首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
gltBDF operon of Escherichia coli.   总被引:14,自引:10,他引:4       下载免费PDF全文
A 2.0-kilobase DNA fragment carrying antibiotic resistance markers was inserted into the gltB gene of Escherichia coli previously cloned in a multicopy plasmid. Replacement of the chromosomal gltB+ gene by the gltB225::omega mutation led to cells unable to synthesize glutamate synthase, utilize growth rate-limiting nitrogen sources, or derepress their glutamine synthetase. The existence of a gltBDF operon encoding the large (gltB) and small (gltD) subunits of glutamate synthase and a regulatory peptide (gltF) at 69 min of the E. coli linkage map was deduced from complementation analysis. A plasmid carrying the entire gltB+D+F+ operon complemented cells for all three of the mutant phenotypes associated with the polar gltB225::omega mutation in the chromosome. By contrast, plasmids carrying gltB+ only complemented cells for glutamate synthase activity. A major tricistronic mRNA molecule was detected from Northern (RNA blot) DNA-RNA hybridization experiments with DNA probes containing single genes of the operon. A 30,200-dalton polypeptide was identified as the gltF product, the lack of which was responsible for the inability of cells to use nitrogen-limiting sources associated with gltB225::omega.  相似文献   

2.
Nucleotide sequence of the Acinetobacter calcoaceticus trpGDC gene cluster   总被引:9,自引:0,他引:9  
A plasmid library of Acinetobacter calcoaceticus HindIII fragments was constructed, and clones that complemented an Escherichia coli pabA mutant were selected. Plasmids containing a 3.9-kb fragment of A. calcoaceticus DNA that also complemented E. coli trpD and trpC-(trpF+) mutants were obtained. We infer that complementation of E. coli pabA mutants was the result of the expression of the amphibolic anthranilate- synthase/p-aminobenzoate-synthase glutamine-amidotransferase gene and that the plasmid insert carried the entire trpGDC gene cluster. In E. coli minicells, the plasmid insert directed the synthesis of polypeptides of 44,000, 33,000, and 20,000 daltons, molecular masses that are consistent with the reported molecular masses of phosphoribosylanthranilate transferase, indoleglycerol-phosphate synthase, and anthranilate-synthase component II, respectively. A 3,105- bp nucleotide sequence was determined. Comparison of the A. calcoaceticus trpGDC sequences with other known trp gene sequences has allowed insight into (1) the evolution of the amphibolic trpG gene, (2) varied strategies for coordinate expression of trp genes, and (3) mechanisms of gene fusions in the trp operon.   相似文献   

3.
Three mutations in the Arabidopsis thaliana gene encoding the alpha subunit of tryptophan synthase were isolated by selection for resistance to 5-methylanthranilate or 5-fluoroindole, toxic analogs of tryptophan pathway intermediates. Plants homozygous for trp3-1 and trp3-2 are light-conditional tryptophan auxotrophs, while trp3-100 is a more leaky mutant. Genetic complementation crosses demonstrated that the three mutations are allelic to each other, and define a new complementation group. All three mutants have decreased steady-state levels of tryptophan synthase alpha protein, and the trp3-100 polypeptide exhibits altered electrophoretic mobility. All three mutations were shown to be in the TSA1 (tryptophan synthase alpha subunit) structural gene by several criteria. Firstly, the trp3-1 mutation is linked to TSA1 on the bottom of chromosome 3. Secondly, the trp3-1 mutation was complemented when transformed with the wild-type TSA1 gene. Finally, DNA sequence analysis of the TSA1 gene revealed a single transition mutation in each trp3 mutant.  相似文献   

4.
 Three mutations in the Arabidopsis thaliana gene encoding the alpha subunit of tryptophan synthase were isolated by selection for resistance to 5-methylanthranilate or 5-fluoroindole, toxic analogs of tryptophan pathway intermediates. Plants homozygous for trp3-1 and trp3-2 are light-conditional tryptophan auxotrophs, while trp3-100 is a more leaky mutant. Genetic complementation crosses demonstrated that the three mutations are allelic to each other, and define a new complementation group. All three mutants have decreased steady-state levels of tryptophan synthase alpha protein, and the trp3-100 polypeptide exhibits altered electrophoretic mobility. All three mutations were shown to be in the TSA1 (tryptophan synthase alpha subunit) structural gene by several criteria. Firstly, the trp3-1 mutation is linked to TSA1 on the bottom of chromosome 3. Secondly, the trp3-1 mutation was complemented when transformed with the wild-type TSA1 gene. Finally, DNA sequence analysis of the TSA1 gene revealed a single transition mutation in each trp3 mutant. Received: 28 May 1996 / Accepted: 19 June 1996  相似文献   

5.
Several cosmid clones from Streptomyces ambofaciens containing the spiramycin resistance gene srmB were introduced into S. fradiae PM73, a mutant defective in tylosin synthesis, resulting in tylosin synthesis. The DNA responsible for this complementation was localized to a 10.5-kilobase EcoRI fragment. A 32-kilobase DNA segment which included the srmB spiramycin resistance gene and DNA which complemented the defect in strain PM73 were mutagenized in vivo with Tn10 carrying the gene for Nmr (which is expressed in Streptomyces spp.) or in vitro by insertional mutagenesis with a drug resistance gene (Nmr) cassette. When these mutagenized DNA segments were crossed into the S. ambofaciens chromosome, three mutant classes blocked in spiramycin synthesis were obtained. One mutant accumulated two precursors of spiramycin, platenolide I and platenolide II. Two mutants, when cofermented with the platenolide-accumulating mutant, produced spiramycin. Tylactone supplementation of these two mutants resulted in the synthesis of a group of compounds exhibiting antibiotic activity. Two other mutants failed to coferment with any of the other mutants or to respond to tylactone supplementation.  相似文献   

6.
Using pBR322 as a vector, we cloned a 5.95-kilobase fragment of the Rac prophage together with 1.70 kilobases of a flanking Escherichia coli chromosome sequence. The resulting plasmid (pRAC1) was unable to suppress the mitomycin and UV sensitivity and recombination deficiency of a recB21 recC22 strain. Five spontaneous mitomycin-resistant derivatives contained deletion mutant plasmids. These plasmids also suppressed the UV sensitivity and recombination deficiency of their recB21 recC22 hosts. All five deletions were contained within a 2.45-kilobase EcoRI-to-HindIII segment of the plasmid. By substituting the corresponding 2.45-kilobase EcoRI-toHindIII fragments of Rac prophage isolated from sbcA+, sbcA6, and sbcA23 strains for the shortened segment of one of the deletion mutant plasmids, we were able to show that sbcA mutations map in this region. Also in this region is the site (or closely linked sites) at which previous studies had shown that insertion of Tn5 and IS50 leads to suppression of recB21 recC22. The sequence in this region that must be altered or circumvented to allow suppression is discussed. Also presented are data correlating the expression of nuclease activity with the degree of suppression.  相似文献   

7.
Transposon (Tn5) mutagenesis was applied to Pseudomonas putida GR12-2R3, which promotes root elongation (a phenotype designated Pre) of Brassica campestris under gnotobiotic conditions. Of 3,000 Tn5 transconjugants, only one mutant that lost Pre activity but remained prototrophic and capable of plant root colonization was detected. This mutant was complemented by plasmid pRE53, which contained a 15.0-kilobase DNA insert isolated from a parental strain. The complemented mutant regained full Pre activity comparable to that of the wild type.  相似文献   

8.
The phytohormone indole-3-acetic acid (IAA) plays a vital role in plant growth and development as a regulator of numerous biological processes. Its biosynthetic pathways have been studied for decades. Recent genetic and in vitro labeling evidence indicates that IAA in Arabidopsis thaliana and other plants is primarily synthesized from a precursor that is an intermediate in the tryptophan (Trp) biosynthetic pathway. To determine which intermediate(s) acts as the possible branchpoint for the Trp-independent IAA biosynthesis in plants, we took an in vivo approach by generating antisense indole-3-glycerol phosphate synthase (IGS) RNA transgenic plants and using available Arabidopsis Trp biosynthetic pathway mutants trp2-1 and trp3-1. Antisense transgenic plants display some auxin deficient-like phenotypes including small rosettes and reduced fertility. Protein gel blot analysis indicated that IGS expression was greatly reduced in the antisense lines. Quantitative analyses of IAA and Trp content in antisense IGS transgenic plants and Trp biosynthetic mutants revealed striking differences. Compared with wild-type plants, the Trp content in all the transgenic and mutant plants decreased significantly. However, total IAA levels were significantly decreased in antisense IGS transgenic plants, but remarkably increased in trp3-1 and trp2-1 plants. These results suggest that indole-3-glycerol phosphate (IGP) in the Arabidopsis Trp biosynthetic pathway serves as a branchpoint compound in the Trp-independent IAA de novo biosynthetic pathway.  相似文献   

9.
For the purpose of studying the production of L-tryptophan by Escherichia coli, the deletion mutants of the trp operon (trpAE1) were transformed with mutant plasmids carrying the trp operon whose anthranilate synthase and phosphoribosyl anthranilate transferase (anthranilate aggregate), respectively, had been desensitized to tryptophan inhibition. In addition to release of the anthranilate aggregate from the feedback inhibition required for plasmids such as pSC101 trp.I15, the properties of trp repression (trpR) and tryptophanase deficiency (tnaA) were both indispensable for host strains such as strain Tna (trpAE1 trpR tnaA). The gene dosage effects on tryptophan synthase activities and on production of tryptophan were assessed. A moderate plasmid copy number, approximately five per chromosome, was optimal for tryptophan production. Similarly, an appropriate release of the anthranilate aggregate from feedback inhibition was also a necessary step to ward off the metabolic anomaly. If the mutant plasmid pSC101 trp-I15 was further mutagenized (pSC101 trp.I15.14) and then transferred to Tna cells, an effective enhancement of tryptophan production was achieved. Although further improvement of the host-plasmid system is needed before commercial production of tryptophan can be realized by this means, a promising step toward this goal has been established.  相似文献   

10.
Saccharomyces cerevisiae anthranilate synthase:indole-3-glycerol phosphate synthase is a multifunctional hetero-oligomeric enzyme encoded by genes TRP2 and TRP3. TRP2, encoding anthranilate synthase Component I, was cloned by complementation of a yeast trp2 mutant. The nucleotide sequence of TRP2 as well as that of TRP3 were determined. The deduced anthranilate synthase Component I primary structure from yeast exhibits only limited similarity to that of the corresponding Escherichia coli subunit encoded by trpE. On the other hand, yeast anthranilate synthase Component II and indole-3-glycerol phosphate synthase amino acid sequences from TRP3 are clearly homologous with the corresponding sequences of the E. coli trpG and trpC polypeptide segments and thereby establish the bifunctional structure of TRP3 protein. Based on comparisons of TRP3 amino acid sequence with homologous sequences from E. coli and Neurospora crassa, an 11-amino acid residue connecting segment was identified which fuses the trpG and trpC functions of the bifunctional TRP3 protein chain. These comparisons support the conclusion that the amino acid sequence of connectors in homologous multifunctional enzymes need not be conserved. Connector function is thus not dependent on a specific sequence. Nuclease S1 mapping was used to identify mRNA 5' termini. Heterogeneous 5' termini were found for both TRP2 and TRP3 mRNA. TRP2 and TRP3 5'-flanking regions were analyzed for sequences that might function in regulation of these genes by the S. cerevisiae general amino acid control system. The 9 base pair direct repeat (Hinnebusch, A.G., and Fink, G.R. (1983) J. Biol. Chem. 258, 5238-5247) and inverted repeats were identified in the 5'-flanking sequences of TRP2 and TRP3.  相似文献   

11.
The abilities of 14 tryptophan analogs to repress the tryptophan (trp) operon have been studied in Escherichia coli cells derepressed by incubation with 0.25 mM indole-3-propionic acid (IPA). trp operon expression was monitored by measuring the specific activities of anthranilate synthase (EC 4.1.3.27) and the tryptophan synthase (EC 4.2.1.20) beta subunit. Analogs characterized by modification or removal of the alpha-amino group or the alpha-carboxyl group did not repress the trp operon. The only analogs among this group that appeared to interact with the trp aporepressor were IPA, which derepressed the trp operon, and d-tryptophan. Analogs with modifications of the indole ring repressed the trp operon to various degrees. 7-Methyl-tryptophan inhibited anthranilate synthase activity and consequently derepressed the trp operon. Additionally, 7-methyltryptophan prevented IPA-mediated derepression but, unlike tryptophan, did so in a non-coordinate manner, with the later enzymes of the operon being relatively more repressed than the early enzymes. The effect of 7-methyltryptophan on IPA-mediated derepression was likely not due to the interaction of IPA with the allosteric site of anthranilate synthase, even though feedback-resistant mutants of anthranilate synthase were partially resistant to derepression by IPA. The effect of 7-methyltryptophan on derepression by IPA was probably due to the effect of the analog-aporepressor complex on trp operon expression.  相似文献   

12.
13.
An str gene cluster containing at least four genes (strR, strA, strB, and strC) involved in streptomycin biosynthesis or streptomycin resistance or both was self-cloned in Streptomyces griseus by using plasmid pOA154. The strA gene was verified to encode streptomycin 6-phosphotransferase, a streptomycin resistance factor in S. griseus, by examining the gene product expressed in Escherichia coli. The other three genes were determined by complementation tests with streptomycin-nonproducing mutants whose biochemical lesions were clearly identified. strR complemented streptomycin-sensitive mutant SM196 which exhibited impaired activity of both streptomycin 6-phosphotransferase and amidinotransferase (one of the streptomycin biosynthetic enzymes) due to a regulatory mutation; strB complemented strain SD141, which was specifically deficient in amidinotransferase; and strC complemented strain SD245, which was deficient in linkage between streptidine 6-phosphate and dihydrostreptose. By deletion analysis of plasmids with appropriate restriction endonucleases, the order of the four genes was determined to be strR-strA-strB-strC. Transformation of S. griseus with plasmids carrying both strR and strB genes enhanced amidinotransferase activity in the transformed cells. Based on the gene dosage effect and the biological characteristics of the mutants complemented by strR and strB, it was concluded that strB encodes amidinotransferase and strR encodes a positive effector required for the full expression of strA and strB genes. Furthermore, it was found that amplification of a specific 0.7-kilobase region of the cloned DNA on a plasmid inhibited streptomycin biosynthesis of the transformants. This DNA region might contain a regulatory apparatus that participates in the control of streptomycin biosynthesis.  相似文献   

14.
The cruciferous plant Arabidopsis thaliana has two closely related, nonallelic tryptophan synthase beta genes (TSB1 and TSB2), each containing four introns and a chloroplast leader sequence. Both genes are transcribed, although TSB1 produces greater than 90% of tryptophan synthase beta mRNA in leaf tissue. A tryptophan-requiring mutant, trp2-1, has been identified that has about 10% of the wild-type tryptophan synthase beta activity. The trp2-1 mutation is complemented by the TSB1 transgene and is linked genetically to a polymorphism in the TSB1 gene, strongly suggesting that trp2-1 is a mutation in TSB1. The trp2-1 mutants are conditional: they require tryptophan for growth under standard illumination but not under very low light conditions. Presumably, under low light the poorly expressed gene, TSB2, is capable of supporting growth. Genetic redundancy may be common to many aromatic amino acid biosynthetic enzymes in plants because mutants defective in two other genes (TRP1 and TRP3) also exhibit a conditional tryptophan auxotrophy. The existence of two tryptophan pathways has important consequences for tissue-specific regulation of amino acid and secondary metabolite biosynthesis.  相似文献   

15.
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EC 2.5.1.19), encoded by the aroA locus, is a target site of glyphosate inhibition in bacteria. A glyphosate-resistant aroA allele has been cloned in Escherichia coli from a mutagenized strain of Salmonella typhimurium. Subcloning of this mutant aroA allele shows the gene to reside on a 1.3-kilobase segment of S. typhimurium DNA. Nucleotide sequence analysis of this mutant gene indicates a protein-coding region 427 amino acids in length. Comparison of the mutant and wild type aroA gene sequences reveals a single base pair change resulting in a Pro to Ser amino acid substitution at the 101st codon of the protein. A hybrid gene fusion between mutant and wild type aroA gene sequences was constructed. 5-Enolpyruvylshikimate-3-phosphate synthase was prepared from E. coli cells harboring this construct. The glyphosate-resistant phenotype is shown to be associated with the single amino acid substitution described above.  相似文献   

16.
R-prime plasmids carrying the pyrE-rfa-cysE region of the chromosome of Salmonella typhimurium were isolated by using the vector pULB113 (RP4::mini-Mu). One of the R-prime plasmids was used as a source of DNA to clone the rfa genes for lipopolysaccharide synthesis to pBR322. The following three hybrid plasmids were constructed: pKZ15, with a 4.0-kilobase EcoRI fragment of S. typhimurium DNA, containing the rfaG gene; pKZ27, a 9-kilobase BglII fragment with the rfaG, rfaB, and rfaI genes; and pKZ26, a 7.7-kilobase HindIII fragment with the rfaG, rfaB, rfaI, and rfaJ genes. We propose that these cloned genes code for four glycosyltransferases used for synthesis of the lipopolysaccharide core region (rfaG for glucosyltransferase I; rfaI for galactosyltransferase I; rfaB for galactosyltransferase II; and rfaJ for glucosyltransferase II). For all four genes, mutants which lacked the appropriate enzyme activity were complemented by the plasmids to give completed core lipopolysaccharide with O (somatic) side chains; for rfaG, rfaB, and rfaI, mutants gave restored or even amplified levels of the appropriate glycosyltransferase in in vitro assays. We show that the order of genes in the region is pyrE-rfaG-(rfaB-rfaI)-rfaJ-rfaL-rfaF -cysE.  相似文献   

17.
Plasmid pUB110 was previously used as a vector to clone fragments of deoxyribonucleic acid that complement the trpC2 mutation in Bacillus subtilis from endonuclease EcoRI digested B. licheniformis, B. pumilus, and B. subtilis cellular deoxyribonucleic acid. Each of several such trp plasmids was subsequently shown to contain a segment of the trp gene cluster on the basis of genetic complementing activity. In the present study, analysis of the Trp enzyme levels in B. subtilis harboring the constructed trp plasmids confirms the genetic constitution of the plasmids. Thus, plasmids that complement mutations in specific trp genes specify the corresponding enzyme activities. The levels of the plasmid-specified Trp enzymes in B. subtilis were generally above the repressed level of the chromosomally specified Trp enzymes and equal to or below the derepressed levels of the chromosomally specified Trp enzymes. Certain cloned trp segments contain a single HindIII-sensitive site. Insertion of HindIII-generated deoxyribonucleic acid fragments into these trp plasmids resulted in inactivation of trpC complementing activity, loss of the trpC-specified enzyme activity, and a 10-fold reduction in the specific activity of the plasmid-specified trpF product. The HindIII insertions had no detectable effect on the level of the trpD product, nor did the insertions detectably alter plasmid-specified complementing activity other than to abolish trpC complementation. Removal of the HindIII insertions was accompanied by recovery of trpC complementing activity and restoration of the trpC-and trpF-determined enzymes to the levels specified by the parent plasmids.  相似文献   

18.
Based on the rationale that Escherichia coli cells harboring plasmids containing the pnt gene would contain elevated levels of enzyme, we have isolated three clones bearing the transhydrogenase gene from the Clarke and Carbon colony bank. The three plasmids were subjected to restriction endonuclease analysis. A 10.4-kilobase restriction fragment which overlapped all three plasmids was cloned into the PstI site of plasmid pUC13. Examination of several deletion derivatives of the resulting plasmid and subsequent treatment with exonuclease BAL 31 revealed that enhanced transhydrogenase expression was localized within a 3.05-kilobase segment. This segment was located at 35.4 min in the E. coli genome. Plasmid pDC21 conferred on its host 70-fold overproduction of transhydrogenase. The protein products of plasmids carrying the pnt gene were examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membranes from cells containing the plasmids. Two polypeptides of molecular weights 50,000 and 47,000 were coded by the 3.05-kilobase fragment of pDC11. Both polypeptides were required for expression of transhydrogenase activity.  相似文献   

19.
Five trp genes, trpD, trpC, trpF, trpB, and trpA, of Lactobacillus casei were cloned by transformation of tryptophan auxotrophic mutants of the respective trp genes in Escherichia coli. These trp genes appear to constitute an operon and are located in the above order in a segment of DNA of 6,468 base pairs. The entire nucleotide sequence of this DNA segment was determined. Five contiguous open reading frames in this segment can encode proteins consisting of 341, 260, 199, 406, and 266 amino acids, respectively, in the same direction. The amino acid sequences of these proteins exhibit 25.5-50.2% homology with the amino acid sequences of the corresponding trp enzymes of E. coli. Two trp genes, trpC and trpF, from L. casei can complement mutant alleles of the corresponding genes of E. coli. However, neither the trpA gene nor the trpB gene of L. casei can complement mutations in the E. coli trpA gene and the trpB gene, respectively, suggesting that the protein products of the L. casei and E. coli trpA and trpB genes, respectively, cannot form heterodimers of tryptophan synthetase with activity. Other features of the coding and flanking regions of the trp genes are also described.  相似文献   

20.
Mutations affecting heteroduplex DNA mismatch repair in Streptococcus pneumoniae were localized in two genes, hexA and hexB, by fractionation of restriction fragments carrying mutant alleles. A fragment containing the hexA4 allele was cloned in the S. pneumoniae cloning system, and the hexA+ allele was introduced into the recombinant plasmid by chromosomal facilitation of plasmid transfer. Subcloning localized the functional hexA gene to a 3.5-kilobase segment of the cloned pneumococcal DNA. The product of this gene was shown in Bacillus subtilis minicells to be a polypeptide with an Mr of 86,000. Two mutant alleles of hexA showed partial expression of the repair system when present in multicopy plasmids. A model for mismatch repair, which depends on the interaction of two protein components to recognize the mismatched base pair and excise a segment of DNA between strand breaks surrounding the mismatch, is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号