Hg) and a decrease in NO plasma concentration [NO] after LPS administration (1098.1 ± 68.1 µM) compared to [NO] after DEX administration (523.4 ± 75.2 µM). However, this attenuation in the drop of MAP was accompanied by a decrease in AVP plasma concentration (3.7 ± 0.4 pg/mL). These data suggest that AVP does not participate in the recovery of MAP when DEX is administered in this endotoxemic shock model.  相似文献   

14.
诱导型一氧化氮合酶对内毒素休克小肠微循环的影响   总被引:3,自引:0,他引:3  
Shi EY  Jiang XJ  Bai H  Gu TX  Yoshiki N 《生理学报》2005,57(1):39-44
采用静脉注射脂多糖(1ipopolysaccharide,LPS)的方法建立小鼠内毒素休克模型,探讨内毒素休克时小肠微循环的变化以及诱导型一氧化氮合酶(iNOS)对小肠微循环的影响。实验过程中连续监测小鼠平均动脉血压(mean afterial pressure,MAP)变化情况。利用FTTC标记红细胞和活体显微镜方法直接观察并计算小鼠小肠绒毛尖端小动脉和毛细血管内红细胞的流速和流量,并观察敲除小鼠iNOS基因和选择性iNOS抑制剂S-methylthiourea sulfate(SMT)对实验过程中小肠微循环的影响。结果显示,对于野生型小鼠,应用SMT处理和敲除iNOS基因对基线的MAP、小肠绒毛尖端小动脉和毛细血管的红细胞流速和流量没有显著性差别。给予LPS后,小鼠的MAP进行性下降。给予LPS前,应用SMT和敲除小鼠iNOS基因可以显著提高MAP:给予LPS后,小鼠小肠绒毛尖端小动脉和毛细血管内红细胞流速和流量显著下降。给予LPS前,应用SMT和敲除小鼠iNOS基因可以显著提高小肠绒毛尖端小动脉和毛细血管的红细胞流速和流量。结果表明,iNOS在内毒素休克小肠微循环衰竭的过程中发挥重要作用。一能性  相似文献   

15.
Resistance to African trypanosomes is dependent on B cell and Th1 cell responses to the variant surface glycoprotein (VSG). While B cell responses to VSG control levels of parasitemia, the cytokine responses of Th1 cells to VSG appear to be linked to the control of parasites in extravascular tissues. We have recently shown that IFN-gamma knockout (IFN-gamma KO) mice are highly susceptible to infection and have reduced levels of macrophage activation compared to the wild-type C57BL/6 (WT) parent strain, even though parasitemias were controlled by VSG-specific antibody responses in both strains. In the present work, we examine the role of IFN-gamma in the induction of nitric oxide (NO) production and host resistance and in the development of suppressor macrophage activity in mice infected with Trypanosoma brucei rhodesiense. In contrast to WT mice, susceptible IFN-gamma KO mice did not produce NO during infection and did not develop suppressor macrophage activity, suggesting that NO might be linked to resistance but that suppressor cell activity was not associated with resistance or susceptibility to trypanosome infection. To further examine the consequence of inducible NO production in infection, we monitored survival, parasitemia, and Th cell cytokine production in iNOS KO mice. While survival times and parasitemia of iNOS KO mice did not differ significantly from WT mice, VSG-specific Th1 cells from iNOS KO mice produced higher levels of IFN-gamma and IL-2 than cells from WT mice. Together, these results show for the first time that inducible NO production is not the central defect associated with susceptibility of IFN-gamma KO mice to African trypanosomes, that IFNgamma-induced factors other than iNOS may be important for resistance to the trypanosomes, and that suppressor macrophage activity is not linked to either the resistance or the susceptibility phenotypes.  相似文献   

16.
Fan YH  Zhao LY  Zheng QS  Xue YS  Yang XD  Tian JW  Xu L 《生理学报》2003,55(4):417-421
本文探讨了精氨酸血管升压素(AVP)刺激下体外培养的大鼠心肌成纤维细胞(CFs)内一氧化氮(NO)含量、一氧化氮合酶(NOS)活性、诱导型一氧化氮合酶基因表达的变化及其与核因子κB(NF-κB)的关系。用胰酶消化法分离培养Sprague Dawley仔鼠的CFs,分别采用硝酸还原酶法、分光光度法、逆转录-聚合酶链式反应(RT-PCR)、免疫荧光-共聚焦显微镜和蛋白质印迹检测AVP干预下CFs的NO含量、NOS活性、iNOS mRNA表达和NF-κB的活化。结果显示,AVP浓度依赖性(0.001—0.1μmol/L)地增加CFs的NO含量,提高NOS活性,增加iNOS mRNA表达;AVP能够活化NF—κB,使其由细胞浆转位于细胞核;NF-κB特异性抑制剂吡咯啉烷二甲基硫脲(PDTC)能够抑制AVP诱导的CFs NO含量增加、NOS活性提高和iNOS mRNA表达增加。上述结果提示,AVP干预下CFs iNOS mRNA表达增加、NOS活性增高、NO合成增多可能通过NF-κB激活途径,NF-κB激活参与心肌纤维化的发生和发展。  相似文献   

17.
In the present study, we investigated whether nitric oxide (NO) could be involved in the effects of arg-vasopressin (AVP) on osteoblast-like cells. Cells derived from endothelial nitric oxide synthase (eNOS)-knockout mice and their wild type (WT) counterparts, and an osteosarcoma cell line (SaOS-2) were used. AVP (10-100 pmol/l) increased proliferation of osteoblast-like cells from WT mice. The effect was abolished by an AVP V1-receptor antagonist. AVP increased proliferation of cells from eNOSKO mice only when a NO donor, SNAP, was added. A nitric oxide synthase-inhibitor, L-NAME, antagonized the increase in cell proliferation in response to AVP in SaOS-2 cells. In conclusion, this study indicates that NO is involved in the effects of AVP on cell proliferation in osteoblast-like cells.  相似文献   

18.
Free radicals are essential for the vasopressin (AVP) response to plasmatic hyperosmolarity. Noradrenergic afferents are the major projections on the supraoptic nucleus (SON) of the hypothalamus and stimulate the expression of AVP via a nitric oxide (NO) pathway. In this study, we investigated the mechanisms linking free radicals and noradrenaline (NA)-induced regulation of AVP. Analysis of Tg8 transgenic mice, invalidated for the monoamine oxidase-A gene and with consequently high levels of brain monoamines and AVP in the SON, showed that free radicals are more abundant in their SON than in that of wild-type mice (WT). Antioxidant superoxide dismutase 1 and 2 and catalase enzyme activities were also higher in these mice than in WT. This may explain the observed absence of cytotoxicity that would otherwise be associated with such high level of free radicals. Treatment of Tg8 mice with α-MPT, a blocking agent for NA synthesis, decreased both the production of free radicals and the AVP levels in the SON. Furthermore, incubation of ex vivo slices including the SON with NA increased the production of free radicals and AVP levels in wild-type mice. When NA was associated with α-lipoic acid, an antioxidant blocking the production of free radicals, AVP remained at its control level, indicating that free radicals are required for the effect of NA on the expression of AVP. In slices incubated with SNP, a producer of NO, free radicals and AVP levels increased. When NA was associated with L-NAME (a NO synthase blocker), the levels of free radicals and AVP were the same as in controls. Thus, the noradrenaline–NO pathway, which stimulates the expression of vasopressin, involves free radicals. This study provides further evidence of the physiological importance of free radicals, which should no longer be considered solely as cytotoxic factors.  相似文献   

19.
Inducible nitric oxide synthase expression is inhibited by myeloperoxidase.   总被引:1,自引:0,他引:1  
Nitric oxide (NO) plays key roles in vasodilation and host defense, yet the overproduction of NO by inducible nitric oxide synthase (iNOS) at inflammatory sites can also be pathogenic. Here, we investigate the role of MPO in modulating the induction of iNOS by IFNgamma/LPS (IL). In monocyte-macrophages (Mvarphi) treated with IL, MPO gene expression was found to be downregulated as iNOS was upregulated. In Mvarphi from MPO-knockout (KO) mice, the induction of iNOS by IL was earlier and higher than in MPO-positive cells, suggesting MPO is inhibitory. Consistent with that interpretation, the addition of purified MPO enzyme to cultured macrophages inhibited iNOS induction by IL. In addition, an inhibitor of MPO enzyme, 4-aminobenzohydrazide, enhanced iNOS induction in MPO-positive cells, but not in MPO-KO cells. Similarly, taurine, a scavenger of MPO-generated HOCl, enhanced iNOS induction in MPO-positive cells, but not in MPO-KO cells. MPO affects an early event, suppressing iNOS induction when added within 2h of IL, but not when added several hours after IL. The suppression by MPO was alleviated by NO donor, sodium nitroprusside, suggesting the suppression results from scavenging of NO by MPO. This interpretation is consistent with earlier reports that MPO consumes NO, and that low levels of NO donor augment induction of iNOS by IFNgamma/LPS. The implication of these findings is that MPO acts as gatekeeper, suppressing the deleterious induction of iNOS at inflammatory sites by illegitimate signals. The combined signaling of IFNgamma/LPS overrides the gatekeeper function by suppressing MPO gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号