首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The relationship between biodiversity and ecosystem stability is poorly understood in microbial communities. Biofilm communities in small bioreactors called microbial electrolysis cells (MEC) contain moderate species numbers and easy tractable functional traits, thus providing an ideal platform for verifying ecological theories in microbial ecosystems. Here, we investigated the resilience of biofilm communities with a gradient of diversity, and explored the relationship between biodiversity and stability in response to a pH shock. The results showed that all bioreactors could recover to stable performance after pH disturbance, exhibiting a great resilience ability. A further analysis of microbial composition showed that the rebound of Geobacter and other exoelectrogens contributed to the resilient effectiveness, and that the presence of Methanobrevibacter might delay the functional recovery of biofilms. The microbial communities with higher diversity tended to be recovered faster, implying biofilms with high biodiversity showed better resilience in response to environmental disturbance. Network analysis revealed that the negative interactions between the two dominant genera of Geobacter and Methanobrevibacter increased when the recovery time became longer, implying the internal resource or spatial competition of key functional taxa might fundamentally impact the resilience performances of biofilm communities. This study provides new insights into our understanding of the relationship between diversity and ecosystem functioning.  相似文献   

2.
Abstract The phylogenetic composition, three-dimensional structure and dynamics of bacterial communities in river biofilms generated in a rotating annular reactor system were studied by fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM). Biofilms grew on independently removable polycarbonate slides exposed in the reactor system with natural river water as inoculum and sole nutrient and carbon source. The microbial biofilm community developed from attached single cells and distinct microcolonies via a more confluent structure characterized by various filamentous bacteria to a mature biofilm rich in polymeric material with fewer cells on a per-area basis after 56 days. During the different stages of biofilm development, characteristic microcolonies and cell morphotypes could be identified as typical features of the investigated lotic biofilms. In situ analysis using a comprehensive suite of rRNA-targeted probes visualized individual cells within the alpha-, beta-, and gamma-Proteobacteria as well as the Cytophaga–Flavobacterium group as major parts of the attached community. The relative abundance of these major groups was determined by using digital image analysis to measure specific cell numbers as well as specific cell area after in situ probing. Within the lotic biofilm community, 87% of the whole bacterial cell area and 79% of the total cell counts hybridized with a Bacteria specific probe. During initial biofilm development, beta-Proteobacteria dominated the bacterial population. This was followed by a rapid increase of alpha-Proteobacteria and bacteria affiliated to the Cytophaga–Flavobacterium group. In mature biofilms, alpha-Proteobacteria and Cytophaga–Flavobacteria continued to be the prevalent bacterial groups. Beta-Proteobacteria constituted the morphologically most diverse group within the biofilm communities, and more narrow phylogenetic staining revealed the importance of distinct phylotypes within the beta1-Proteobacteria for the composition of the microbial community. The presence of sulfate-reducing bacteria affiliated to the Desulfovibrionaceae and Desulfobacteriaceae confirmed the range of metabolic potential within the lotic biofilms. Received: 24 September 1998; Accepted: 17 February 1999  相似文献   

3.
The main aim of this work was to study the simultaneous wear-corrosion of titanium (Ti) in the presence of biofilms composed of Streptococcus mutans and Candida albicans. Both organisms were separately grown in specific growth media, and then mixed in a medium supplemented with a high sucrose concentration. Corrosion and tribocorrosion tests were performed after 48 h and 216 h of biofilm growth. Electrochemical corrosion tests indicated a decrease in the corrosion resistance of Ti in the presence of the biofilms although the TiO2 film presented the characteristics of a compact oxide film. While the open circuit potential of Ti indicated a tendency to corrosion in the presence of the biofilms, tribocorrosion tests revealed a low friction on biofilm covered Ti. The properties of the biofilms were similar to those of the lubricant agents used to decrease the wear rate of materials. However, the pH-lowering promoted by microbial species, can lead to corrosion of Ti-based oral rehabilitation systems.  相似文献   

4.
The present study was an attempt to demonstrate the capabilities of the microbial strains from the unexplored Labit cave in India to precipitate calcite providing evidence for biotic processes involved in formation of speleothem deposits. Six calcifying bacterial strains majority belonging to genus Bacillus were isolated from the cave. SEM studies revealed an array of various in vitro crystal polymorphs generated by the isolated bacteria which are similar to microscopic observations on natural formations in speleothems. The EDX spectrum of the precipitated crystals predominately composed of calcium carbonate indicating the relevance of bacterial biofilm in cave geomicrobiology and biogenic evolution of cave formations in the studied cave, which is further supported by XRF analysis and Raman spectroscopy.  相似文献   

5.
Microbial biofilms assemble from cells that attach to a surface, where they develop into matrix-enclosed communities. Mechanistic insights into community assembly are crucial to better understand the functioning of natural biofilms, which drive key ecosystem processes in numerous aquatic habitats. We studied the role of the suspended microbial community as the source of the biofilm community in three streams using terminal-restriction fragment length polymorphism and 454 pyrosequencing of the 16S ribosomal RNA (rRNA) and the 16S rRNA gene (as a measure for the active and the bulk community, respectively). Diversity was consistently lower in the biofilm communities than in the suspended stream water communities. We propose that the higher diversity in the suspended communities is supported by continuous inflow from various sources within the catchment. Community composition clearly differed between biofilms and suspended communities, whereas biofilm communities were similar in all three streams. This suggests that biofilm assembly did not simply reflect differences in the source communities, but that certain microbial groups from the source community proliferate in the biofilm. We compared the biofilm communities with random samples of the respective community suspended in the stream water. This analysis confirmed that stochastic dispersal from the source community was unlikely to shape the observed community composition of the biofilms, in support of species sorting as a major biofilm assembly mechanism. Bulk and active populations generated comparable patterns of community composition in the biofilms and the suspended communities, which suggests similar assembly controls on these populations.  相似文献   

6.
Phototrophic biofilms seem to be suitable candidates for tertiary wastewater treatment due to their high uptake capacity for nutrients and other pollutants, also taking into account the time and cost savings derived from easy procedures for biomass harvesting. Biomass accrual, structure, and physiology of biofilms affect the efficiency of nutrient removal by its microbial community. Here, we construct a biofilm consisting of a cyanobacterium Synechocystis sp. and the green alga Chlorococcum sp. and determine the effect of combined variations of irradiance and temperature on the biofilm structure and function. The two species were isolated from phototrophic biofilms naturally developing in an Italian wastewater treatment plant and grown in a microcosm designed for biofilm investigations. Phototrophic biomass accumulation, percent species composition, photosynthetic response and the amount and composition of capsular polysaccharides (CPS), including anionic residues, are reported. The results showed that biofilm development required relatively moderate irradiances (60 μmol photons m−2 s−1) below which development was arrested. Both light and temperature had a strong effect on the composition of each species to the biofilm. The CPS compositions also changed with temperature, light and species composition. The CPS of the green-algal-dominated biofilm had the higher uronic acid content indicating a potential to exploit green algae in the treatment of waste contaminated with heavy metals. Given the knowledge of the response of certain species to light and temperature combinations, it may be possible to construct biofilms of known species and CPS composition to use them for specific applications.  相似文献   

7.
Phototrophic Biofilms on Ancient Mayan Buildings in Yucatan, Mexico   总被引:6,自引:0,他引:6  
Buildings at the important archaeological sites of Uxmal and Kabah, Mexico, are being degraded by microbial biofilms. Phospholipid fatty acid (PLFA) and chlorophyll a analyses indicated that phototrophs were the major epilithic microorganisms and were more prevalent on interior walls than exterior walls. Culture and microscopical techniques showed that Xenococcus formed the major biomass on interior surfaces, but the stone-degrading genera Gloeocapsa and Synechocystis were also present in high numbers. Relatively few filamentous algae and cyanobacteria were detected. The fatty acid analysis also showed that complex biofilms colonize these buildings. Circular depressions observed by scanning electron microscopy (SEM) on stone and stucco surfaces beneath the biofilm corresponded in shape and size to coccoid cyanobacteria. SEM images also demonstrated the presence of calcareous deposits on some coccoid cells in the biofilm. Phototrophic biofilms may contribute to biodegradation by (1) providing nutrients that support growth of acid-producing fungi and bacteria and (2) active “boring” behavior, the solubilized calcium being reprecipitated as calcium carbonate. Received: 15 March 1999 / Accepted: 24 June 1999  相似文献   

8.
Recently it was demonstrated that for urinary tract infections species with a lower or unproven pathogenic potential, such as Delftia tsuruhatensis and Achromobacter xylosoxidans, might interact with conventional pathogenic agents such as Escherichia coli. Here, single- and dual-species biofilms of these microorganisms were characterized in terms of microbial composition over time, the average fitness of E. coli, the spatial organization and the biofilm antimicrobial profile. The results revealed a positive impact of these species on the fitness of E. coli and a greater tolerance to the antibiotic agents. In dual-species biofilms exposed to antibiotics, E. coli was able to dominate the microbial consortia in spite of being the most sensitive strain. This is the first study demonstrating the protective effect of less common species over E. coli under adverse conditions imposed by the use of antibiotic agents.  相似文献   

9.
While glaciers become increasingly recognised as a habitat for diverse and active microbial communities, effects of their climate change-induced retreat on the microbial ecology of glacier-fed streams remain elusive. Understanding the effect of climate change on microorganisms in these ecosystems is crucial given that microbial biofilms control numerous stream ecosystem processes with potential implications for downstream biodiversity and biogeochemistry. Here, using a space-for-time substitution approach across 26 Alpine glaciers, we show how microbial community composition and diversity, based on 454-pyrosequencing of the 16S rRNA gene, in biofilms of glacier-fed streams may change as glaciers recede. Variations in streamwater geochemistry correlated with biofilm community composition, even at the phylum level. The most dominant phyla detected in glacial habitats were Proteobacteria, Bacteroidetes, Actinobacteria and Cyanobacteria/chloroplasts. Microorganisms from ice had the lowest α diversity and contributed marginally to biofilm and streamwater community composition. Rather, streamwater apparently collected microorganisms from various glacial and non-glacial sources forming the upstream metacommunity, thereby achieving the highest α diversity. Biofilms in the glacier-fed streams had intermediate α diversity and species sorting by local environmental conditions likely shaped their community composition. α diversity of streamwater and biofilm communities decreased with elevation, possibly reflecting less diverse sources of microorganisms upstream in the catchment. In contrast, β diversity of biofilms decreased with increasing streamwater temperature, suggesting that glacier retreat may contribute to the homogenisation of microbial communities among glacier-fed streams.  相似文献   

10.
Aim: To determine the microbial composition of biofilms in domestic toilets by molecular means. Methods and Results: Genomic DNA was extracted from six biofilm samples originating from households around Düsseldorf, Germany. While no archaeal 16S rRNA or fungal ITS genes were detected by PCR, fingerprinting of bacterial 16S rRNA genes revealed a diverse community in all samples. These communities also differed considerably between the six biofilms. Using the Ribosomal Database Project (RDP) classifier tool, 275 cloned 16S rRNA gene sequences were assigned to 11 bacterial phyla and 104 bacterial genera. Only 15 genera (representing 121 sequences affiliated with Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes and Proteobacteria) occurred in at least half of the samples or contributed at least 10% of the sequences in a single biofilm. These sequences were defined as ‘typical’ for toilet biofilms, and they were examined in more detail. On a 97% sequence similarity level, these sequences represented 56 species. Twelve of these were closely related to well‐described bacterial species, and only two of them were categorized as belonging to risk group 2. No 16S rRNA genes of typical faecal bacteria were detected in any sample. Virtually all ‘typical’ clones were found to be closely related to bacteria or to sequences obtained from environmental sources, implicating that the flushing water is the main source of recruitment. Conclusion: In view of the great diversity of mostly yet‐uncultured bacteria and the considerable differences between individual toilets, very general strategies appear to be most suited for the removal and prevention of toilet biofilms. Significance and Impact of the Study: For the first time, a molecular fingerprinting and cloning approach was used to monitor the species composition in biofilm samples taken from domestic toilets. Knowledge about the microbial composition of biofilms in domestic toilets is a prerequisite for developing and evaluating strategies for their removal and prevention.  相似文献   

11.
Aims: The focus of this work was to investigate the contribution of native Escherichia coli to the microbial quality of irrigation water and to determine the potential for contamination by E. coli associated with heterotrophic biofilms in pipe‐based irrigation water delivery systems. Methods and Results: The aluminium pipes in the sprinkler irrigation system were outfitted with coupons that were extracted before each of the 2‐h long irrigations carried out with weekly intervals. Water from the creek water and sprinklers, residual water from the previous irrigation and biofilms on the coupons were analysed for E. coli. High E. coli concentrations in water remaining in irrigation pipes between irrigation events were indicative of E. coli growth. In two of the four irrigations, the probability of the sample source, (creek vs sprinkler), being a noninfluential factor, was only 0·14, that is, source was an important factor. The population of bacteria associated with the biofilm on pipe walls was estimated to be larger than that in water in pipes in the first three irrigation events and comparable to one in the fourth event. Conclusion: Biofilm‐associated E. coli can affect microbial quality of irrigation water and, therefore, should not be neglected when estimating bacterial mass balances for irrigation systems. Significance and Impact of the Study: This work is the first peer‐reviewed report on the impact of biofilms on microbial quality of irrigation waters. Flushing of the irrigation system may be a useful management practice to decrease the risk of microbial contamination of produce. Because microbial water quality can be substantially modified while water is transported in an irrigation system, it becomes imperative to monitor water quality at fields, rather than just at the intake.  相似文献   

12.
Jagadish S. Patil 《Biofouling》2013,29(3-4):189-206
Abstract

Diatoms, which are early autotrophic colonisers, are an important constituent of the biofouling community in the marine environment. The effects of substratum and temporal variations on the fouling diatom community structure in a monsoon-influenced tropical estuary were studied. Fibreglass and glass coupons were exposed every month for a period of 4 days and the diatom population sampled at 24 h intervals, over a period of 14 months. The planktonic diatom community structure differed from the biofilm community. Pennate diatoms dominated the biofilms whilst centric diatoms were dominant in the water column. Among the biofilm diatoms, species belonging to the genera Navicula, Amphora, Nitzschia, Pleurosigma and Thalassionema were dominant. On certain occasions, the influence of planktonic blooms was also seen on the biofilm community. A comparative study of biofilms formed on the two substrata revealed significant differences in density and diversity. However species composition was almost constant. In addition to substratum variations, the biofilm diatom community structure also showed significant seasonal variations, which were attributed to physico-chemical and biological changes in both the water and substratum. Temporal variations in the tychopelagic diatoms of the water were also observed to exert an influence on the biofilm diatom community. Variations in diatom communities may determine the functional ecosystem of the benthic environment.  相似文献   

13.
Phlegrean Fields is a large volcanic area situated southwest of Naples (Italy), including both cave and thermoacidic habitats. These extreme environments host the genus Cyanidium; the species C. chilense represents a common phototrophic microorganism living in anthropogenic caves. With a view to provide a comprehensive characterization for a correct taxonomic classification, morpho‐ultrastructural investigations of C. chilense from Sybil's cave (Phlegren Fields) was herein carried out and compared with the thermoacidophilic C. caldarium. The biofilm was also analyzed to define the role of C. chilense in the establishment of a biofilm within cave environments. Despite the peculiar ecological and molecular divergences, C. chilense and C. caldarium shared all the main diacritic features, suggesting morphological convergence within the genus; cytological identity was found among C. chilense strains geographically distant and adapted to different substrates, such as the porous yellow tuff of Sybil cave, and calcyte, magnesite and basaltic rocks from other caves. C. chilense is generally dominant in all biofilms, developing monospecific islets, developing both superficially or between fungal hyphae and coccoid cyanobacteria. Extracellular polymeric substances (EPS) were recorded in C. chilense biofilms from Sybil cave, confirming the role of EPS in facilitating cells adhesion to the surface, creating a cohesive network of interconnecting biofilm cells.  相似文献   

14.
The viscoelastic properties of mono‐microbial biofilms produced by ocular and reference staphylococcal strains were investigated. The microorganisms were characterized for their haemolytic activity and agr typing and the biofilms, grown on stainless steel surface under static conditions, were analysed by Confocal Laser Scanning Microscopy. Static and dynamic rheometric tests were carried out to determine the steady‐flow viscosity and the elastic and viscous moduli. The analysed biofilms showed the typical time‐dependent behaviour of viscoelastic materials with considerable elasticity and mechanical stability except for Staphylococcus aureus ATCC 29213 biofilm which showed a very fragile structure. In particular, S. aureus 6ME biofilm was more compact than other staphylococcal biofilms studied with a yield stress ranging between 2 and 3 Pa. The data obtained in this work could represent a starting point for developing new therapeutic strategies against biofilm‐associated infections, such as improving the drug effect by associating an antimicrobial agent with a biofilm viscoelasticity modifier.  相似文献   

15.
Abstract

Polymicrobial biofilms often form on the surfaces of food-processing machinery, causing equipment damage and posing a contamination risk for the foods processed by the system. The composition of the microbial communities that make up these biofilms is largely unknown, especially in the dairy industry. To address this deficit, we investigated the bacterial composition of biofilms that form on the surfaces of equipment during dairy processing using Illumina MiSeq sequencing and culture-dependent methods. Illumina sequencing identified eight phyla, comprising six classes, ten orders, fifteen families, eighteen genera, and eighteen species. In contrast, only eight species were isolated from the same samples using the culture-based method. To determine the ability of the identified bacteria to form biofilms, biofilm formation analysis via crystal violet staining was performed. Five of the eight culturable species, Acinetobacter baumannii, Acinetobacter junii, Enterococcus faecalis, Corynebacterium callunae, and Stenotrophomonas maltophilia, were able to form biofilms. Since most of the identified bacteria are potential food-borne or opportunistic pathogens, this study provides guidance for quality control of products produced in dairy processing facilities.  相似文献   

16.
The composition of exopolymer complexes (EPCs), synthesized by the monocultures Desulfovibrio sp. 10, Bacillus subtilis 36, and Pseudomonas aeruginosa 27 and by microbial associations involved in the corrosion of metal surfaces has been studied. An analysis of the monosaccharide composition of carbohydrate components, as well as the fatty acid composition of the lipid part of EPCs, was carried out by gasliquid chromatography (GLC). It was found that bacteria in biofilms synthesized polymers; this process was dominated by glucose, while the growth of bacteria in a suspension was marked by a high rhamnose content. Hexouronic acids and hexosamine have been revealed as a part of B. subtilis 36 and P. aeruginosa 27 EPCs. Qualitative differences were revealed in the fatty acid composition of exopolymers in biofilms and in a bacterial suspension. It was shown that the transition to a biofilm form of growth led to an increase in the unsaturation degree of fatty acids in the exopolymers of associative cultures. The results can be used to develop methods to control microbial corrosion of metal surfaces.  相似文献   

17.
Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.  相似文献   

18.

Background

Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of an increasingly acidogenic and aciduric microflora. The complex structure of dental biofilms, allowing for a multitude of different ecological environments in close proximity, remains largely unexplored. In this study, we designed a laboratory biofilm model that mimics the bacterial community present during early acidogenic stages of the caries process. We then performed a time-resolved microscopic analysis of the extracellular pH landscape at the interface between bacterial biofilm and underlying substrate.

Methodology/Principal Findings

Strains of Streptococcus oralis, Streptococcus sanguinis, Streptococcus mitis, Streptococcus downei and Actinomyces naeslundii were employed in the model. Biofilms were grown in flow channels that allowed for direct microscopic analysis of the biofilms in situ. The architecture and composition of the biofilms were analysed using fluorescence in situ hybridization and confocal laser scanning microscopy. Both biofilm structure and composition were highly reproducible and showed similarity to in-vivo-grown dental plaque. We employed the pH-sensitive ratiometric probe C-SNARF-4 to perform real-time microscopic analyses of the biofilm pH in response to salivary solutions containing glucose. Anaerobic glycolysis in the model biofilms created a mildly acidic environment. Decrease in pH in different areas of the biofilms varied, and distinct extracellular pH-microenvironments were conserved over several hours.

Conclusions/Significance

The designed biofilm model represents a promising tool to determine the effect of potential therapeutic agents on biofilm growth, composition and extracellular pH. Ratiometric pH analysis using C-SNARF-4 gives detailed insight into the pH landscape of living biofilms and contributes to our general understanding of metabolic processes in in-vivo-grown bacterial biofilms.  相似文献   

19.
The microbial role in the formation of the cortex of low‐Mg calcite freshwater ooids in western part of Lake Geneva in Switzerland has been suggested previously, but not demonstrated conclusively. Early work mostly concentrated in hypersaline milieus, and hence little is known about their genesis in freshwater environments. We designed an in situ experiment to mimic the natural process of low‐Mg calcite precipitation. A special device was placed in the ooid‐rich bank of the lake. It contained frosted glass (SiO2) slides, while quartz (SiO2) is the most abundant mineral composition of ooid nuclei that acted as artificial substrates to favour microbial colonization. Microscopic inspection of the slides revealed a clear seasonal pattern of carbonate precipitates, which were always closely associated with biofilms that developed on the surface of the frosted slides containing extracellular polymeric substance, coccoid and filamentous cyanobacteria, diatoms and heterotrophic bacteria. Carbonate precipitation peaks during early spring and late summer, and low‐Mg calcite crystals mostly occur in close association with filamentous and coccoid cyanobacteria (e.g. Tolypothrix, Oscillatoria and Synechococcus, Anacystis, respectively). Further scanning electron microscope inspection of the samples revealed low‐Mg calcite with crystal forms varying from anhedral to euhedral rhombohedra, depending on the seasons. Liquid cultures corroborate the in situ observations and demonstrate that under the same physicochemical conditions the absence of biofilms prevents the precipitation of low‐Mg calcite crystals. These results illustrate that biofilms play a substantial role in low‐Mg calcite ooid cortex formation. It further demonstrates the involvement of microbes in the early stages of ooid development. Combined with ongoing microbial cultures under laboratory‐controlled conditions, the outcome of our investigation favoured the hypothesis of external microbial precipitation of low‐Mg calcite as the main mechanism involved in the early stage of ooid formation in freshwater Lake Geneva.  相似文献   

20.
We have studied the differences in the organic matter processing and biofilm composition and structure between autoheterotrophic and heterotrophic biofilm communities. Microbial communities grown on artificial biofilms were monitored, following incubation under light and dark conditions and with or without the addition of glucose as a labile organic compound. Glucose addition greatly affected the microbial biofilm composition as shown by differences in 16S rRNA gene fingerprints. A significant increase in β-glucosidase and peptidase enzyme activities were also observed in glucose-amended biofilms incubated in the dark, suggesting an active bacterial community. Light enhanced the algal and bacterial growth, as well as higher extracellular enzyme activity, thereby indicating a tight algal–bacterial coupling in biofilms incubated under illumination. In these biofilms, organic compounds excreted by photosynthetic microorganisms were readily available for bacterial heterotrophs. This algal–bacterial relationship weakened in glucose-amended biofilms grown in the light, probably because heterotrophic bacteria preferentially use external labile compounds. These results suggest that the availability of labile organic matter in the flowing water and the presence of light may alter the biofilm composition and function, therefore affecting the processing capacity of organic matter in the stream ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号