首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 200 毫秒
1.
从一株低度嗜盐、兼性嗜碱芽孢杆菌Bacillussp .F2 6中纯化得到一种碱性过氧化氢酶 ,并对该酶进行了性质研究。纯化过程经硫酸铵沉淀、阴离子交换层析、凝胶过滤层析及疏水层析四步最终获得电泳纯的目标酶 (纯化 58.5倍 )。该过氧化氢酶的分子量为140kD ,由两个大小相同的亚基组成。天然酶分子在40.8nm处显示特征吸收峰 (Soretband)。吡啶血色素光谱显示了酶分子以原卟啉Ⅸ (protohemeⅨ )作为辅基。计算获得酶的表观米氏常数为 32.5mmol/L。该过氧化氢酶不受连二亚硫酸钠的还原作用影响 ,但被氰化物、叠氮化物和 3-氨基-1,2 ,4-三唑 (单功能过氧化氢酶的专一抑制剂 )强烈抑制。以邻联茴香胺、邻苯二胺和二氨基联苯胺作为电子供体测定酶活时 ,该酶不显示过氧化物酶活性。同时 ,酶的N_端序列比对结果说明 ,该过氧化氢酶与单功能过氧化氢酶亚群有一定的相似性 ,而与双功能过氧化氢酶亚群及猛过氧化氢酶亚群均没有同源性。因此 ,本文将纯化的碱性过氧化氢酶定性为单功能过氧化氢酶。此外 ,该酶具有热敏感的特点 ,且酶活在Ph 5~ 9的范围内不受pH影响 ,此后 ,活性随着pH的升高而升高,并在pH11处有明显的酶活高峰。20℃、pH11条件下的酶活半衰期达49h.在pH11的高碱条件下表现出最高活力和一定的稳定性,这在已报道的过氧化氢酶中还未见描述。同时,该酶也显示了良好的盐碱稳定性,0.5mol/L NaCl、pH10.5条件下的酶活半衰期达90h.另一方面,本文所研究的过氧化氢酶是第一个来源于嗜碱微生物的同源二聚体单功能过氧化氢酶,也是第一个来源于天然碱湖的单功能过氧化氢酶,它能部分地反映出细胞抗氧化体系对相应环境的适应情况。  相似文献   

2.
【目的】筛选性能良好的产碱性甘露聚糖酶的菌株,对菌株进行多项分类鉴定,分离纯化所产甘露聚糖酶并进行性质研究。【方法】利用碱性魔芋粉培养基分离纯化产甘露聚糖酶的嗜碱菌,通过形态特征观察、生理生化测定、16S rRNA序列分析等实验确定菌株的分类地位。利用硫酸铵沉淀、阴离子交换层析和分子筛层析得到电泳纯的酶,分析了酶的最适温度、最适pH、温度和pH稳定性、NaCl以及金属离子等的耐受性。【结果】从我国内蒙古碱湖样品中分离得到一株产碱性甘露聚糖酶的菌株HMTS15,经过多项分类鉴定显示其是与Bacillus agaradhaerens DSM 8721不同的新菌株。菌株HMTS15所产的甘露聚糖酶反应的最适pH为10.0,最适温度75℃。【结论】多项分类结果鉴定菌株为Bacillus agaradhaerens HMTS15。该菌株产生的碱性甘露聚糖酶与同类其他来源的酶相比具有更好的热稳定性和pH适应性,有进一步的研究价值。  相似文献   

3.
短小芽孢杆菌2080碱性蛋白酶的纯化与性质   总被引:1,自引:0,他引:1  
短小芽孢杆菌(Bacillus pumilus)2080碱性蛋白酶的发酵液经超滤、硫酸铵沉淀、CM Sepharose Fast Flow和DEAE Sepharose Fast Flow离子交换层析得到了纯化的组分。SDS-PAGE电泳分析显示其分子量约为61kDa。酶学性质研究表明,该纯化酶的最适pH为10.5,最适温度为50℃。  相似文献   

4.
嗜热毛壳菌内切β-葡聚糖酶的分离纯化及特性   总被引:6,自引:1,他引:5  
探讨了液体发酵嗜热毛壳菌(Chaetomium thermophile)产生的内切β-葡聚糖酶的分离纯化及特性。粗酶液经硫酸铵分级沉淀,DEAE-Seplharose Fast Flow阴离子层析,Pheny1-Sepha-rose疏水层析,Sephacry1 S-100分子筛层析等步骤便可获得凝胶电泳均一的内切β-葡聚糖酶,经12.5%SDS-PAGE和凝胶过滤层析法分离纯化酶蛋白的分子量约为67.8kD的69.8kD。该酶反应的最适温度和pH分别为60℃和4.0-4.5在pH5.0条件下,该酶在60℃下稳定:70℃保温1h后,仍保留30%的活性;在80摄氏度的半衰期为25min,金属离子内切β-葡聚糖酶的活性影响较大,其中Na^ 对酶有激活作用;Fe^2 ,Ag^ ,Cu^2 ,Ba^2 ,Zn^2 等对酶有抑制作用。该酶对结晶纤维素有没水解能力。  相似文献   

5.
单志琼  周峻岗  周宇飞  袁汉英  吕红 《遗传》2012,34(3):356-365
从青海盐碱湖土壤中筛选到25株产碱性木聚糖酶的菌株, 其中编号为QH14的菌株产酶量达648.79 U/mL, 纯化后比活可达1148.56 U/mg。16 SrDNA鉴定表明菌株QH14属于短小芽孢杆菌, 命名为Bacillus sp. QH14。从该菌株的基因组中克隆获得了碱性木聚糖酶编码基因XynQH14, 并在大肠杆菌E.coliBL21(DE3)中获得重组表达。通过Ni-NTA亲和层析分离纯化后的重组QH14木聚糖酶比活达700.47 U/mg。该碱性木聚糖酶的酶促反应最适温度为60℃, 最适pH为9.2; 55℃处理1h仍保持50%的活力; 在pH7.0~11条件下37℃处理酶液24 h后均保持80%以上的活力, 且在pH11缓冲溶液中50℃处理24 h仍保持31.02%的酶活, 显示了该碱性木聚糖酶较好的热稳定性和碱稳定, 提示该碱性木聚糖酶在制浆造纸、纺织等行业的应用潜力。  相似文献   

6.
Shan ZQ  Zhou JG  Zhou YF  Yuan HY  Lv H 《遗传》2012,34(3):356-365
从青海盐碱湖土壤中筛选到25株产碱性木聚糖酶的菌株,其中编号为QH14的菌株产酶量达648.79U/mL,纯化后比活可达1148.56 U/mg。16 SrDNA鉴定表明菌株QH14属于短小芽孢杆菌,命名为Bacillus sp.QH14。从该菌株的基因组中克隆获得了碱性木聚糖酶编码基因XynQH14,并在大肠杆菌E.coliBL21(DE3)中获得重组表达。通过Ni-NTA亲和层析分离纯化后的重组QH14木聚糖酶比活达700.47 U/mg。该碱性木聚糖酶的酶促反应最适温度为60℃,最适pH为9.2;55℃处理1h仍保持50%的活力;在pH7.0~11条件下37℃处理酶液24 h后均保持80%以上的活力,且在pH11缓冲溶液中50℃处理24 h仍保持31.02%的酶活,显示了该碱性木聚糖酶较好的热稳定性和碱稳定,提示该碱性木聚糖酶在制浆造纸、纺织等行业的应用潜力。  相似文献   

7.
从Bacillus pumilus M-26发酵液中分离纯化碱性木聚糖酶,进行酶学性质研究,同时制备工业用碱性木聚糖酶制剂。首先将M-26发酵液进行硫酸铵盐析,制备工业用碱性木聚糖酶干品;然后进行sephadexG-25层析脱盐和cellulose DE-52层析得以纯化。硫酸铵的饱和度50%,酶制剂的酶活可达9 000 IU/g,收率为85%;分离纯化使酶的比活为126.32 IU/mg蛋白,纯化倍数为19.89,酶的回收率12.83%;分子量约为20 ku;M-26碱性木聚糖酶的最适温度和pH分别是55℃和pH 8.0,具有一定的耐碱性;该酶无纤维素酶活性,Fe2+对其有激活作用;Mn2+、Zn2+、Fe3+、Cu2+对其具有抑制作用。短小芽胞杆菌M-26碱性木聚糖酶具有纸浆生物漂白应用前景。  相似文献   

8.
过氧化氢酶能催化过氧化氢分解为水和氧气,在工业上有着较为广泛的应用。然而,纺织和造纸工业的特殊的高碱性环境,使得开发碱性过氧化氢酶有着重要的应用价值。利用大肠杆菌表达来自于谷氨酸棒杆菌的过氧化氢酶,对其表达条件进行了优化,并通过镍柱亲和层析的方法分离纯化重组蛋白,然后表征纯酶的酶学性质。最适表达条件为:诱导剂IPTG浓度0.2 mmol/L,诱导温度25℃,诱导时间11 h。过氧化氢酶比酶活达到55 266 U/mg,具有较高的催化活性。该酶具有相当宽泛的p H值适应范围,在p H 4.0–11.5范围内均具有较高的酶活性,并在p H 11.0条件下表现出最高的酶活性。将纯酶在p H 11.0的溶液中处理3 h时剩余酶活为93%,说明该酶在高碱条件下有良好的稳定性。该酶最适温度为30℃,在25–50℃热稳定性较好。其动力学参数Km为25.89mmol/L,Vmax为185.18mmol/(min?mg)。抑制剂十二烷基硫酸钠(SDS)、尿素、Na N3、β-巯基乙醇、EDTA对酶活有不同程度的抑制作用。来源于谷氨酸棒杆菌的过氧化氢酶具有较高的催化效率、良好的碱耐受性,在工业生产中有较好的应用前景。  相似文献   

9.
嗜热芽孢杆菌XJT—9503菌的发酵液经硫酸铵和丙酮分级沉淀分离纯化得到聚丙烯酰胺凝胶电泳均一的高温中性蛋白酶制品。SDS—PAGE测得酶分子量为3000。当以酪蛋白为底物时,酶反应最适温度为65℃,最适pH为7.在PH6.5—9范围内稳定。在65℃、0、02MpH7.5的磷酸缓冲液中的半衰期为54min。金属离子铜、汞、铝强烈抑制酶活,钙离子,镁离子对酶活有促进作用。  相似文献   

10.
嗜碱菌碱性淀粉酶的研究   总被引:4,自引:0,他引:4  
分离自内蒙古自治区察汗淖碱湖的嗜碱菌株No.1 0-1,好气,运动,细胞杆状,革兰氏染色阴性。该菌生长pH范围为8.0—13.0,最适生长pH1 0.0-ll.0,为专性嗜碱菌。在含淀粉培养基中产生胞外碱性淀粉酶,最适产酶条件是: 碳源为土豆淀粉,氮源为复合蛋白胨,Nacl浓度为2.O%,Na2CO3浓度为1.0—1.5%(pH9.9-10.5)。 酶的最适反应pH为10.0,稳定pH8.0,最适反应温度为50℃。作用于直链淀粉其水解产物为β-构型,主要产物是麦芽糖,其次为麦芽三糖、葡萄糖和麦芽四糖。嗜碱菌No.10-1产生的酶为碱性β-淀粉酶。  相似文献   

11.
A novel thermo-alkali-stable catalase from Thermus brockianus was purified and characterized. The protein was purified from a T. brockianus cell extract in a three-step procedure that resulted in 65-fold purification to a specific activity of 5300 U/mg. The enzyme consisted of four identical subunits of 42.5 kDa as determined by SDS-PAGE and a total molecular mass measured by gel filtration of 178 kDa. The catalase was active over a temperature range from 30 to 94 degrees C and a pH range from 6 to 10, with optimum activity occurring at 90 degrees C and pH 8. At pH 8, the enzyme was extremely stable at elevated temperatures with half-lives of 330 h at 80 degrees C and 3 h at 90 degrees C. The enzyme also demonstrated excellent stability at 70 degrees C and alkaline pH with measured half-lives of 510 h and 360 h at pHs of 9 and 10, respectively. The enzyme had an unusual pyridine hemochrome spectrum and appears to utilize eight molecules of heme c per tetramer rather than protoheme IX present in the majority of catalases studied to date. The absorption spectrum suggested that the heme iron of the catalase was in a 6-coordinate low spin state rather than the typical 5-coordinate high spin state. A K(m) of 35.5 mM and a V(max) of 20.3 mM/min.mg protein for hydrogen peroxide was measured, and the enzyme was not inhibited by hydrogen peroxide at concentrations up to 450 mM. The enzyme was strongly inhibited by cyanide and the traditional catalase inhibitor 3-amino-1,2,4-triazole. The enzyme also showed no peroxidase activity to peroxidase substrates o-dianisidine and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), a trait of typical monofunctional catalases. However, unlike traditional monofunctional catalases, the T. brockianus catalase was easily reduced by dithionite, a characteristic of catalase-peroxidases. The above properties indicate that this catalase has potential for applications in industrial bleaching processes to remove residual hydrogen peroxide from process streams.  相似文献   

12.
The photosynthetic bacterium, Rhodospirillum rubrum S1, when grown under anaerobic conditions, generated three different types of catalases. In this study, we purified and characterized the highest molecular weight catalase from the three catalases. The total specific catalase activity of the crude cell extracts was 88 U/mg. After the completion of the final purification step, the specific activity of the purified catalase was 1,256 U/mg. The purified catalase evidenced an estimated molecular mass of 318 kDa, consisting of four identical subunits, each of 79 kDa. The purified enzyme exhibited an apparent Km value of 30.4 mM and a Vmax of 2,564 U against hydrogen peroxide. The enzyme also exhibited a broad optimal pH (5.0-9.0), and remained stable over a broad temperature range (20 degrees C-60 degrees C). It maintained 90% activity against organic solvents (ethanol/chloroform) known hydroperoxidase inhibitors, and exhibited no detectable peroxidase activity. The catalase activity of the purified enzyme was reduced to 19% of full activity as the result of the administration of 10 mM 3-amino-1,2,4-triazole, a heme-containing catalase inhibitor. Sodium cyanide, sodium azide, and hydroxylamine, all of which are known heme protein inhibitors, inhibited catalase activity by 50% at concentrations of 11.5 microM, 0.52 microM, and 0.11 microM, respectively. In accordance with these findings, the enzyme was identified as a type of monofunctional catalase.  相似文献   

13.
When challenged with reactive oxidants, the nonsulfur phototrophic bacterium Rhodobacter sphaeroides ATH 2.4.1 exhibited an oxidative stress response during both phototrophic and chemotrophic growth. Upon preincubation with 100 μM H2O2, catalase activity increased fivefold. Catalase was also induced by other forms of oxidative stress, heat-shock, ethanol treatment, and stationary-phase conditions. Only one band of catalase activity was detected after native and denaturing PAGE. The enzyme was purified 304-fold with a yield of 7%. The purified enzyme displayed a heterodimeric structure with subunits of 75 and 68 kDa, corresponding to a molecular mass of approximately 150 kDa for the native enzyme. The subunits had almost identical amino-terminal peptide sequences, sharing substantial similarity with other bacterial catalases. The enzyme exhibited an apparent K m of 40 mM and a V max of 285,000 U (mg protein)–1. Spectroscopic analysis indicated the presence of protoheme IX. The heme content calculated from pyridine hemochrome spectra was 0.43 mol per mol of enzyme. The enzyme had a broad pH optimum and was inhibited by cyanide, azide, hydroxylamine, 2-mercaptoethanol, and sodium dithionite. These data indicate that this catalase belongs to the class of monofunctional catalases. Received: 15 October 1997 / Accepted: 2 February 1998  相似文献   

14.
In this study, an approx. 2.5-kb gene fragment including the catalase gene from Rhodospirillum rubrum S1 was cloned and characterized. The determination of the complete nucleotide sequence revealed that the cloned DNA fragment was organized into three open reading frames, designated as ORF1, catalase, and ORF3 in that order. The catalase gene consisted of 1,455 nucleotides and 484 amino acids, including the initiation and stop codons, and was located 326 bp upstream in the opposite direction of ORF1. The catalase was overproduced in Escherichia coli UM255, a catalase-deficient mutant, and then purified for the biochemical characterization of the enzyme. The purified catalase had an estimated molecular mass of 189 kDa, consisting of four identical subunits of 61 kDa. The enzyme exhibited activity over a broad pH range from pH 5.0 to pH 11.0 and temperature range from 20 degrees C to 60 degrees C. The catalase activity was inhibited by 3-amino-1,2,4-triazole, cyanide, azide, and hydroxylamine. The enzyme's K(m) value and V(max) of the catalase for H2O2 were 21.8 mM and 39,960 U/mg, respectively. Spectrophotometric analysis revealed that the ratio of A406 to A280 for the catalase was 0.97, indicating the presence of a ferric component. The absorption spectrum of catalase-4 exhibited a Soret band at 406 nm, which is typical of a heme-containing catalase. Treatment of the enzyme with dithionite did not alter the spectral shape and revealed no peroxidase activity. The combined results of the gene sequence and biochemical characterization proved that the catalase cloned from strain S1in this study was a typical monofunctional catalase, which differed from the other types of catalases found in strain S1.  相似文献   

15.
An alkalophilic Bacillus sp., strain GX6638 (ATCC 53278), was isolated from soil and shown to produce a minimum of three alkaline proteases. The proteases were purified by ion-exchange chromatography and were distinguishable by their isoelectric point, molecular weight, and electrophoretic mobility. Two of the proteases, AS and HS, which exhibited the greatest alkaline and thermal stability, were characterized further. Protease HS had an apparent molecular weight of 36,000 and an isoelectric point of approximately 4.2, whereas protease AS had a molecular weight of 27,500 and an isoelectric point of 5.2. Both enzymes had optimal proteolytic activities over a broad pH range (pH 8 to 12) and exhibited temperature optima of 65 degrees C. Proteases HS and AS were further distinguished by their proteolytic activities, esterolytic activities, sensitivity to inhibitors, and their alkaline and thermal stability properties. Protease AS was extremely alkali stable, retaining 88% of initial activity at pH 12 over a 24-h incubation period at 25 degrees C; protease HS exhibited similar alkaline stability properties to pH 11. In addition, protease HS had exceptional thermal stability properties. At pH 9.5 (0.1 M CAPS buffer, 5 mM EDTA), the enzyme had a half-life of more than 200 min at 50 degrees C and 25 min at 60 degrees C. At pH above 9.5, protease HS readily lost enzymatic activity even in the presence of exogenously supplied Ca2+. In contrast, protease AS was more stable at pH above 9.5, and Ca2+ addition extended the half-life of the enzyme 10-fold at 60 degrees C. In contrast, protease AS was more stable at pH above 9.5, and Ca2+ addition extended the half-life of the enzyme 10-fold at 60 degrees C. The data presented here clearly indicate that these two alkaline proteases from Bacillus sp. strain GX6638 represent novel proteases that differ fundamentally from the proteases previously described for members of the genus Bacillus.  相似文献   

16.
Alkaline invertase from sprouting soybean (Glycine max) hypocotyls was purified to apparent electrophoretic homogeneity by consecutive use of DEAE-cellulose, green 19 dye, and Cibacron blue 3GA dye affinity chromatography. This protocol produced about a 100-fold purification with about a 11% yield. The purified protein had a specific activity of 48 mumol of glucose produced mg-1 protein min-1 (pH 7.0) and showed a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) (58 kDa) and in native PAGE, as indicated by both protein and activity staining. The native enzyme molecular mass was about 240 kDa, suggesting a homotetrameric structure. The purified enzyme exhibited hyperbolic saturation kinetics with a Km (sucrose) near 10 mM and the enzyme did not utilize raffinose, maltose, lactose, or cellibose as a substrate. Impure alkaline invertase preparations, which contained acid invertase activity, on contrast, showed biphasic curves versus sucrose concentration. Combining equal activities of purified alkaline invertase with acid invertase resulted in a biphasic response, but there was a transition to hyperbolic saturation kinetics when the activity ratio, alkaline: acid invertase, was increased above unity. Alkaline invertase activity was inhibited by HgCl2, pridoxal phosphate, and Tris with respective Ki values near 2 microM, 5 microM, and 4 mM. Glycoprotein staining (periodic acid-Schiff method) was negative and alkaline invertase did not bind to two immobilized lectins, concanavalin A and wheat germ agglutinin; hence, the enzyme apparently is not a glycoprotein. The purified alkaline invertase, and a purified soybean acid invertase, was used to raise rabbit polyclonal antibodies. The alkaline invertase antibody preparation was specific for alkaline invertase and cross-reacted with alkaline invertases from other plants. Neither purified soybean alkaline invertases nor the crude enzyme from several plants cross-reacted with the soybean acid invertase antibody.  相似文献   

17.
Purification and properties of bromoperoxidase from Pseudomonas pyrrocinia   总被引:1,自引:0,他引:1  
A bromoperoxidase was purified and partially characterized from Pseudomonas pyrrocinia ATCC 15958, a bacterium that produces the antifungal antibiotic pyrrolnitrin. The purified enzyme preparation was homogeneous as determined by polyacrylamide gel electrophoresis and ultracentrifugation. The molecular mass of the enzyme was estimated to be 154 kDa +/- 3 kDa as determined by gel filtration and ultracentrifugation. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed a single band with the mobility of a 76-kDa species. Therefore, in solution at neutral pH, bromoperoxidase exists as a dimeric species. The isoelectric point was 5.0. The prosthetic group of this procaryotic bromoperoxidase was ferriprotoporphyrin IX. The spectral properties of the native and reduced enzyme are reported. The purified enzyme showed brominating as well as peroxidase and catalase activity.  相似文献   

18.
A new thermoalkaliphilic bacterium was isolated from a textile wastewater drain and identified as a new Bacillus sp. (Bacillus SF). Because of its high pH stability and thermostability, a catalase-peroxidase (CP) from this strain has potential for the treatment of textile bleaching effluents. The CP from Bacillus SF was purified to more than 70.3-fold homogeneity using fractionated ammonium sulfate precipitation, hydrophobic interaction, and anion-exchange and gel-filtration chromatography. The native CP had a molecular mass of 165 kDa and was composed of two identical subunits. The isoelectric point of the protein was at pH 6.0. Peptide mass mapping using matrix-assisted laser desorption ionization-mass spectrometry showed a homology between the CP from Bacillus SF and the CP from Bacillus stearothermophilus. The apparent Km value of the catalase activity for H2O2 was 2.6 mM and the k(cat) value was 11,475 s(-1). The enzyme showed high catalase activity and an appreciable peroxidase activity with guaiacol and o-dianisidine. The enzyme was stable at high pH, with a half-life of 104 h at pH 10 and 25 degrees C and 14 h at 50 degrees C. The enzyme was inhibited by azide and cyanide, in a competitive manner, but not by the catalase-specific inhibitor 3-amino-1,2,4-triazole.  相似文献   

19.
Catalase from Bacillus sp. N2a (BNC) isolated from Antarctic seawater was purified to homogeneity. BNC has a molecular mass of about 230 kDa and is composed of four identical subunits of 56 kDa. The catalase showed optimal activity at 25 degrees C and at a pH range of 6-11. The enzyme could be inhibited by azide, hydroxylamine, and mercaptoethanol. These characteristics suggested that BNC is a small-subunit monofunctional catalase. The activation energy of BNC was 13 kJ/mol and the apparent kcat/Km values were 3.6 x 10(6) and 4 x 10(6) L.mol(-1).s(-1) at 4 and 25 degrees C, respectively. High catalytic efficiency of BNC at low temperatures enables this bacterium to scavenge H2O2 efficiently. BNC exhibited activation energy, catalytic efficiency, and thermostability comparable with some mesophilic homologues. Such similarity of enzymatic characteristics to mesophilic homologues, although uncommon among the cold-adapted enzymes in general, has also been observed in other psychrophilic small-subunit monofunctional catalases.  相似文献   

20.
Urate oxidase and catalase were purified from rat liver peroxisomes, and respective antibodies were prepared from rabbits by the administration of these enzymes. Although urate oxidase generally precipitates in immunoprecipitation-possible pH ranges (pH 4.5--9.5), the enzyme remained soluble in 50 mM glycine buffer (pH 9.5) containing 50% glycerol up to concentration of 0.3 mg/ml. Anti-urate oxidase reacted with purified urate oxidase as well as with the crude preparation. After [3H]leucine was injected to rats, urate oxidase and catalase were purified from rat liver at certain intervals, and further precipitated by respective antibodies. The half-life of the catalase was 39 h and that of urate oxidase, 20 h. When the sonicated light mitochondrial fraction was incubated at 37 degrees C and at pH 7.0 or 5.6, inactivation of catalase did not seem to differ between these pH values, and approximately 80% of the catalase activity remained even after 8 h. Urate oxidase was inactivated very rapidly at pH 5.6; only 30% of its activity survived incubation for 6 h. This inactivation was found to occur by some proteolytic process. From these findings, the turnover rate of urate oxidase was found to be different from that of catalase, and this distinction seemed to be due to different sensitivity to some degradative enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号