首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of presentation of class II-restricted T cell determinants of influenza virus hemagglutinin (HA) was investigated over a 48-h time course after pulsing of A20 B lymphoma APC with non-replicative virus or isolated HA. At intervals after Ag pulse, APC were fixed with paraformaldehyde to arrest Ag processing and to preserve the expression levels of the presented determinants. Expression of T cell sites at each time point was probed by a panel of BALC/c T hybridomas specific for the HA of influenza A/Puerto Rico/8/34 virus, recognizing either site 1 (residues 111 to 119), site 2 (126 to 138), or site 3 (302 to 313). Characteristic patterns of presentation were observed for each site: sites 2 and 3 achieved maximal expression by 8 h post pulse, but declined thereafter, whereas site 1 presentation continued to increase over time. The quantitative expression of each T cell site was affected by the proteolysis inhibitor leupeptin, resulting in partial inhibition of site 1, complete blocking of site 2, but enhancement of site 3. However, the expression kinetics of sites 1 and 3, which could be observed in the presence of the inhibitor, remained qualitatively unchanged. These observations indicate that some T cell determinants (e.g., HA site 1) may exhibit a greater longevity of expression on APC than other antigenic sites of the same protein. Differences in the persistence of surface expression of distinct T cell sites may be a factor in their relative immunodominance.  相似文献   

2.
We have shown previously that specific Ag presentation is prevented by the inhibition of protein synthesis but nonspecific presentation is not. In the present paper, Ag presentation by Ag-specific B cells was examined for sensitivity to brefeldin A (BFA), which blocks protein export from the endoplasmic reticulum. A20-HL B lymphoma expressing surface receptors specific for TNP was used as a B cell, and TNP-OVA was used as a specific Ag. The presence of BFA during pulsing of A20-HL cells with TNP-OVA inhibited the ability of the pulsed cells to stimulate 42-6A T cell clone, specific for OVA323-339 and Iad. The inhibition was not due to nonspecific toxicity of BFA, because the presence of BFA during pulsing of A20-HL cells with OVA323-339 did not affect their APC function. Ag binding to the receptor on A20-HL cells and internalization by the cells were observed in the presence of BFA. Thus, BFA might inhibit intracellular processing of specific Ag or intracellular complex formation of antigenic peptide from specific Ag with MHC class II molecules. Nonspecific Ag presentation by A20-HL cells, however, was resistant to BFA. A20-HL cells pulsed with OVA in the presence of BFA, even after fixation, could stimulate 42-6A cells to produce IL-2, although the IL-2 production was lower than that induced by A20-HL cells pulsed in the absence of BFA. These results suggest that the processing pathways for specific Ag and nonspecific Ag are different from each other, at least partly, in A20-HL cells.  相似文献   

3.
CD8+ T cells play an important role in the host response to infection with Mycobacterium tuberculosis (Mtb). Mtb resides in an arrested phagosome that is phenotypically similar to an early endosome. The mechanisms by which Mtb-derived Ags gain access to the HLA-I-processing pathway are incompletely characterized. Studies with CD8+ T cell lines have suggested that Mtb Ags gain access to the HLA-I pathway in an alternate vacuolar pathway that is both brefeldin A (BFA) and TAP independent. To define the requirements of entry of Ag into the HLA-I pathway, we have used human CD8+ T cell clones specific for the secreted Mtb Ag CFP10. Human monocyte-derived dendritic cells were pulsed with CFP10 expressed in a recombinant adenovirus, surface adsorbed to microspheres, or in its native form by Mtb. When delivered by adenovirus, processing and presentation of CFP10 were blocked by both BFA and the proteasomal blocker lactacystin. In contrast, processing of CFP10 adsorbed to the surface of microspheres was not affected by either of these Ag-processing inhibitors. BFA, lactacystin, and TAP inhibition blocked the recognition of Mtb-infected dendritic cells, suggesting that processing was via a cytosolic pathway for this secreted protein Ag. We conclude that secreted proteins from Mtb can be processed in a BFA- and proteasome-dependent manner, consistent with egress of Ag into the cytosol and subsequent loading of proteasomally derived peptides.  相似文献   

4.
Efficient induction of self tolerance is critical for avoiding autoimmunity. The T cells specific for the well-processed and -presented (dominant) determinants of a native self protein are generally tolerized in the thymus, whereas those potentially directed against the inefficiently processed and presented (cryptic) self epitopes escape tolerance induction. We examined whether the crypticity of certain determinants of mouse lysozyme-M (ML-M) could be attributed to the nonavailability of a proteolytic site, and whether it could be reversed to immunodominance by engraftment of a novel cleavage site in the flanking region of the epitope. Using site-directed mutagenesis, we created the dibasic motif (RR or RK; R = arginine, K = lysine), a target of intracellular proteases, in the region adjoining one of the three cryptic epitopes (46-61, 66-79, or 105-119) of ML-M. Interestingly, the mutated lysozyme proteins, but not unmutated ML-M, were immunogenic in mice. The T cell response to the altered lysozyme was attributable to the efficient processing and presentation of the previously cryptic epitope, and this response was both epitope and MHC haplotype specific. In addition, the anti-self T cell response was associated with the generation of autoantibodies against self lysozyme. However, the results using one of three mutated lysozymes suggested that the naturally processed, dibasic motif-marked epitope may not always correspond precisely to the cryptic determinant within a synthetic peptide. This is the first report describing the circumvention of self tolerance owing to the targeted reversal of crypticity to dominance in vivo of a specific epitope within a native self Ag.  相似文献   

5.
We investigated the roles of nascent and recycling MHC class II molecules (MHC II) in the presentation of two well-defined I-E(d)-restricted epitopes that are within distinct regions of the influenza virus hemagglutinin (HA) protein. The site 3 epitope (S3; residues 302-313) lies in the stalk region that unfolds in response to mild acidification, while the site 1 epitope (S1; residues 107-119) is situated in the stable globular domain. In a murine B lymphoma cell line and an I-E(d)-transfected fibroblast cell line, presentation from inactivated virus of S3 is inhibited by primaquine, a compound that prevents recycling of cell surface proteins, including MHC II, while S1 presentation is unaffected. In contrast, brefeldin A, an agent that inhibits exit of proteins from the endoplasmic reticulum, selectively inhibited S1 presentation without affecting S3 presentation, suggesting that S1 presentation requires nascent MHC II. The use of agents that perturb endosomal function revealed a requirement for acidification of internalized viral particles for presentation of both epitopes. Notably, all compounds tested had similar effects on presentation of the two epitopes derived from endogenously synthesized HA. Thus, recycling I-E(d) molecules appear to be crucial for capturing and presenting an epitope that is revealed in mild acidic conditions following the uptake of virions or the synthesis of Ag, while nascent I-E(d) molecules are required for presentation of a second epitope located in a structurally constrained region of the same polypeptide. Viral glycoproteins, such as HA, may have been a major impetus for the evolutionary establishment of this recycling pathway.  相似文献   

6.
Brief exposure of influenza virus to pH 5 was found to have extensive effects upon presentation of viral Th cell antigenic determinants. This acidity, comparable to that encountered in host cell endosomes, was known to effect conformational changes in the viral hemagglutinin (HA) which alter the molecule's fusion activity, antigenicity, and susceptibility to enzymes. Three major effects of low pH upon presentation of viral T cell determinants were observed: first, acid pretreatment permitted presentation by pre-fixed APC of two of three linear T cell sites of the HA molecule, bypassing the APC activity required to present untreated virus; second, the two determinants presented in this manner disappeared rapidly from APC surfaces; third, acid-pretreated virus was not efficiently utilized by active APC in the normal pathway of viral antigen presentation. These observations suggest that the pH-induced conformational transition of HA may constitute sufficient processing for certain linear determinants of the molecule and additionally influences the processes involved in the general formation and presentation of viral T cell sites.  相似文献   

7.
Six nonoverlapping peptides of the neuraminidase (NA) glycoprotein of influenza virus A/Puerto Rico/8/34 (H1N1) (PR8 virus) were found to be immunogenic for proliferating T cells when injected into BALB/c mice in Freund adjuvant. T cells elicited by peptide immunization could recognize PR8 virus in vitro. However, only one of these peptides, corresponding to residues 79 to 93 of NA (NA 79-93), was able to restimulate T cells of mice immunized with infectious virus. T cells that recognized this peptide were uniformly I-Ed restricted, yet infectious influenza virus was required for responses. NA 79-93-specific T-hybridoma clones raised by immunization either with whole virus or with the synthetic peptide alone each responded to replicative virus and not to UV-inactivated virions. These data suggest that the NA 79-93 T-cell determinant which is commonly presented during an encounter with influenza virus in vivo is processed preferentially from NA synthesized within antigen-presenting cells.  相似文献   

8.
The design of effective subunit vaccines requires the inclusion of both B and T cell epitopes. The best mechanism for including both types of epitopes within an Ag is dependent upon how the Ag is processed by the APC for presentation to a responsive Th cell. If it is more efficient to process a single molecule for both helper and primary epitopes, than covalent linkage of B cells and T cell epitopes for intramolecular presentation of help would be recommended. If however, separate peptides containing either B or Th cell epitopes could be included within a single complex for the elicitation of intermolecular/intrastructural help, more antigenically diverse structures could be designed. This paper reports that it is possible to generate intermolecular/intrastructural help within an antigenic peptide-phospholipid (PL) complex. These peptide-PL complexes use well defined epitopes from Plasmodium falciparum as Ag. In addition to generating intrastructural help, we have shown that the Ir to these peptide-PL complexes is controlled by Ir genes and is similar to the Ir to the circumsporozoite protein of this pathogen.  相似文献   

9.
The ability of normal B cells, peritoneal macrophages, and splenic APC to process and present OVA to a panel of T-T hybridomas with different specificities was investigated. In all cases, B cells were less efficient than unfractionated splenocytes in presenting OVA or its peptides. However, when the presentation of native Ag was compared to the presentation of peptides, it was obvious that there were marked differences in the ability of these two APC populations to generate different epitopes from OVA. Leupeptin inhibits the processing of selected epitopes from native OVA differently when it was presented by spleen cells or B cells, suggesting that these two APC populations differ in their protease content. The effect of in vitro culture on the ability of splenic and peritoneal APC to process OVA was also investigated. Native OVA presentation by macrophages and spleen cells was affected by in vitro culture, more for some epitopes than for other epitopes. In contrast, presentation of exogenous peptides by paraformaldehyde-fixed APC was either not affected by previous culturing for 3 days, or very much improved. Altogether, these data demonstrate that different epitopes on the same protein may be independently and differentially processed by B cells and spleen cells. Furthermore, the precise peptides that are produced may vary with the physiologic state of the APC.  相似文献   

10.
Vaccinia virus (VV), currently used in humans as a live vaccine for smallpox, can interfere with host immunity via several discrete mechanisms. In this study, the effect of VV on MHC class II-mediated Ag presentation was investigated. Following VV infection, the ability of professional and nonprofessional APC to present Ag and peptides to CD4+ T cells was impaired. Viral inhibition of class II Ag presentation could be detected within 1 h, with diminished T cell responses dependent upon the duration of APC infection and virus titer. Exposure of APC to replication-deficient virus also diminished class II Ag presentation. Virus infection of APC perturbed Ag presentation by newly synthesized and recycling class II molecules, with disruptions in both exogenous and cytoplasmic Ag presentation. Virus-driven expression of an endogenous Ag, failed to restore T cell responsiveness specific for this Ag in the context of MHC class II molecules. Yet, both class II protein steady-state and cell surface expression were not altered by VV. Biochemical and functional analysis revealed that VV infection directly interfered with ligand binding to class II molecules. Together, these observations suggest that disruption of MHC class II-mediated Ag presentation may be one of multiple strategies VV has evolved to escape host immune surveillance.  相似文献   

11.
Demotz S 《Cellular immunology》1999,193(2):202-208
The relative processing and presentation efficiency of two DR1-restricted determinants from the fusion protein (F protein) of measles virus (MV) was determined using three forms of antigen (Ag): MV, an F protein recombinant vaccinia virus, and a chimerical polypeptide between the glutathione S-transferase and the F protein (GST-F protein). First, it was shown that these different preparations of F protein have distinct processing requirements. In MV-infected B cells, the F254 determinant (contained within the F protein sequence 254-268) relies on protein synthesis for its presentation, while the F314 determinant (contained within the F protein sequence 314-328) is also presented in the absence of protein synthesis. By contrast, in GST-F protein-pulsed B cells, presentation of both determinants is dependent on protein synthesis. Then, it was established that, independently of the form of the Ag, the F314 determinant was considerably more (18- to 36-fold) efficiently processed and presented than the F254 determinant. These results indicate that determinants from the same protein are displayed by antigen-presenting cells at widely different levels and they may also suggest that this is an intrinsic characteristic of the determinants, rather than a feature controlled by the processing pathways followed by the Ag.  相似文献   

12.
We have examined the role of the human responder APC in the generation of CTL responses to xenogeneic antigens. Of six xenogeneic responses evaluated, only the human antimurine response was dependent on human APC for CTL generation. APC requirements for the other five xenogeneic responses more closely resembled those observed in the generation of human or murine alloreactive CTL. Depletion studies identified a defective human CD4+ Th cell-murine stimulator cell interaction that could be bypassed by the addition of exogenous IL-2. The function of the responder APC involved in the human antimurine CTL response was inhibited by chloroquine, suggesting a requirement for Ag processing. Effective presentation of murine stimulator Ag by human APC was completely blocked by anti-human Ia mAb, indicating that the Ag is presented to Th cells via the human class II molecule. These results are consistent with an Ia-dependent recognition of processed murine Ag by human T cells and represents a model for investigating human T cell activation requirements, Th cell function, and MHC restriction.  相似文献   

13.
For most nascent glycoprotein Ags, the MHC class I-restricted processing pathway begins in the endoplasmic reticulum (ER). From this location, they are translocated to the cytosol for degradation by the proteasome. A reasonable assumption is that processing of exocytic Ags is less efficient than that of cytosolic Ags, due to the requirement for additional handling, but that the processing pathways for the two types of proteins are otherwise similar. To test this, we compared the presentation of three epitopes within influenza nucleoprotein (NP) when this Ag is targeted to the cytosol or the ER. Surprisingly, under conditions of limited Ag expression, presentation of two proteasome-dependent epitopes is comparable when NP is targeted to the ER while presentation of a third is negatively impacted. Furthermore, presentation of the third epitope is unaffected by the addition of proteasome inhibitor when cytosolic NP is expressed but is significantly enhanced when exocytic NP is expressed. These results indicate that delivery of Ag to the ER need not preclude efficient presentation and that processing of cytosolic and ER-targeted Ag is qualitatively distinct.  相似文献   

14.
The ability of an adherent Ia+, interleukin 1+ (IL-1) tumor cell line (P388AD) to present turkey gamma-globulin (TGG) to primed T lymphocytes was demonstrated and compared with normal antigen-presenting cells (APC) found in mouse spleen. P388AD tumor cells presented TGG to long-term cultures of TGG-reactive T cells (LTTC) and to lymph node-derived T cells which were enriched on nylon wool columns and subsequently depleted of endogenous antigen-presenting cells with anti-Ia antisera and complement. MHC-restricted antigen presentation by P388AD was observed when long-term cultures of TGG-reactive T cells were used as the responding T-cell population. Furthermore, antisera directed against I-region determinants expressed on the P388AD tumor cells inhibited TGG-specific T-cell proliferation in a dose-related fashion, suggesting a functional role for the tumor cell-associated Ia molecules. The kinetics of antigen presentation to LTTC by P388AD were similar to the kinetics observed for splenic APC, although the magnitude of the proliferative response to LTTC to TGG was generally lower when antigen (Ag) was presented by the tumor cells compared to splenic antigen-presenting cells (APC). However, the magnitude of T-cell proliferation of immune lymph node (LN) T cells was comparable when Ag was presented on tumor cells or splenic APC. Several experiments suggested that Ag uptake and/or processing may be less effective in P388AD tumor cells as compared to normal splenic APC. A nonadherent Ia+, IL-1- tumor cell line (P388NA), which was isolated from the same parental tumor as P388AD, was also tested for the ability to present Ag to primed T lymphocytes and Ag-reactive LTTC. In contrast, to P388AD, the nonadherent tumor cell failed to present TGG under identical culture conditions even though Ia molecules were expressed on the tumor cells and Ag uptake had occurred. However, the defect in Ag presentation by P388NA could be corrected if an exogenous source of purified interleukin 1 was supplied to the cultures. A unique opportunity thus exists with both the P388AD and P388NA tumor cell lines to decipher some of the molecular interactions leading to T-cell proliferation during antigen presentation.  相似文献   

15.
Class II MHC molecules on the surface of an APC present immunogenic peptides derived mainly from exogenous proteins to CD4+ T cells. During its transport to the cell surface, class II molecules intersect the endocytic pathway where they acquire peptides derived from endocytosed proteins. However, class II-restricted presentation of endogenously derived peptides can also occur. The current studies were undertaken to examine the ability of different types of APC to generate and present four different T cell determinants derived from an endogenous, nonsecreted, truncated form of hen-egg white lysozyme (HEL[1-80]-Kk). This was compared with the ability of these APC to generate the same determinants from exogenous HEL. All the peptides derived from endogenous HEL[1-80]-Kk tested, were presented by B cells to HEL-specific T cell hybridomas with an efficiency similar to presentation of the same determinants from exogenous HEL. In contrast, an I-Ak-bearing rat fibroblast was unable to generate the HEL peptide 25-43 from exogenous HEL, but could efficiently produce it from endogenous HEL[1-80]-Kk. The results indicate first, that peptides derived from an endogenous Ag can be presented by MHC class II molecules with an efficiency comparable to that of the presentation of the exogenous Ag. Second, that Ag-presenting B cells can generate the same repertoire of antigenic peptides from endogenous Ag as those generated from the exogenous protein. And third, that in contrast to B cells, certain "nonprofessional" APC can generate, from an endogenous protein, T cell determinants distinct from those generated after endocytosis of the exogenous protein. These results suggest that processing of exogenous and endogenous Ag by different APC take place in different intracellular compartments.  相似文献   

16.
It is generally accepted that a limited number of T cell epitopes are generated by APC from an immunogenic protein. To ascertain the number of determinants on OVA recognized in the context of the H-2s haplotype, we generated 19 T-T hybridomas against OVA and H-2s and we synthesized 46 overlapping peptides spanning the entire protein. Eighteen T-T hybrids were stimulated by eight different peptides. The peptide recognized by one T cell hybrid was not identified. The effect of four protease inhibitors on the processing and presentation of OVA by the LS.102.9 B cell hybridoma seemed to implicate several groups of proteases in the processing of this Ag. Alkylation of cysteine residues with iodoacetic acid showed in a few cases a dramatic decrease in the capacity of OVA to stimulate T-T hybrids recognizing cysteine-free peptides. In contrast, two T-T hybrids recognizing cysteine containing peptides were not affected by the alkylation, suggesting that alkylation inhibited the processing of OVA without affecting peptide interaction with class II MHC molecules. These data demonstrate that the repertoire of peptides generated by APC from OVA is not limited to one or few immunodominant peptides, and results from the activity of several endopeptidases and/or exopeptidases. In addition, the structure of the Ag (native or denatured) was shown to affect the efficiency with which different epitopes are generated.  相似文献   

17.
Immunization with the hen egg-white lysozyme (HEL) protein induces T cells to various of its peptide determinants. The distribution of such T cells, however, does not correlate with the peptide level of each epitope on class II molecules. For this reason, we sought information on the cells responsible for Ag presentation following immunization, hoping to understand the lack of immunodominance in this system. By tracking HEL, and the ensuing peptide/MHC complexes, we find the following: 1) that HEL in the draining lymph node gets concentrated in a limited number of APC, particularly in dendritic cells and macrophages, 2) that these APC are functionally capable of presenting both major and minor determinants of HEL over a 100-fold range of Ag dose, and 3) that B cells present Ag gained at early times after immunization, but only following higher dose immunization. These data indicate that the breadth of a response is maintained over a wide dosage range by concentration of Ag in a limited number of cells presenting high levels and a great diversity of epitopes.  相似文献   

18.
Cell-based vaccines consisting of invariant chain-negative tumor cells transfected with syngeneic MHC class II (MHC II) and costimulatory molecule genes are prophylactic and therapeutic agents for the treatment of murine primary and metastatic cancers. Vaccine efficacy is due to direct presentation of endogenously synthesized, MHC II-restricted tumor peptides to CD4+ T cells. Because the vaccine cells lack invariant chain, we have hypothesized that, unlike professional APC, the peptide-binding groove of newly synthesized MHC II molecules may be accessible to peptides, allowing newly synthesized MHC II molecules to bind peptides that have been generated in the proteasome and transported into the endoplasmic reticulum via the TAP complex. To test this hypothesis, we have compared the Ag presentation activity of multiple clones of TAP-negative and TAP-positive tumor cells transfected with I-Ak genes and the model Ag hen egg white lysozyme targeted to the endoplasmic reticulum or cytoplasm. Absence of TAP does not diminish Ag presentation of three hen egg white lysozyme epitopes. Likewise, cells treated with proteasomal and autophagy inhibitors are as effective APC as untreated cells. In contrast, drugs that block endosome function significantly inhibit Ag presentation. Coculture experiments demonstrate that the vaccine cells do not release endogenously synthesized molecules that are subsequently endocytosed and processed in endosomal compartments. Collectively, these data indicate that vaccine cell presentation of MHC II-restricted endogenously synthesized epitopes occurs via a mechanism independent of the proteasome and TAP complex, and uses a pathway that overlaps with the classical endosomal pathway for presentation of exogenously synthesized molecules.  相似文献   

19.
Th cell recognition of globular proteins requires the uptake and intracellular processing of the native Ag by an APC to produce a peptide fragment containing the T cell antigenic determinant, which is recognized in conjunction with Ia. This report describes the time course of the processing and presentation of a soluble globular protein Ag, pigeon cytochrome c (Pc), and of the presentation of a C-terminal peptide fragment of Pc, residues 81 to 104 (Pc 81-104), which does not require processing. Splenic B cells, acting as APC, require 6 to 8 h incubation with native Pc to process and present it to an I-Ek-restricted Pc-specific T cell hybrid, resulting in the secretion of IL-2. Moreover, the time required for B cells to process Pc is the same whether the Ag is taken up by nonspecific fluid phase pinocytosis or by binding to surface Ig. Once processed, Ag is lost from the B cell surface by 8 to 12 h, although when provided with fresh Pc, the same B cells are still capable of processing and presenting. In contrast to native Pc, only 1 to 2 h are required for the peptide fragment Pc 81-104 to become associated with B cells in a stimulatory fashion, and this time is similar for live and paraformaldehyde-fixed B cells, which cannot internalize or process the peptide. Washed free of excess peptide after 2 h, B cells lose their ability to stimulate T cells by 8 to 12 h, with a time course indistinguishable from that for the loss of processed native Pc. Prolonged incubation of B cells with the peptide for 18 to 24 h results in a dramatic loss of the ability to present Pc 81-104. Even when provided with fresh Pc or Pc 81-104, these cells have diminished ability to present these Ag. This loss is selective, inasmuch as these B cells remain equivalent to untreated B cells in the presentation of an unrelated Ag, OVA, to an I-Ak-restricted specific T cell. However, the ability to present another I-Ek-restricted antigenic peptide of the D glycoprotein of HSV to its specific T cell is also diminished. Loss of activity is observed after incubation only with the peptide and not with the native protein and is not due to a depletion of the antigenic peptide from the incubation medium.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Influenza virus infection induces maturation of murine dendritic cells (DCs), which is most important for the initiation of an immune response. However, in contrast to EL-4 and MC57 cells, DCs present viral CTL epitopes with a delay of up to 10 h. This delay in Ag presentation coincides with the up-regulation of MHC class I molecules as well as costimulatory molecules on the cell surface and the accumulation of newly synthesized ubiquitinated proteins in large cytosolic structures, called DC aggresome-like-induced structures (DALIS). These structures were observed previously after LPS-induced maturation of DCs, and it was speculated that they play a role in the regulation of MHC class I Ag presentation. Our findings provide the first evidence for a connection between DC maturation, MHC class I-restricted Ag presentation, and DALIS formation, which is further supported by the observation that DALIS contain ubiquitinated influenza nucleoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号