首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kragh PM  Du Y  Corydon TJ  Purup S  Bolund L  Vajta G 《Theriogenology》2005,64(7):1536-1545
The purpose of our work was to establish an efficient protocol for activation of porcine cytoplast-fibroblast constructs produced by the handmade cloning technique. Firstly, we investigated a combined electrical and chemical activation protocol for parthenogenetic development of in vitro matured zona-free oocytes. Oocytes were activated by one 80 micros pulse and subsequently cultured in cytochalasin B and cycloheximide. Developmental rates of blastocysts from activated oocytes were 49+/-1 and 40+/-2%, when using one 80 micros pulse of 0.85 or 1.25 kV/cm, respectively. The activation procedure was further confirmed by a simultaneous re-fusion and activation of bisected oocytes, resulting in a blastocyst rate of 41+/-8%. Secondly, the activation protocol was applied in the handmade cloning technique. In vitro matured zona-free porcine oocytes were bisected and halves containing no chromatin, i.e. the cytoplasts, were selected. Reconstructed embryos were produced by a two-step fusion procedure. At the first step, one cytoplast was fused to one fibroblast by one 80 micros pulse of 1.25 kV/cm. After 1h, the cytoplast-fibroblast pair and another cytoplast were fused and activated simultaneously by one 80 micros pulse of 0.85 kV/cm, and subsequently cultured in cytochalasin B and cycloheximide. The development of reconstructed embryos to the blastocyst stage was in average 21+/-4%, and total blastocyst cell counts were in average 48+/-3. Thus, the combined electrical and chemical activation procedure resulted in efficient blastocyst development in the handmade cloning technique.  相似文献   

2.
Naruse K  Quan YS  Kim BC  Lee JH  Park CS  Jin DI 《Theriogenology》2007,68(5):709-716
To investigate the effects of cycloheximide exposure before electrical activation of in vitro-matured porcine oocytes on the subsequent development of parthenogenetic embryos, cumulus-free mature oocytes were exposed to NCSU-23 medium containing cycloheximide (10 microg/mL) for 0, 5, 10, 20, 30 and 60 min, activated by electrical pulse treatment (1.5 kV/cm, 100 micros) and then cultured in PZM-3 for 7 days. To evaluate the effects of cycloheximide on the activation of nuclear transfer embryos, reconstructed embryos were electrically activated by two DC pulses (1.2 kV/cm, 30 micros) before or after exposure to cycloheximide. The reconstructed embryos were allocated into four groups: electrical pulse treatment alone (Ele); exposure to cycloheximide for 10 min followed by electrical activation (CHX+Ele); electrical activation followed by exposure to cycloheximide for 6h (Ele+CHX); exposure to cycloheximide for 10 min, followed by electrical activation and a further exposure to cycloheximide for 6h (CHX+Ele+CHX). The activated reconstructed embryos were cultured in PZM-3 for 6 days. Oocytes treated with 10 min exposure to cycloheximide followed by electrical activation had a significantly higher percentage of blastocyst formation compared to control oocytes and oocytes exposed for > or =30 min. In the reconstructed embryos, the blastocyst development rates of embryos exposed to cycloheximide (CHX+Ele, Ele+CHX and CHX+Ele+CHX) were significantly higher than those of the control group (Ele). Among the cycloheximide-treated groups, the CHX+Ele group had increased development rate and total blastocyst cell number, though these values were not significantly different from those observed in the other cycloheximide-treated groups. To evaluate the quality of NT embryos treated with cycloheximide, apoptosis in blastocysts was analyzed by TUNEL assay. The 10 min exposure to cycloheximide prior to electrical activation significantly reduced cell death compared with longer exposure to cycloheximide after electrical fusion. In conclusion, brief exposure to cycloheximide prior to electrical activation may increase the subsequent blastocyst development rates in porcine parthenogenetic and reconstructed embryos.  相似文献   

3.
The in vitro developmental potential of porcine nuclear transfer (NT) embryos was evaluated. Oocytes were matured for 42-44 h, and metaphase II-oocytes were enucleated. Fetal fibroblasts infected with the enhanced green fluorescent protein (EGFP) gene were serum-starved for 3-5 days. A single cell was injected into the perivitelline space of the enucleated oocytes. The reconstructed oocytes were allocated to different fusion and activation conditions. In experiment 1, two different fusion/activation conditions were compared: two pulses of 1.2 kV/cm for 30 microsec (group A), or one pulse of 1.6 kV/cm for 30 microsec followed in 30 min by one pulse of 1.2 kV/cm for 30 microsec (group B). Parthenogenetic controls were created by using the group A parameter. The fusion rate in group A (mean +/- SEM, 68.4% +/- 3.9%) was higher (P < 0.05) than in group B (59.4% +/- 2.3%). The rates of cleavage (50.1% +/- 4.6% to 62.8% +/- 5.5%) were not different among control and treatment groups. However, the rate of parthenogenetic control embryos developing to the blastocyst stage (18.1% +/- 3.1%) was higher (P < 0.05) than the rate of NT embryos (5.9% +/- 1.7% and 4.9% +/- 2.5%). In experiment 2, we compared two pulses of 1.2 kV/cm (group C) versus two pulses of 1.3 kV/cm (group D). For two control groups, the same pulses as those given to group C or D, respectively, were supplied. The fusion rate in group D (70.6% +/- 4.2%) was higher (P < 0.05) than in group C (58.9% +/- 2.7%). The cleavage rates were not different among control and treatment groups (58.1% +/- 8.1% to 73.6% +/- 6.0%). However, the rate of embryos developing to the blastocyst stage in group D (3.5% +/- 1.7%) was lower (P < 0.05) than in controls and group C (11.4% +/- 2.0% to 16.4% +/- 1.1%). In experiment 3, we examined whether the presence of cytochalasin B (CB) during donor cell injection affects the development of NT embryos. The fusion rate of oocytes in the group with CB (78.4% +/- 1.4%) was higher (P < 0.05) than in the group without CB (70.9% +/- 0.2%). The cleavage rate of the control group (85.5% +/- 4.9%) was higher (P < 0.05) than those of the treatment groups (61.6% +/- 2.7% and 63.9% +/- 4.3%). However, the rates of embryos developing to the blastocyst stage (8.1% +/- 2.5% to 19.1% +/- 6.0%) and the mean cell number of blastocysts (29.4 +/- 5.2 to 45.7 +/- 6.4) were not different among control and treatment groups. Green fluorescence was observed at all stages in NT embryos. These results indicate that two pulses of 1.2 kV/cm are enough for fusion/activation of NT embryos to develop to the blastocyst stage, and that the presence of CB during donor cell injection is not necessary for early development of NT embryos.  相似文献   

4.
The present study was conducted to determine the effect of electric field strength on the rate of membrane fusion between the somatic cell and cytoplast and on subsequent in vitro development of reconstructed embryos. Additionally, the in vitro developmental competence of cat oocytes artificially activated after 44 h of maturation culture was examined. An efficient fusion rate (64.2%) was obtained by applying a single pulse of 1.5 kV/cm for 50 micros, and the fusion rate remained almost constant at the higher field intensity (59.8 and 54.9% at 1.7 and 2.0 kV/cm, respectively). Although the cleavage rate of fused embryos increased with an increase of the electric field strength, there were no differences among the groups with respect to the proportion of development to the morula and blastocyst stages. In the additional experiment, oocytes at the metaphase II stage after culture for 44 h were activated by the combination of calcium ionophore (CaI) with cycloheximide (CHX). Some (11.8%) of activated oocytes developed to the blastocyst stage. Results from this study indicated that electric field strength affects the rates of fusion and cleavage but has no significant effects on the development to the blastocyst stage of reconstructed embryos. Prolonged maturation culture of cat oocytes (up to 44 h) decreased their ability to develop to the blastocyst stage.  相似文献   

5.
Optimization of parthenogenetic activation protocol in porcine   总被引:10,自引:0,他引:10  
The effects of the electrical field strengths, number of pulses, and post-activation media on chromatin conformation and parthenogenetic development were studied to optimize the activation protocol for porcine nuclear transfer. In experiment 1, electrical field strengths were examined. Oocytes were subjected to square direct current pulses at output voltages of 1.2, 1.7, 2.2, and 2.7 kV/cm for 1 x 30 microsec. The voltage resulting from experiment 1 was 2.2 kV/cm, in which 50.0% of activated oocytes developed to blastocysts in vitro. In experiment 2, the influence of 1, 2, and 3 pulses on blastocyst development was tested using field strengths and post-activation medium described in experiment 1. Oocytes activated by a single 30 microsec pulse of 2.2 kV/cm DC yielded a higher blastocyst rate (56.3%) than oocytes activated by 2 or 3 pulses (<42.5%). In experiment 3 and 4, we investigated the effects of cytochalasin B (CB), cycloheximide (CH), and CB + CH on nuclear development stages and parthenogenetic development following a single 30 microsec pulse of 2.2 kV/cm DC. The percentage of activated oocytes was not different among CB (93.3%), CB + CH (98.3%), control (80.0%), and CH (80.0%) groups 12 hr after activation. Treatment with CB (57.5%) or CB + CH (53.8%) enhanced the blastocyst rate compared with other groups, CH (23.8%) treated- and control group (18.8%). The results demonstrated that a single 30 microsec pulse of 2.2 kV/cm DC followed by culturing in post-activation medium with CB for 5 hr were effective parameters for parthenogenetic activation and blastocyst formation of in vitro matured porcine oocytes which suggests that a single calcium rise is sufficient to activate pig oocytes and to achieve high rate of blastocyst development.  相似文献   

6.
Improvement of canine somatic cell nuclear transfer procedure   总被引:4,自引:0,他引:4  
The purpose of the present study on canine somatic cell nuclear transfer (SCNT) was to evaluate the effects of fusion strength, type of activation, culture media and site of transfer on developmental potential of SCNT embryos. We also examined the potential of enucleated bovine oocytes to serve as cytoplast recipients of canine somatic cells. Firstly, we evaluated the morphological characteristics of in vivo-matured canine oocytes collected by retrograde flushing of the oviducts 72 h after ovulation. Secondly, the effectiveness of three electrical strengths (1.8, 2.3 and 3.3 kV/cm), used twice for 20 micros, on fusion of canine cytoplasts with somatic cells were compared. Then, we compared: (1) chemical versus electrical activation (a) after parthenogenetic activation or (b) after reconstruction of canine oocytes with somatic cells; (2) culture of resulting intergeneric (IG) embryos in either (a) mSOF or (b) TCM-199. The exposure time to 6-DMAP was standardized by using bovine oocytes reconstructed with canine somatic cells. Bovine oocytes were used for SCNT after a 22 h in vitro maturation interval. The fusion rate was significantly higher in the 3.3 kV/cm group than in the 1.8 and 2.3 kV/cm treatment groups. After parthenogenesis or SCNT with chemical activation, 3.4 and 5.8%, respectively, of the embryos developed to the morula stage, as compared to none of the embryos produced using electrical activation. Later developmental stages (8-16 cells) were transferred to the uterine horn of eight recipients, but no pregnancy was detected. However, IG cloned embryos (bovine cytoplast/canine somatic cell) were capable of in vitro blastocyst development. In vitro developmental competence of IG cloned embryos was improved after exposure to 6-DMAP for 4 h as compared to 0, 2 or 6h exposure, although the increase was not significantly different among culture media. In summary, for production of canine SCNT embryos, we recommend fusion at 3.3 kV/cm, chemical activation, culture in mSOF medium and transfer of presumptive zygotes to the oviduct of recipient animals. The feasibility of IG production of cloned canine embryos using bovine cytoplasts as recipient of canine somatic cells was demonstrated.  相似文献   

7.
Tetraploid bovine blastocysts were produced experimentally by electrofusion of in vitro matured and fertilized, zona-enclosed two-cell embryos (33-35 hr after initiation of sperm-egg incubation) using three fusion protocols. Field strengths of 1.0, 1.4, and 2.4 kV/cm were tested and the rate of fusion, subsequent cleavage, and blastocyst development were measured for each. High rates of fusion (76.5% +/- 2.8%), cleavage (72.5% +/- 7.4%) and blastocyst development (56.1% +/- 6.4%) were achieved with the application of 1. 4 kV/cm as a single 100-microseconds pulse. Embryos were scored 30 and 60 min after stimulation for fusion. No time effect for fusion, cleavage, or blastocyst development was observed. Chromosome preparations of day 7 blastocysts revealed 12.5% of fused embryos were tetraploid. This is a significant increase from that found in nonfused embryos where spontaneous tetraploidy did not occur. An electrical stimulus of 1.0 kV/cm applied as two 50-microseconds pulses produced significantly less one-cell embryos (64.2% +/- 3.0%) compared to 1.4 kV/cm while cleavage (79.9% +/- 3.4) and blastocyst development (44.6% +/- 4.0%) were not different from that for unexposed control embryos (89.5% +/- 2.3% and 57.2% +/- 3.2%, respectively). Embryos fused at 2.4 kV/cm applied as a single 30-microseconds pulse (69.7% +/- 5.7%) showed significantly lower cleavage (72.1% +/- 3.7%) and blastocyst rates (40.2% +/- 4.6%) compared to the unexposed control.  相似文献   

8.
This work was undertaken in order to study the developmental competence of nuclear transfer feline embryos with regard to the recipient-cytoplast's age and type of somatic cells used as donor nuclei. Oocytes were recovered by mincing the ovaries in HEPES-buffered TCM-199. Selected cumulus-oocyte complexes (COCs) with compact cumulus cell mass and a dark, homogenous ooplasm were cultured for maturation in the modified medium TC-199 for 24, 35, and 43 h, and after enucleation were used as a source of recipient cytoplasts for exogenous somatic nuclei. Two experiments were carried out. In Experiment 1, the source of recipient cytoplasts was oocytes matured in vitro for 24 h (Group 1), 35 h (Group 2), and 43 h (Group 3), while the source of donor nuclei was cycling fetal fibroblasts. Somatic cell-cytoplast complexes (SC-CCs) were fused electrically by double DC pulses of 2.0 kV/cm for 15 micros. The reconstructed embryos were cultured in B2 medium for 72 h after NT, then co-cultured with BRL cells in the same medium supplemented with 10% FBS at 38.5 degrees C under 5% CO2 in air. In Groups 1, 2, and 3, the fusion rates were 71.4 (25/35), 74.6 (47/63), and 57.5% (46/80), respectively. The cleavage rates in Groups 1, 2, and 3 were 80.0 (20/25), 55.3 (26/47), and 60.8% (28/46), respectively. The development to morula and blastocyst stages was higher in Groups 1 and 2 compared to Group 3 (morula stage 14/25 (56.0%), 16/47 (34.0%), and 13/46 (28.2%); blastocyst stage 2/20 (8.0%), 4/47, (8.5%), and 0/46, respectively). In Experiment 2, the oocytes matured for 24-35 h were used as a source of recipient cytoplasts and cycling fetal fibroblasts and cumulus cells derived from mature COCs were used as a source of donor nuclei. The fusion rates were 115/193 (59.6%) versus 65/143 (45.4%) for fetal fibroblasts and cumulus cells, respectively. The cleavage rate was 72/115 (62.6%) versus 48/65 (73.8%), and the development to blastocyst stage 6/115 (5.2%) versus 5/65 (7.7%), for fetal fibroblast and cumulus cells, respectively. In conclusion, a prolonged maturation period of cat oocytes decreases developmental competence of reconstructed embryos, especially the ability to reach the blastocyst stage. The in vitro development of reconstructed embryos with either nuclei of fetal fibroblasts or cumulus cells was at approximately the same level.  相似文献   

9.
The objective of this study was to optimize intracytoplasmic sperm injection (ICSI), and to assess the effects of membrane-damaged sperm on development of porcine oocytes following ICSI. For optimization of development following the ICSI process, sperm injected oocytes were activated 0.5-1.0 hr after ICSI with 1 x 30 micros pulse of 1.2, 1.7, 2.2, and 2.7 kV/cm DC in experiment 1. After 7-days of culture ICSI oocytes activated with [x1]2.2 kV/cm produced more blastocyts ([x2]34.4%, P < 0.05) than other treatment groups. In experiment 2, oocytes were activated with 1 x 30 micros pulse of 2.2 kV/cm at either 0, 1.5, 3, or 6 hr after ICSI. Oocytes activated 1.5 hr after [x3]ICSI yielded more blastocysts (27.6%)[M4] than in other treatments. In experiment 3, sperm were briefly exposed to 0.1% Triton X-100 to induce membrane damage. Live-dead staining of Percoll-sorted untreated spermatozoa (frozen-thawed) used in this study showed that over 96% were "alive" whereas none were "alive" after Triton X-100 treatment. The rate of development to blastocyst of oocytes injected with Triton X-100 treated sperm combined with electrical activation (EA) at 1 x 30 micros pulse of 2.2 kV/cm (EA, 40.0%) was the best, when compared with those injected with untreated sperm plus EA (P < 0.05). In experiment 4, the development rate of oocytes to the blastocyst stage ([x5]32.1%) following injection of a sperm head only was not significantly different from that of oocytes injected with whole sperm (31.0%). In conclusion, we found that an intact membrane and tail structures of pig spermatozoa are not essential for embryo development by ICSI, and furthermore, dead porcine spermatozoa, at an early stage of necrosis caused by plasma membrane damage, support better embryo development than do live non-damaged sperm.  相似文献   

10.
The present study was undertaken to find suitable conditions for blastomere fusion of mouse two- and four-cell embryos using the electrofusion method to simplify the nuclear transfer procedure. Single blastomeres of ICR and F1 (C57BL/6J x CBA/N) two-cell embryos or ICR four-cell embryos and F1 two-cell embryos were paired and treated with electric stimulus under different fusion conditions. Two hours after electrofusion treatment, the fused blastomere pairs were encapsulated in alginate gel and cultured for 96 hours to observe their developmental potential. When the single blastomere pairs of two-cell embryos were exposed to electric pulses of 1.0, 1.5 and 2.0 kV/cm for 30, 60 and 90 mu sec, high fusion rates were obtained (84.6 to 100%). However, when two-cell blastomere were paired with four-cell blastomere and then treated under the same conditions, the fusion rates (27.5 to 87.5%) were lower than that of single blastomere pairs of two-cell embryos regardless of the duration and strength of the d.c. pulses. The blastocyst developmental rate after in vitro culture of the fused blastomere pairs of two-cell embryos using the above electrofusion conditions was high (81.8 to 100%). Lower blastocyst developmental rates were obtained on the fused blastomere pairs of two- and four-cell embryos (46.4 to 76.2%). Based on the results of this study, a pulse duration of 60 mu sec and a pulse strength of 1.0kV/cm were the most suitable conditions for single blastomere pair fusion of two-cell or two- and four-cell embryos. The study further showed that alginate gel is a good substitute for zonae pellucidae for encapsulating zona-free embryos.  相似文献   

11.
The aim of the present investigation was to find out the effects of roscovitine treatment of donor cells and different activation methods on development of HMC goat embryos. Goat fetal fibroblast cells were cultured and divided into three treatment groups—contact inhibition group, roscovitine treatment group and serum starvation group. There was a significant decrease in blastocyst yield in serum starvation group (6.82%) compared to roscovitine treatment group (19.31%) and contact inhibition group (18.52%), however, no significant difference was found between roscovitine treatment group and contact inhibition group. To see the effect of different methods of activation, the reconstructed embryos were randomly divided into two groups and activated by two methods—one half by 2 μM Ca ionophore and another half by 2.31 kV/cm for 15 μSec electrical pulse. Subsequently, cloned embryos were cultured in TCM-199 based embryo development medium supplemented with 10 mg/mL bovine serum albumin in WOW culture system. There was a significant increase in the rate of cleavage and blastocyst production in electric pulse activation of 78.57% and 21.43% than Ca ionophore activation of 62.63% and 10.61% respectively. In conclusion, treatment of donor cells with roscovitine yields a significantly increased blastocyst than serum starved donor cells but equivalent blastocyst to contact inhibition group and electrical pulse activation (EPA) improves the production of HMC goat embryos.  相似文献   

12.
The present study examined the effect of elevated Ca(2+) concentration in fusion/activation medium on the fusion and development of fetal fibroblast nuclear transfer (NT) porcine embryos. Frozen-thawed and serum starved fetal fibroblasts were transferred into the perivitelline space of enucleated oocytes. Cell fusion and activation were induced simultaneously with electric pulses in 0.3 M mannitol-based medium containing 0.1 or 1.0 mM CaCl(2). Some fused embryos were further activated 1 hr after the fusion treatment by exposure to an electric pulse. The NT embryos were cultured in vitro for 6 days. Fusion and blastocyst formation rates were significantly (P<0.05) increased by increasing the Ca(2+) concentration from 0.1 mM (67.1 and 6.3%) to 1.0 mM (84.7 and 15.8%). However, no difference in the number of cells in blastocysts was observed between the two groups. A higher percentage of blastocyst was also observed when control oocytes were parthenogenetically activated in the presence of elevated Ca(2+) (19.3% vs. 32.4%, P<0.05). When the reconstituted oocytes were fused in the medium containing 1.0 mM CaCl(2), increasing the number of pulses from 2 to 3 or an additional activation treatment did not enhance the blastocyst formation rate or cell number in blastocysts. These results demonstrate that increasing the Ca(2+) concentration in the fusion/activation medium can enhance the fusion and blastocyst formation rates of fetal fibroblast NT porcine embryos without an additional activation treatment.  相似文献   

13.
Development of bovine embryos derived from in vitro-matured/in vitro-fertilized (IVM/IVF) oocytes was examined in two culture media: hamster embryo culture medium (HECM), a relatively simple, chemically defined, protein-free medium containing 20 amino acids; and tissue culture medium (TCM)-199, a more complex medium designed for culture of somatic cells. The first experiment studied (1) effects of glucose and/or phosphate (Pi) using HECM and (2) the development of bovine IVM/IVF embryos in four different conditions: HECM, TCM-199, TCM-199 + 10% unheated bovine calf serum (BCS), and oviduct cell-conditioned TCM-199 + 10% BCS. After IVF, 45% of the inseminated oocytes developed to the morula/blastocyst stages (M&B) when cultured in HECM; blastocyst development was depressed in the presence of glucose and Pi when compared to Pi alone. When the four culture conditions were compared, there was no significant difference in M&B development (42-51% of inseminated oocytes). However, blastocyst development in TCM-199 supplemented with 10% BCS (29.7%) or with BCS + oviduct cell-conditioned medium (21.6%) was significantly greater than in nonsupplemented HECM (9.7%) or TCM-199 (13.8%). In the second experiment, the effects of serum supplementation and/or oviduct cell conditioning on HECM and TCM-199 were examined in a 2 x 2 x 2 factorial experiment. Oviduct cell conditioning of either HECM or TCM-199 without serum supplementation did not enhance bovine embryo development. Serum supplementation exhibited a biphasic effect, with inhibition at the first cleavage and stimulation of morula compaction and blastocyst formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The rabbit was used as a model for nuclear transfer. A critical step in nuclear transfer is oocyte activation, which was evaluated in this research. Optimal field strength of an electric stimulus for activation was examined. A significantly higher activation rate in all criteria tested was achieved when oocytes were activated electrically with a field strength of 2.4 kV/cm versus 1.2 or 1.8 kV/cm. Also, electrical stimulation with combined alternating current (AC) and direct current (DC) was superior to DC stimulation alone for activation. In another study involving 586 oocytes, exposure of oocytes to cytochalasin B for 1 h followed by activation with electrical stimulation significantly improved development of the oocytes to blastocyst stage compared to oocytes without cytochalasin B pre-exposure (38% vs 26%, p less than 0.05). Cytochalasin B exposure alone (control), however, had no effect on activation. Exposing oocytes to activation medium without electrical stimulation also activated some oocytes. In the nuclear transfer experiment, blastomeres from 8-cell embryos cultured for 20-24 h to the 32-64-cell stage were used as nuclear donor cells. Of 491 oocytes used, 459 (93%) survived the enucleation and fusion procedure, 370 (81%) fused, and 284 (77%) developed into 2-4-cell embryos. A total of 243 of these 2-4-cell embryos were transferred to 15 pseudopregnant recipients and produced 8 young (3%). Although the efficiency is low, this study demonstrated that rabbit morulae cultured for 20-24 h to the 32-64-cell stage as nuclear donors for transfer remain totipotent.  相似文献   

15.
This study investigated the effect of treatment with 6-dimethylaminopurine (6-DMAP) following fusion on in vitro development of porcine nuclear transfer (NT) embryos. Frozen thawed ear skin cells were transferred into the perivitelline space of enucleated oocytes. Reconstructed oocytes were fused and activated with electric pulse in 0.3 M mannitol supplemented with either 0.1 or 1.0 mM CaCl(2). In each calcium concentration, activated oocytes were divided into three groups. Two groups of them were exposed to either ionomycin (I + 6-DMAP or 6-DMAP alone. In experiment 2, fused NT embryos in 0.3 M mannitol containing 1.0 mM CaCl(2) were exposed to 6-DMAP either immediately or 20 min after fusion/activation. For 0.1 mM CaCl(2), oocytes activated with either I + 6-DMAP or 6-DMAP alone showed a higher (P < 0.05) developmental rate to the blastocyst stage than those activated with an electric pulse alone (26.7 and 22.5 vs. 12.5%). For 1.0 mM CaCl(2), oocytes activated with either I + 6-DMAP or 6-DMAP alone showed significantly higher (P < 0.05) developmental rate to the blastocyst stage (35.6 and 28.3 vs. 19.8%). Developmental rate to the blastocyst stage was (P < 0.05) increased in NT embryos activated with 6-DMAP 20 min after fusion. 6-DMAP made a higher and wider Ca(2+) transient compared to that induced by electric pulses (Fig. 3). The fluctuation lasted during the time that oocytes were cultured in 6-DMAP. Regardless of Ca(2+) concentration in fusion medium, activation with 6-DMAP following electric pulses supported more development of porcine NT embryos. Activation of NT embryos with 6-DMAP after fusion in the presence of 1.0 mM CaCl(2) could support better developmental rate to the blastocyst stage.  相似文献   

16.
The viability of SCNT embryos is poor, with an extremely low cloned piglet production rate. In the present work, we studied the effect of three activation protocols based on ionomycin treatment (5 microM ionomycin for 5 min and incubated in 2 mM 6-DMAP for 3.5 h) or electric stimuli (two square wave electrical DC pulses of 1.2 kV/cm for 30 micros) combined or not with 6-DMAP on parthenogenetic embryo development. Oocytes activated by ionomycin plus 6-DMAP showed lower cleavage (47.2 vs. 78.5-81.5; p < 0.05) and blastocyst rates (11.3 vs. 29.2-32.1; p < 0.05) than those activated by electrical and electrical plus 6-DMAP treatments. Also, we studied the effect of addition of serum to maturation medium (0% vs. 10%) on nuclear maturation and further parthenogenetic and SCNT embryo development. We observed in the parthenogenetic embryos that cleavage rates in the serum-free group were significantly higher than in the serum-supplemented group (81.8 vs. 69.6% respectively; p < 0.05), although these differences were not detected in blastocyst rates or blastocyst nuclei numbers. Regarding SCNT embryos, no significant differences were observed in cleavage or blastocyst rates between different experimental groups of SCNT embryos. In conclusion, electrical pulse followed or not by 6-DMAP was found to be an efficient procedure to artificially activate MII porcine oocytes. Moreover, the addition of serum to oocyte maturation media did not seem to improve parthenogenetic or SCNT porcine embryo development.  相似文献   

17.
The present study was conducted to establish a porcine cell line from blastocysts produced in vitro and to examine the developmental ability of nuclear transfer embryos reconstituted with the cells and enucleated mature oocytes. When hatched blastocysts were cultured in Dulbecco's modified Eagle's medium with supplements, no colonies of embryo-derived cells were observed. In contrast, 56% of embryos that were attached to feeder layers of STO cells formed colonies in NCSU-23 with supplements. When the colonies were subcultured in the absence of feeder cells, a cell line with an epithelial-like cell morphology was obtained. This cell morphology was stable up to at least passage 30. Although no fused embryos were observed when a pulse of 100 V/mm was applied, the fusion rate increased significantly at 150 V/mm (28%) and 200 V/mm (64%). At 200 V/mm, 39% of fused embryos cleaved, but no embryos developed beyond the 3-cell stage. When cocultured with electro-activated oocytes, percentages of reconstructed embryos cleaved (65%) and developed to the 4-cell stage (23%) were significantly higher than percentages for those (cleavage: 38%; 4-cell stage: 3%) in the absence of activated oocytes. At 7 days after culture, one reconstructed embryo successfully developed to the blastocyst stage in the presence of activated oocytes. When green fluorescent protein-expressing cells and enucleated oocytes were fused and the fused embryos were cultured with electro-activated oocytes, 3 of 102 reconstructed embryos developed to the blastocyst stage. All of the blastocysts were positive for fluorescent green under ultraviolet light. The results of the present study indicate that a porcine cell line can be established from the hatched blastocyst and maintained in vitro for a long period, and that reconstructed embryos obtained by transferring the blastocyst-derived cells into enucleated oocytes have the ability to develop to the blastocyst stage in vitro.  相似文献   

18.
Hyun SH  Lee GS  Kim DY  Kim HS  Lee SH  Kim S  Lee ES  Lim JM  Kang SK  Lee BC  Hwang WS 《Theriogenology》2003,59(7):1641-1649
In order to develop a culture system and recipient cytoplasm that could improve the developmental competence of somatic cell nuclear transfer (SCNT) embryos for successful cloning of pigs, we evaluated the effect of donor oocytes and in vitro maturation (IVM) media on maturation of oocytes and developmental competence of SCNT embryos. In Experiment 1, oocytes derived from sows or gilts were matured in two IVM media (TCM-199 versus NCSU-23) and maturation of oocytes was evaluated by the status of chromatin configuration, the diameter of matured oocytes, the thickness of the zona pellucida, and the size of the perivitelline space (PVS). Sow oocytes matured in TCM-199 (S-TCM group) and NCSU-23 (S-NCSU group) showed significantly higher (P<0.05) maturation rates (S-TCM and S-NSCU, 86+/-4 and 82+/-4%, respectively) when evaluated by metaphase-II status than the gilt oocytes matured in TCM-199 (G-TCM group, 71+/-3%) and in NCSU-23 (G-NCSU-23 group, 71+/-3%). Oocyte diameter, the thickness of the zona pellucida, and the perivitelline space of sow oocytes (S-TCM and S-NCSU) were larger than those of gilt oocytes (G-TCM and G-NCSU) after IVM (P<0.05). In Experiment 2, SCNT was performed, using in vitro-matured oocytes from each group as recipient cytoplasm and porcine fetal fibroblasts as karyoplasts. The reconstructed embryos were electrically fused and activated, and cleavage and blastocyst formation were monitored under a stereomicroscope. The total cell number of flattened blastocysts stained with 5 microM bisbenzimide on day 7 were counted. In addition, in vitro matured non-enucleated oocytes were also electrically activated (parthenogenetic activation) and pronuclear formation was monitored. No difference in pronuclear formation rate after parthenogenetic activation and fusion rate after SCNT was observed among experimental groups. A significantly higher cleavage rate (P<0.05) was observed in S-TCM (69+/-4%) when compared with only G-NCSU (58+/-4%), but not with G-TCM (60+/-4%) or S-NCSU (68+/-4%). The rate of blastocyst formation was significantly higher (P<0.05) in sow oocytes (24% in S-TCM and S-NCSU), when compared to that observed in G-TCM (15%), and G-NCSU (14%). When the same source of oocytes was used, there was no significant difference in rate of blastocyst formation in the two culture media. Total cell number of blastocysts were not significantly different among experimental groups. In conclusion, the present study clearly demonstrated that sow oocytes have a greater developmental competence than gilt oocytes, regardless of the maturation medium examined.  相似文献   

19.
In vitro culture and mtDNA fate of ibex-rabbit nuclear transfer embryos   总被引:4,自引:0,他引:4  
Rabbit oocyte can be used as the recipient in interspecies somatic cell nuclear transfer (iSCNT). This work was undertaken in order to study the developmental competence of Capra ibex somatic cells reprogrammed by rabbit oocytes and the fate of mitochondria in iSCNT embryos. Metaphase II (MII) oocytes from superovulated rabbit were used as nuclear recipients. The nuclear donors were Capra ibex somatic cells with different proliferative status: population doubling time (PDL) = 15 +/- 2 (group 1), 35 +/- 2 (group 2), 55 +/- 2 (group 3) and 70 +/- 2 (group 4). Oocytes reconstructed with electrical pulses (2.1kV/cm, 10 micros, 2 times) were activated (1.4kV, 20 micros, 2 times) and then cultured in Medium199 containing 10% fetal bovine serum at 38.5 degrees C, 5% CO2 in air. In groups 1, 2, 3 and 4, the fusion rates were 35.83%, 66.03%, 65.40% and 35.35%, respectively. Similar cleavage rates were observed among the four groups. However, the developmental potential to morula/blastocyst from early nuclear donor embryos (16.42%/10.45%) was significantly higher (p < 0.05) than in terminal donor embryos (9.52%/3.81%). Polymerase chain reaction analysis of the mitochondrial (mt) DNA cytb gene demonstrated that mtDNAs from ibex and rabbit could be detected at various developmental stages before implantation. In conclusion, our results provide some original information about rescuing Capra ibex using the iSCNT technique. These results indicate that: (1) enucleated rabbit oocytes make Capra ibex fibroblast nuclei reprogramme; (2) the proliferative status of donor cells affects the efficiency of iSCNT; and (3) rabbit ooplasm rescues the donor-derived mtDNAs, resulting in mtDNA heteroplasmy before implantation.  相似文献   

20.
We studied electrofusion of mouse two-cell embryos in order to define parameters which would result in a high yield of fused embryos. Various cell alignment times (from <10 to >60 s) and alternating current percentages (2 to 100%) were examined. The fusion parameters tested were the number of fusion pulses (1-9), pulse length (30-90 mus) and pulse strength (0.50-1.79 kV/cm). Furthermore different combinations of these three parameters were tested. In addition the influence of several embryo culture media on the fusion rates was examined. The results show that the fusion rate of the embryos increases with shorter alignment and higher percentages of the alternating current. The highest fusion rate (95%) was obtained by use of one pulse with a duration of 70 mus and a field strength of 0.60-0.79 kV/cm. The survival rate of the embryos was best if Whitten Medium was used before and after the fusion pulses. The fusion of two-cell stages results in tetraploid embryos which can serve as models for studies in polyploid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号