首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Members of the Toll-like receptor (TLR) family are essential players in activating the host innate immune response against infectious microorganisms. All TLRs signal through Toll/interleukin 1 receptor domain-containing adapter proteins. MyD88 adapter-like (Mal) is one such adapter that specifically is involved in TLR2 and TLR4 signaling. When overexpressed we have found that Mal undergoes tyrosine phosphorylation. Three possible phospho-accepting tyrosines were identified at positions 86, 106, and 187, and two mutant forms of Mal in which tyrosines 86 and 187 were mutated to phenylalanine acted as dominant negative inhibitors of NF-kappaB activation by lipopolysaccharide (LPS). Activation of THP-1 monocytic cells with the TLR4 agonist LPS and the TLR2 agonist macrophage-activating lipopeptide-2 induced phosphorylation of Mal on tyrosine residues. We found that the Bruton's tyrosine kinase (Btk) inhibitor LFM-A13 could block the endogenous phosphorylation of Mal on tyrosine in cells treated with macrophage-activating lipopeptide-2 or LPS. Furthermore, Btk immunoprecipitated from THP-1 cells activated by LPS could phosphorylate Mal. Our study therefore provides the first demonstration of the key role of Mal phosphorylation on tyrosine during signaling by TLR2 and TLR4 and identifies a novel function for Btk as the kinase involved.  相似文献   

2.
The Toll/interleukin 1 receptor (TIR) domain is a region found in the cytoplasmic tails of members of the Toll-like receptor/interleukin-1 receptor superfamily. The domain is essential for signaling and is also found in the adaptor proteins Mal (MyD88 adaptor-like) and MyD88, which function to couple activation of the receptor to downstream signaling components. Experimental structures of two Toll/interleukin 1 receptor domains reveal a alpha-beta-fold similar to that of the bacterial chemotaxis protein CheY, and other evidence suggests that the adaptors can make heterotypic interactions with both the receptors and themselves. Here we show that the purified TIR domains of Mal and MyD88 can form stable heterodimers and also that Mal homodimers and oligomers are dissociated in the presence of ATP. To identify structural features that may contribute to the formation of signaling complexes, we produced models of the TIR domains from human Toll-like receptor 4 (TLR4), Mal, and MyD88. We found that although the overall fold is conserved the electrostatic surface potentials are quite distinct. Docking studies of the models suggest that Mal and MyD88 bind to different regions in TLRs 2 and 4, a finding consistent with a cooperative role of the two adaptors in signaling. Mal and MyD88 are predicted to interact at a third non-overlapping site, suggesting that the receptor and adaptors may form heterotetrameric complexes. The theoretical model of the interactions is supported by experimental data from glutathione S-transferase pull-downs and co-immunoprecipitations. Neither theoretical nor experimental data suggest a direct role for the conserved proline in the BB-loop in the association of TLR4, Mal, and MyD88. Finally we show a sequence relationship between the Drosophila protein Tube and Mal that may indicate a functional equivalence of these two adaptors in the Drosophila and vertebrate Toll pathways.  相似文献   

3.
MyD88, a Toll/interleukin-1 receptor homology (TIR) domain-containing adaptor protein, mediates signals from the Toll-like receptors (TLR) or IL-1/IL-18 receptors to downstream kinases. In MyD88-dependent TLR4 signaling, the function of MyD88 is enhanced by another TIR domain-containing adaptor, Mal/TIRAP, which brings MyD88 to the plasma membrane and promotes its interaction with the cytosolic region of TLR4. Hence, Mal is recognized as the "sorting adaptor" for MyD88. In this study, a direct interaction between MyD88-TIR and another membrane-sorting adaptor, TRAM/TICAM-2, was demonstrated in vitro. Cell-based assays including RNA interference experiments and TRAM deficient mice revealed that the interplay between MyD88 and TRAM in cells is important in mediating IL-18 signal transduction. Live cell imaging further demonstrated the co-localized accumulation of MyD88 and TRAM in the membrane regions in HEK293 cells. These findings suggest that TRAM serves as the sorting adaptor for MyD88 in IL-18 signaling, which then facilitates the signal transduction. The binding sites for TRAM are located in the TIR domain of MyD88 and actually overlap with the binding sites for Mal. MyD88, the multifunctional signaling adaptor that works together with most of the TLR members and with the IL-1/IL-18 receptors, can interact with two distinct sorting adaptors, TRAM and Mal, in a conserved manner in a distinct context.  相似文献   

4.
Toll-like receptor 4 (TLR4) induces an innate immune response in mammals by recognizing lipopolysaccharide (LPS), a component of the cell wall of Gram-negative bacteria. In this study, we show that tyrosine kinase Syk constitutively associates with TLR4 in THP-1 cells. As previously reported in peripheral blood mononuclear cells, TLR4 gets inducibly tyrosine phosphorylated upon LPS engagement in THP-1 cells. Piceatannol, a pharmacological inhibitor of the tyrosine kinase Syk, abrogates TLR4 tyrosine phosphorylation at low doses. The kinetics of TLR4 tyrosine phosphorylation in THP-1 cells coincides with an early wave of Syk tyrosine phosphorylation. Additionally, serine threonine kinase interleukin-1 (IL1) receptor-associated kinase 1 (IRAK-1) is transiently recruited to the complex containing adaptor molecule MyD88, TLR4 and Syk within 1 min of LPS engagement and dissociates by 30 min. Finally, the inhibition of Syk with piceatannol has no effect on LPS-mediated release of cytokines IL6, IL1beta, tumor necrosis factor-alpha, neither on chemokines macrophage inhibitory protein (MIP)1alpha, MIP1beta, monocyte chemoattractant protein -1, IL8, Groalpha and RANTES. However, IL10 and IL12p40 releases are significantly inhibited. Our findings implicate Syk as a novel modulator of LPS-mediated TLR4 responses in human monocytic cells and shed insight into the kinetics of early complex formation upon LPS engagement.  相似文献   

5.
6.
Lin Z  Lu J  Zhou W  Shen Y 《PloS one》2012,7(4):e34202
MyD88 adaptor-like protein (Mal) is a crucial adaptor that acts as a bridge to recruit the MyD88 molecule to activated TLR4 receptors in response to invading pathogens. The specific assembly of the Toll/interleukin-1 receptor (TIR) domains of TLR4, Mal and MyD88 is responsible for proper signal transduction in the TLR4 signaling pathway. However, the molecular mechanism for the specificity of these TIR domains remains unclear. Here, we present the crystal structure of the TIR domain of the human Mal molecule (Mal-TIR) at a resolution of 2.4 Å. Unexpectedly, Mal-TIR exhibits an extraordinarily long AB loop, but no αB helix or BB loop, distinguishing it from other TIR domains. More importantly, the Mal-TIR AB loop is capable of mediating direct binding to the TIR domains of TLR4 and MyD88 simultaneously. We also found that Mal-TIR can form a back-to-back dimer that may resemble the dimeric assembly of the entire Mal molecule. Our data demonstrate the bridge role of the Mal-TIR domain and provide important information about TIR domain specificity.  相似文献   

7.
The Toll/interleukin-1 (IL-1) receptor (TIR) family comprises two groups of transmembrane proteins, which share functional and structural properties. The members of the IL-1 receptor (IL-1R) subfamily are characterized by three extracellular immunoglobulin (Ig)-like domains. They form heterodimeric signaling receptor complexes consisting of receptor and accessory proteins. The members of the Toll-like receptor (TLR) subfamily recognize alarm signals that can be derived either from pathogens or the host itself. TLRs possess leucine-rich repeats in their extracellular part. TLRs can form dimeric receptor complexes consisting of two different TLRs or homodimers in the case of TLR4. The TLR4 receptor complex requires supportive molecules for optimal response to its ligand lipopolysaccharide (LPS). A hallmark of the TIR family is the cytoplasmic TIR domain that is indispensable for signal transduction. The TIR domain serves as a scaffold for a series of protein-protein interactions which result in the activation of a unique signaling module consisting of MyD88, interleukin-1 receptor associated kinase (IRAK) family members and Tollip, which is used exclusively by TIR family members. Subsequently, several central signaling pathways are activated in parallel, the activation of NFkappaB being the most prominent event of the inflammatory response. Recent developments indicate that in addition to the common signaling module MyD88/IRAK/Tollip, other molecules can modulate signaling by TLRs, especially of TLR4, resulting in differential biological answers to distinct pathogenic structures. Subtle differences in TLR signaling pathways are now becoming apparent, which reveal how the innate immune system decides at a very early stage the direction in which the adaptive immune response will develop. The creation of pathogen-specific mediator environments by dendritic cells defines whether a cellular or humoral response will be activated in response to the pathogen.  相似文献   

8.
Bacterial lipopolysaccharide (LPS)-mediated immune responses, including activation of monocytes, macrophages, and endothelial cells, play an important role in the pathogenesis of Gram-negative bacteria-induced sepsis syndrome. Activation of NF-kappaB is thought to be required for cytokine release from LPS-responsive cells, a critical step for endotoxic effects. Here we investigated the role and involvement of interleukin-1 (IL-1) and tumor necrosis factor (TNF-alpha) signal transducer molecules in LPS signaling in human dermal microvessel endothelial cells (HDMEC) and THP-1 monocytic cells. LPS stimulation of HDMEC and THP-1 cells initiated an IL-1 receptor-like NF-kappaB signaling cascade. In transient cotransfection experiments, dominant negative mutants of the IL-1 signaling pathway, including MyD88, IRAK, IRAK2, and TRAF6 inhibited both IL-1- and LPS-induced NF-kappaB-luciferase activity. LPS-induced NF-kappaB activation was not inhibited by a dominant negative mutant of TRAF2 that is involved in TNF signaling. LPS-induced activation of NF-kappaB-responsive reporter gene was not inhibited by IL-1 receptor antagonist. TLR2 and TLR4 were expressed on the cell surface of HDMEC and THP-1 cells. These findings suggest that a signal transduction molecule in the LPS receptor complex may belong to the IL-1 receptor/toll-like receptor (TLR) super family, and the LPS signaling cascade uses an analogous molecular framework for signaling as IL-1 in mononuclear phagocytes and endothelial cells.  相似文献   

9.
10.
Toll-like receptor (TLR) signaling is known to involve interleukin-1 receptor-associated kinases (IRAKs), however the particular role of IRAK-2 has remained unclear. Further, although IRAK-1 was originally thought to be central for the TLR-NFkappaB signaling axis, recent data have shown that it is dispensable for NFkappaB activation for some TLRs and demonstrated an alternative role for it in interferon regulatory factor activation. Here we show that IRAK-2 is critical for the TLR-mediated NFkappaB activation pathway. The poxviral TLR antagonist A52 inhibited NFkappaB activation by TLR2, -3, -4, -5, -7, and -9 ligands, via its interaction with IRAK-2, while not affecting interferon regulatory factor activation. Knockdown of IRAK-2 expression by small interfering RNA suppressed TLR3, TLR4, and TLR8 signaling to NFkappaB in human cell lines, and importantly, TLR4-mediated chemokine production in primary human cells. IRAK-2 usage by different TLRs was distinct, because it acted downstream of the TLR adaptors MyD88 and Mal but upstream of TRIF. Expression of IRAK-2, but not IRAK-1, led to TRAF6 ubiquitination, an event critical for NFkappaB activation. Further, IRAK-2 loss-of-function mutants, which could not activate NFkappaB, were incapable of promoting TRAF6 ubiquitination. Thus we propose that IRAK-2 plays a more central role than IRAK-1 in TLR signaling to NFkappaB.  相似文献   

11.
Lipopolysaccharide (LPS) is an agonist for Toll-like receptor (TLR) 4 and expresses many genes including NF-kappaB- and interferon regulatory factor (IRF)-3/IFN-inducible genes in macrophages and dendritic cells (DCs). TICAM-1/TRIF was identified as an adapter that facilitates activation of IRF-3 followed by expression of interferon (IFN)-beta genes in TLR3 signaling, but TICAM-1 does not directly bind TLR4. Although MyD88 and Mal/TIRAP adapters functions downstream of TLR4, DC maturation and IFN-beta induction are independent of MyD88 and Mal/TIRAP. In this investigation, we report the identification of a novel adapter, TICAM-2, that physically bridges TLR4 and TICAM-1 and functionally transmits LPS-TLR4 signaling to TICAM-1, which in turn activates IRF-3. In its structural features, TICAM-2 resembled Mal/TIRAP, an adapter that links TLR2/4 and MyD88. However, TICAM-2 per se exhibited minimal ability to activate NF-kappaB and the IFN-beta promoter. Hence, in LPS signaling TLR4 recruits two types of adapters, TIRAP and TICAM-2, to its cytoplasmic domain that are indirectly connected to two effective adapters, MyD88 and TICAM-1, respectively. We conclude that for LPS-TLR4-mediated activation of IFN-beta, the adapter complex of TICAM-2 and TICAM-1 plays a crucial role. This results in the construction of MyD88-dependent and -independent pathways separately downstream of the two distinct adapters.  相似文献   

12.
The Toll-like receptor 4 (TLR4) is a class I transmembrane receptor expressed on the surface of immune system cells. TLR4 is activated by exposure to lipopolysaccharides derived from the outer membrane of Gram negative bacteria and forms part of the innate immune response in mammals. Like other class 1 receptors, TLR4 is activated by ligand induced dimerization, and recent studies suggest that this causes concerted conformational changes in the receptor leading to self association of the cytoplasmic Toll/Interleukin 1 receptor (TIR) signalling domain. This homodimerization event is proposed to provide a new scaffold that is able to bind downstream signalling adaptor proteins. TLR4 uses two different sets of adaptors; TRAM and TRIF, and Mal and MyD88. These adaptor pairs couple two distinct signalling pathways leading to the activation of interferon response factor 3 (IRF-3) and nuclear factor kappaB (NFkappaB) respectively. In this paper we have generated a structural model of the TLR4 TIR dimer and used molecular docking to probe for potential sites of interaction between the receptor homodimer and the adaptor molecules. Remarkably, both the Mal and TRAM adaptors are strongly predicted to bind at two symmetry-related sites at the homodimer interface. This model of TLR4 activation is supported by extensive functional studies involving site directed mutagenesis, inhibition by cell permeable peptides and stable protein phosphorylation of receptor and adaptor TIR domains. Our results also suggest a molecular mechanism for two recent findings, the caspase 1 dependence of Mal signalling and the protective effects conferred by the Mal polymorphism Ser180Leu.  相似文献   

13.
Toll-like receptor (TLR) 3 and 4 mediate the expression of many genes, including NF-kappaB- and interferon-regulatory factor (IRF)-3/interferon (IFN)-inducible genes, in macrophages and dendritic cells (DCs) in response to their ligand stimuli, polyI:C and lipopolysaccharide (LPS). Toll-IL-1 receptor homology domain (TIR)-containing adapter molecule 1 (TICAM-1) facilitates expression of IFN-inducible genes via TLR3. Although MyD88 and Mal/TIRAP adapters function downstream of TLR4, they barely induce IFN-beta. In addition, DC maturation as well as IFN-beta induction are largely independent of MyD88 and Mal/TIRAP. TICAM-1 is the functional adapter for both TLR3 and TLR4 that induces type 1 IFN and MyD88-independent DC maturation. In LPS-mediated TLR4 activation, a complex of TICAM-1 and an additional TLR4-binding adapter serves as the adapter. We named this TLR4-TICAM-1-bridging adapter TICAM-2. Our results reveal the details of MyD88-independent pathways which separately recruit the distinct adapters downstream of TLR3 and TLR4 and variations of the TLR output are in part regulated by the two additional adapters in DCs.  相似文献   

14.
Signal transduction by Toll-like receptor 2 (TLR2) and TLR4 requires the adaptors MyD88 and Mal (MyD88 adaptor-like) and serine/threonine kinases, interleukin-1 receptor-associated kinases IRAK1 and IRAK4. We have found that both IRAK1 and IRAK4 can directly phosphorylate Mal. In addition, co-expression of Mal with either IRAK resulted in depletion of Mal from cell lysates. This is likely to be due to Mal phosphorylation by the IRAKs because kinase-inactive forms of either IRAK had no effect. Furthermore, lipopolysaccharide stimulation resulted in ubiquitination and degradation of Mal, which was inhibited using an IRAK1/4 inhibitor or by knocking down expression of IRAK1 and IRAK4. MyD88 is not a substrate for either IRAK and did not undergo degradation. We therefore conclude that Mal is a substrate for IRAK1 and IRAK4 with phosphorylation promoting ubiquitination and degradation of Mal. This process may serve to negatively regulate signaling by TLR2 and TLR4.  相似文献   

15.
Bruton's tyrosine kinase (Btk) has recently been shown to participate in the induction of nuclear factor kappaB (NFkappaB)-dependent gene expression by the lipopolysaccharide (LPS) receptor Toll-like receptor-4 (TLR4). In this study we have examined the mechanism whereby Btk participates in this response. Treatment of the murine monocytic cell line Raw264.7 with LFM-A13, a specific Btk inhibitor, blocked LPS-induced NFkappaB-dependent reporter gene expression but not IkappaB alpha degradation. Transient transfection of HEK293 cells with Btk had no effect on NFkappaB-dependent reporter gene expression but strongly promoted transactivation of a reporter gene by a p65-Gal4 fusion protein. IkappaB alpha degradation activated by LPS was intact in macrophages from X-linked immunodeficiency (Xid) mice, which contain inactive Btk. Transfection of cells with a dominant negative form of Btk (BtkK430R) inhibited LPS-driven p65 mediated transactivation. Additionally LFM-A13 impaired phosphorylation of serine 536 on p65 induced by LPS in HEK293-TLR4 cells, and in Xid macrophages this response was impaired. This study therefore reveals a novel function for Btk. It is required for the signaling pathway activated by TLR4, which culminates in phosphorylation of p65 on serine 536 promoting transactivation by NFkappaB.  相似文献   

16.
Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus   总被引:17,自引:0,他引:17  
Aspergillus fumigatus causes life-threatening infections in patients with qualitative and quantitative defects in phagocytic function. Here, we examined the contribution of Toll-like receptor (TLR)-2, TLR4, the adapter protein MyD88, and CD14 to signaling in response to the three forms of A. fumigatus encountered during human disease: resting conidia (RC), swollen conidia (SC), and hyphae (H). Compared with elicited peritoneal macrophages obtained from wild-type and heterozygous mice, TLR2(-/-) and MyD88(-/-) macrophages produced significantly less tumor necrosis factor-alpha (TNFalpha) following A. fumigatus stimulation. In contrast, following stimulation with RC, SC, and H, TLR4(-/-) and CD14(-/-) macrophages exhibited no defects in tumor necrosis factor-alpha release. TLR2(-/-), TLR4(-/-), MyD88(-/-), and CD14(-/-) macrophages bound similar numbers of RC and SC compared with wild-type macrophages. RC, SC, and H stimulated greater activation of a nuclear factor kappa B (NFkappaB)-dependent reporter gene and greater release of tumor necrosis factor-alpha from the human monocytic THP-1 cell line stably transfected with CD14 compared with control cells stably transfected with empty vector. A. fumigatus stimulated NFkappaB-dependent reporter gene activity in the human embryonic kidney cell line, HEK293, only if the cells were transfected with TLR2. Moreover, activity increased when TLR2 and CD14 were co-transfected. Taken together, these data suggest that optimal signaling responses to A. fumigatus require TLR2 in both mouse and human cells. In contrast, a role for CD14 was found only in the human cells. MyD88 acts as a central adapter protein mediating signaling responses following stimulation with RC, SC, and H.  相似文献   

17.
Myeloid differentiation factor 88 (MyD88) is an adaptor protein that transduces intracellular signaling pathways evoked by the Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). MyD88 is composed of an N-terminal death domain (DD) and a C-terminal Toll/IL-1 receptor (TIR) domain, separated by a short region. Upon ligand binding, TLR/IL-1Rs hetero- or homodimerize and recruit MyD88 through their respective TIR domains. Then, MyD88 oligomerizes via its DD and TIR domain and interacts with the interleukin-1 receptor-associated kinases (IRAKs) to form the Myddosome complex. We performed site-directed mutagenesis of conserved residues that are located in exposed regions of the MyD88-TIR domain and analyzed the effect of the mutations on MyD88 signaling. Our studies revealed that mutation of Glu183, Ser244, and Arg288 impaired homodimerization of the MyD88-TIR domain, recruitment of IRAKs, and activation of NF-κB. Moreover, overexpression of two green fluorescent protein (GFP)-tagged MyD88 mini-proteins (GFP-MyD88151–189 and GFP-MyD88168–189), comprising the Glu183 residue, recapitulated these effects. Importantly, expression of these dominant negative MyD88 mini-proteins competed with the function of endogenous MyD88 and interfered with TLR2/4-mediated responses in a human monocytic cell line (THP-1) and in human primary monocyte-derived dendritic cells. Thus, our studies identify novel residues of the TIR domain that are crucially involved in MyD88 homodimerization and TLR signaling in immune cells.  相似文献   

18.
The CATERPILLER (CLR, also NOD and NLR) proteins share structural similarities with the nucleotide binding domain (NBD)-leucine-rich repeat (LRR) superfamily of plant disease-resistance (R) proteins and are emerging as important immune regulators in animals. CLR proteins contain NBD-LRR motifs and are linked to a limited number of distinct N-terminal domains including transactivation, CARD (caspase activation and recruitment), and pyrin domains (PyD). The CLR gene, Monarch-1/Pypaf7, is expressed by resting primary myeloid/monocytic cells, and its expression in these cells is reduced by Toll-like receptor (TLR) agonists tumor necrosis factor (TNF) alpha and Mycobacterium tuberculosis. Monarch-1 reduces NFkappaB activation by TLR-signaling molecules MyD88, IRAK-1 (type I interleukin-1 receptor-associated protein kinase), and TRAF6 (TNF receptor (TNFR)-associated factor) as well as TNFR signaling molecules TRAF2 and RIP1 but not the downstream NFkappaB subunit p65. This indicates that Monarch-1 is a negative regulator of both TLR and TNFR pathways. Reducing Monarch-1 expression with small interference RNA in myeloid/monocytic cells caused a dramatic increase in NFkappaB activation and cytokine expression in response to TLR2/TLR4 agonists, TNFalpha, or M. tuberculosis infection, suggesting that Monarch-1 is a negative regulator of inflammation. Because Monarch-1 is the first CLR protein that interferes with both TLR2 and TLR4 activation, the mechanism of this interference is significant. We find that Monarch-1 associates with IRAK-1 but not MyD88, resulting in the blockage of IRAK-1 hyperphosphorylation. Mutants containing the NBD-LRR or PyD-NBD also blocked IRAK-1 activation. This is the first example of a CLR protein that antagonizes inflammatory responses initiated by TLR agonists via interference with IRAK-1 activation.  相似文献   

19.
Toll-like receptors (TLRs) are a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense. TLR7 and TLR8 sense single-stranded RNA from viruses or host ribonucleoproteins and synthetic imidazoquinolines such as R848, whereas TLR9 senses unmethylated CpG motifs in viral and bacterial DNA and in host DNA. Here we report the endogenous interaction between Brutons's tyrosine kinase (Btk) and human TLR8 and TLR9 in the monocytic cell line THP1. We also show that R848, single-stranded RNA, and CpGB-DNA activate Btk in THP1 cells as shown by phosphorylation of the tyrosine 223 residue of Btk and also by increased autokinase activity. We demonstrate that Btk is required for NFkappaB activation, participating in the pathway to increased phosphorylation of p65 on serine 536 activated by TLR8 and TLR9. Finally we demonstrate that peripheral blood mononuclear cells from patients with X-linked agammaglobulinaemia (XLA) that have dysfunctional Btk are impaired in the induction of interleukin-6 by CpGB-DNA. This study therefore establishes Btk as a key signaling molecule that interacts with and acts downstream of TLR8 and TLR9. Lack of functioning Btk in XLA patients downstream of TLR8 and TLR9 might explain the susceptibility of XLA patients to viral infections.  相似文献   

20.
Toll receptors and pathogen resistance   总被引:11,自引:2,他引:9  
Toll receptors in insects, mammals and plants are key players that sense the invasion of pathogens. Toll-like receptors (TLRs) in mammals have been established to detect specific components of bacterial and fungal pathogens. Furthermore, recent evidence indicates that TLRs are involved in the recognition of viral invasion. Signalling pathways via TLRs originate from the conserved Toll/IL-1 receptor (TIR) domain. The TIR domain-containing MyD88 acts as a common adaptor that induces inflammatory cytokines; however, there exists a MyD88-independent pathway that induces type I IFNs in TLR4 and TLR3 signalling. Another TIR domain-containing adaptor, TIRAP/Mal has recently been shown to mediate the MyD88-dependent activation in the TLR4 and TLR2 signalling pathway. Thus, individual TLRs may have their own signalling systems that characterize their specific activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号