首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glaciers harbour diverse microorganisms, which upon ice melt can be released downstream. In glacier‐fed streams microorganisms can attach to stones or sediments to form benthic biofilms. We used 454‐pyrosequencing to explore the bulk (16S rDNA) and putatively active (16S rRNA) microbial communities of stone and sediment biofilms across 26 glacier‐fed streams. We found differences in community composition between bulk and active communities among streams and a stronger congruence between biofilm types. Relative abundances of rRNA and rDNA were positively correlated across different taxa and taxonomic levels, but at lower taxonomic levels, the higher abundance in either the active or the bulk communities became more apparent. Here, environmental variables played a minor role in structuring active communities. However, we found a large number of rare taxa with higher relative abundances in rRNA compared with rDNA. This suggests that rare taxa contribute disproportionately to microbial community dynamics in glacier‐fed streams. Our findings propose that high community turnover, where taxa repeatedly enter and leave the ‘seed bank’, contributes to the maintenance of microbial biodiversity in harsh ecosystems with continuous environmental perturbations, such as glacier‐fed streams.  相似文献   

2.
While glaciers become increasingly recognised as a habitat for diverse and active microbial communities, effects of their climate change-induced retreat on the microbial ecology of glacier-fed streams remain elusive. Understanding the effect of climate change on microorganisms in these ecosystems is crucial given that microbial biofilms control numerous stream ecosystem processes with potential implications for downstream biodiversity and biogeochemistry. Here, using a space-for-time substitution approach across 26 Alpine glaciers, we show how microbial community composition and diversity, based on 454-pyrosequencing of the 16S rRNA gene, in biofilms of glacier-fed streams may change as glaciers recede. Variations in streamwater geochemistry correlated with biofilm community composition, even at the phylum level. The most dominant phyla detected in glacial habitats were Proteobacteria, Bacteroidetes, Actinobacteria and Cyanobacteria/chloroplasts. Microorganisms from ice had the lowest α diversity and contributed marginally to biofilm and streamwater community composition. Rather, streamwater apparently collected microorganisms from various glacial and non-glacial sources forming the upstream metacommunity, thereby achieving the highest α diversity. Biofilms in the glacier-fed streams had intermediate α diversity and species sorting by local environmental conditions likely shaped their community composition. α diversity of streamwater and biofilm communities decreased with elevation, possibly reflecting less diverse sources of microorganisms upstream in the catchment. In contrast, β diversity of biofilms decreased with increasing streamwater temperature, suggesting that glacier retreat may contribute to the homogenisation of microbial communities among glacier-fed streams.  相似文献   

3.
Microbial community composition and diversity change along chemical gradients, leading to the expectation that microbial community information might provide new gradient characterizations. Here we examine stream bacteria composition and diversity along a strong chemical gradient in Central Appalachian streams. Coal mining in the region generates alkaline mine drainage (AlkMD), causing dramatic increases in conductivity, alkalinity, sulfate and metals sufficient to degrade stream macrobiota communities throughout the ecoregion. In this study, we examined the relationship between water and biofilm chemistry and biofilm bacteria taxonomic composition in streams where active and reclaimed surface coal mines occupied 0–96% of watershed surface area. We incubated wood veneers in each stream site for 4 months to develop biofilms on similar substrates. We sampled water chemistry at the time of deployment and collection, and after 1 month. Following incubation, we collected biofilms for microbial and chemical characterization. Microbial composition was determined by pyrosequencing 16S rRNA amplicons. Biofilm subsamples were analyzed by inductively coupled plasma mass spectrometry to determine metal concentrations. Our results show that microbial community composition differed significantly between AlkMD-exposed and AlkMD-unexposed sites, and that compositional dissimilarity increased with AlkMD loading. Diversity was not correlated with pH or extent of upstream mining, but instead correlated with biofilm concentrations of Cd, Mn, Zn and Ni. Within mined sites, the extent of upstream mining was negatively correlated with taxonomic richness. Despite major compositional shifts, functional capacity predicted with PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) correlated with mining in only 3 of 43 level-2 KEGG (Kyoto Encyclopedia of Genes and Genomes) Orthology groups.  相似文献   

4.
We have studied the differences in the organic matter processing and biofilm composition and structure between autoheterotrophic and heterotrophic biofilm communities. Microbial communities grown on artificial biofilms were monitored, following incubation under light and dark conditions and with or without the addition of glucose as a labile organic compound. Glucose addition greatly affected the microbial biofilm composition as shown by differences in 16S rRNA gene fingerprints. A significant increase in β-glucosidase and peptidase enzyme activities were also observed in glucose-amended biofilms incubated in the dark, suggesting an active bacterial community. Light enhanced the algal and bacterial growth, as well as higher extracellular enzyme activity, thereby indicating a tight algal–bacterial coupling in biofilms incubated under illumination. In these biofilms, organic compounds excreted by photosynthetic microorganisms were readily available for bacterial heterotrophs. This algal–bacterial relationship weakened in glucose-amended biofilms grown in the light, probably because heterotrophic bacteria preferentially use external labile compounds. These results suggest that the availability of labile organic matter in the flowing water and the presence of light may alter the biofilm composition and function, therefore affecting the processing capacity of organic matter in the stream ecosystem.  相似文献   

5.
To quantify the major environmental drivers of stream bacterial population dynamics, we modelled temporal differences in stream bacterial communities to quantify community shifts, including those relating to cyclical seasonal variation and more sporadic bloom events. We applied Illumina MiSeq 16S rRNA bacterial gene sequencing of 892 stream biofilm samples, collected monthly for 36-months from six streams. The streams were located a maximum of 118 km apart and drained three different catchment types (forest, urban and rural land uses). We identified repeatable seasonal patterns among bacterial taxa, allowing their separation into three ecological groupings, those following linear, bloom/trough and repeated, seasonal trends. Various physicochemical parameters (light, water and air temperature, pH, dissolved oxygen, nutrients) were linked to temporal community changes. Our models indicate that bloom events and seasonal episodes modify biofilm bacterial populations, suggesting that distinct microbial taxa thrive during these events including non-cyanobacterial community members. These models could aid in determining how temporal environmental changes affect community assembly and guide the selection of appropriate statistical models to capture future community responses to environmental change.  相似文献   

6.
Resources structure ecological communities and potentially link biodiversity to energy flow. It is commonly believed that functional traits (generalists versus specialists) involved in the exploitation of resources depend on resource availability and environmental fluctuations. The longitudinal nature of stream ecosystems provides changing resources to stream biota with yet unknown effects on microbial functional traits and community structure. We investigated the impact of autochthonous (algal extract) and allochthonous (spruce extract) resources, as they change along alpine streams from above to below the treeline, on microbial diversity, community composition and functions of benthic biofilms. Combining bromodeoxyuridine labelling and 454 pyrosequencing, we showed that diversity was lower upstream than downstream of the treeline and that community composition changed along the altitudinal gradient. We also found that, especially for allochthonous resources, specialisation by biofilm bacteria increased along that same gradient. Our results suggest that in streams below the treeline biofilm diversity, specialisation and functioning are associated with increasing niche differentiation as potentially modulated by divers allochthonous and autochthonous constituents contributing to resources. These findings expand our current understanding on biofilm structure and function in alpine streams.  相似文献   

7.
Biofilms represent a metabolically active and structurally complex component of freshwater ecosystems. Ephemeral prairie streams are hydrologically harsh and prone to frequent perturbation. Elucidating both functional and structural community changes over time within prairie streams provides a general understanding of microbial responses to environmental disturbance. We examined microbial succession of biofilm communities at three sites in a third‐order stream at Konza Prairie over a 2‐ to 64‐day period. Microbial abundance (bacterial abundance, chlorophyll a concentrations) increased and never plateaued during the experiment. Net primary productivity (net balance of oxygen consumption and production) of the developing biofilms did not differ statistically from zero until 64 days suggesting a balance of the use of autochthonous and allochthonous energy sources until late succession. Bacterial communities (MiSeq analyses of the V4 region of 16S rRNA) established quickly. Bacterial richness, diversity and evenness were high after 2 days and increased over time. Several dominant bacterial phyla (Beta‐, Alphaproteobacteria, Bacteroidetes, Gemmatimonadetes, Acidobacteria, Chloroflexi) and genera (Luteolibacter, Flavobacterium, Gemmatimonas, Hydrogenophaga) differed in relative abundance over space and time. Bacterial community composition differed across both space and successional time. Pairwise comparisons of phylogenetic turnover in bacterial community composition indicated that early‐stage succession (≤16 days) was driven by stochastic processes, whereas later stages were driven by deterministic selection regardless of site. Our data suggest that microbial biofilms predictably develop both functionally and structurally indicating distinct successional trajectories of bacterial communities in this ecosystem.  相似文献   

8.
Streams are highly heterogeneous ecosystems, in terms of both geomorphology and hydrodynamics. While flow is recognized to shape the physical architecture of benthic biofilms, we do not yet understand what drives community assembly and biodiversity of benthic biofilms in the heterogeneous flow landscapes of streams. Within a metacommunity ecology framework, we experimented with streambed landscapes constructed from bedforms in large-scale flumes to illuminate the role of spatial flow heterogeneity in biofilm community composition and biodiversity in streams. Our results show that the spatial variation of hydrodynamics explained a remarkable percentage (up to 47%) of the variation in community composition along bedforms. This suggests species sorting as a model of metacommunity dynamics in stream biofilms, though natural biofilm communities will clearly not conform to a single model offered by metacommunity ecology. The spatial variation induced by the hydrodynamics along the bedforms resulted in a gradient of bacterial beta diversity, measured by a range of diversity and similarity indices, that increased with bedform height and hence with spatial flow heterogeneity at the flume level. Our results underscore the necessity to maintain small-scale physical heterogeneity for community composition and biodiversity of biofilms in stream ecosystems.Biofilms (attached and matrix-enclosed microbial communities) are an important form of microbial life in streams and rivers, where they can greatly contribute to ecosystem functions and even large-scale carbon fluxes (1, 3). Streams are inherently heterogeneous and are characterized by a largely unidirectional downstream flow of water that controls the dispersal of suspended microorganisms (21), biofilm community composition (7), architecture (2), and metabolism (13), for instance. However, we do not understand how diverse microorganisms assemble into biofilm communities based on flow heterogeneity and related dispersal in these ecosystems.Dispersal, as the propagation and immigration of biota, can have important consequences for biodiversity and ecosystem functioning in heterogeneous landscapes (18, 25). Landscape topography and turbulent transport affect dispersal, a relationship that is well studied in the dispersal of plant seeds (31) but not in the microbial world. Only recently have microbial ecologists begun to understand the role of dispersal in large-scale biogeographic patterns (29) and metacommunity ecology (24, 44). This growing body of research on microbial dispersal and its consequences for spatial patterns of community assembly and composition rests entirely on free-living bacteria, while no comparable data exist for microbial biofilms. The confirmation of detachment as an intrinsic behavior in many biofilms has led to the appreciation of dispersal as an insurance policy for these microbial communities to seed new habitats during resource limitation or aging of the parental biofilm (4). However, microbial ecology lacks conceptual models to predict postemigration processes, such as cell propagation, immigration, and community assembly during colonization of new surfaces. The perception of biofilms as microbial landscapes and, at the same time, as integrated parts of the landscape they inhabit offers the possibility to test models for habitat selection by dispersal cells (4). In this study, we focused on the assembly of biofilm communities by dispersal cells in spatially variable-flow environments; we did not measure dispersal as the emigration of cells from established biofilms. We adopted metacommunity ecology as a framework that encapsulates environmental heterogeneity and dispersal (18) to illuminate the mechanisms underlying community assembly.If the effects of microbial diversity on ecosystem functions are to be understood, we need to address the proper spatial resolution at which microorganisms assemble into communities and at which their functioning becomes manifest. In streams, this is typically at the level of habitats and microhabitats ranging from meters to centimeters, where characteristic geomorphological features (e.g., bedforms) and induced hydrodynamic fields develop and where spatial variations in biofilm metabolism become apparent (13). The ensemble of these small-scale variations translates into the landscape heterogeneity of the streambed.The aim of this study was to test whether spatial flow heterogeneity generating diverse microhabitats induces spatial species turnover and increases the biodiversity of microbial biofilms. Microbial metacommunity ecology predicts mass effects rather than species sorting to drive community composition in ecosystems with low residence time, such as streams (14, 18, 24). To test this prediction, we constructed six streambed landscapes from bedforms of defined dimensions differing in height; the mean flow (at flume scale) was kept constant, whereas the spatial heterogeneity of flow increased across the gradient of the six landscapes. The inoculum (i.e., the stream water and naturally contained microorganisms) and water chemistry were equal in all flumes. This allowed us to isolate flow heterogeneity as a potential driver of biofilm community composition in a high-energy ecosystem. We used terminal restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S rRNA gene sequences from winter and summer communities and related bacterial community composition and microbial biomass to the hydrodynamics in representative microhabitats using causal modeling and forward selection of explanatory variables (9, 23).  相似文献   

9.
The temples of Angkor monuments including Angkor Thom and Bayon in Cambodia and surrounding countries were exclusively constructed using sandstone. They are severely threatened by biodeterioration caused by active growth of different microorganisms on the sandstone surfaces, but knowledge on the microbial community and composition of the biofilms on the sandstone is not available from this region. This study investigated the microbial community diversity by examining the fresh and old biofilms of the biodeteriorated bas-relief wall surfaces of the Bayon Temple by analysis of 16S and 18S rRNA gene sequences. The results showed that the retrieved sequences were clustered in 11 bacterial, 11 eukaryotic and two archaeal divisions with disparate communities (Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria; Alveolata, Fungi, Metazoa, Viridiplantae; Crenarchaeote, and Euyarchaeota). A comparison of the microbial communities between the fresh and old biofilms revealed that the bacterial community of old biofilm was very similar to the newly formed fresh biofilm in terms of bacterial composition, but the eukaryotic communities were distinctly different between these two. This information has important implications for understanding the formation process and development of the microbial diversity on the sandstone surfaces, and furthermore to the relationship between the extent of biodeterioration and succession of microbial communities on sandstone in tropic region.  相似文献   

10.
The bacterial community composition in small streams and a river in central Germany was examined by temperature gradient gel electrophoresis (TGGE) with PCR products of 16S rRNA gene fragments and sequence analysis. Complex TGGE band patterns suggested high levels of diversity of bacterial species in all habitats of these environments. Cluster analyses demonstrated distinct differences among the communities in stream and spring water, sandy sediments, biofilms on stones, degrading leaves, and soil. The differences between stream water and sediment were more significant than those between sites within the same habitat along the stretch from the stream source to the mouth. TGGE data from an entire stream course suggest that, in the upper reach of the stream, a special suspended bacterial community is already established and changes only slightly downstream. The bacterial communities in water and sediment in an acidic headwater with a pH below 5 were highly similar to each other but deviated distinctly from the communities at the other sites. As ascertained by nucleotide sequence analysis, stream water communities were dominated by Betaproteobacteria (one-third of the total bacteria), whereas sediment communities were composed mainly of Betaproteobacteria and members of the Fibrobacteres/Acidobacteria group (each accounting for about 25% of bacteria). Sequences obtained from bacteria from water samples indicated the presence of typical cosmopolitan freshwater organisms. TGGE bands shared between stream and soil samples, as well as sequences found in bacteria from stream samples that were related to those of soil bacteria, demonstrated the occurrence of some species in both stream and soil habitats. Changes in bacterial community composition were correlated with geographic distance along a stream, but in comparisons of different streams and rivers, community composition was correlated only with environmental conditions.  相似文献   

11.
The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity.  相似文献   

12.
13.
Biofilms in streams play an integral role in ecosystem processes and function yet few studies have investigated the broad diversity of these complex prokaryotic and eukaryotic microbial communities. Physical habitat characteristics can affect the composition and abundance of microorganisms in these biofilms by creating microhabitats. Here we describe the prokaryotic and eukaryotic microbial diversity of biofilms in sand and macrophyte habitats (i.e. epipsammon and epiphyton, respectively) in five macrophyte‐rich streams in Jutland, Denmark. The macrophyte species varied in growth morphology, C:N stoichiometry, and preferred stream habitat, providing a range in environmental conditions for the epiphyton. Among all habitats and streams, the prokaryotic communities were dominated by common phyla, including Alphaproteobacteria, Bacteriodetes, and Gammaproteobacteria, while the eukaryotic communities were dominated by Stramenopiles (i.e. diatoms). For both the prokaryotes and eukaryotes, the epipsammon were consistently the most diverse communities and the epiphytic communities were generally similar among the four macrophyte species. However, the communities on the least complex macrophyte, Sparganium emersum, had the lowest richness and evenness and fewest unique OTUs, whereas the macrophyte with the most morphological complexity, Callitriche spp., had the highest number of unique OTUs. In general, the microbial taxa were ubiquitously distributed across the relatively homogeneous Danish landscape as determined by measuring the similarity among communities (i.e. Sørensen similarity index). Furthermore, we found significant correlations between microbial diversity (i.e. Chao1 rarefied richness and Pielou's evenness) and biofilm structure and function (i.e. C:N ratio and ammonium uptake efficiency, respectively); communities with higher richness and evenness had higher C:N ratios and lower uptake efficiency. In addition to describing the prokaryotic and eukaryotic community composition in stream biofilms, our study indicates that 1) physical habitat characteristics influence microbial diversity and 2) the variation in microbial diversity may dictate the structural and functional characteristics of stream biofilm communities.  相似文献   

14.
Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5–152 μmole photons s?1 m?2) and combined 454‐pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph‐derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure–function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes.  相似文献   

15.
The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep‐sea environments. Using artificial surface‐based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of this study shed new light on microbial community assembly in special habitats and bridge a gap in species sorting theory.  相似文献   

16.
1. Leaves that fall into the water represent a new habitat for microorganisms to colonise in streams, providing an opportunity to study colonisation and the subsequent regulation of community structure. We explored community composition of bacteria and fungi on decomposing alder leaves in nine streams in central Sweden, and describe their relationship with environmental variables. Succession of the microbial community was studied in one of the streams for 118 days. Microbial community composition was examined by denaturing gradient gel electrophoresis on replicate samples of leaves from each stream. 2. During succession in one stream, maximum taxon richness was reached after 34 days for bacteria and 20 days for fungi respectively. Replicate samples within this stream differed between each other earlier in colonisation, while subsequently such variation among replicate communities was low and remained stable for several weeks. Replicate samples taken from all the nine streams after 34 days of succession showed striking similarities in microbial communities within‐streams, although communities differed more strongly between streams. 3. Canonical analysis of microbial communities and environmental variables revealed that water chemistry had a significant influence on community composition. This influence was superimposed on a statistical relationship between the properties of stream catchments and microbial community composition. 4. The catchment regulates microbial communities in two different ways. It harbours the species pool from which the in‐stream microbial community is drawn and it governs stream chemistry and the composition of organic substrates that further shape the communities. We suggest that there is a random element to colonisation early in succession, whereas other factors such as species interactions, stream chemistry and organic substrate properties, result in a more deterministic regulation of communities during later stages.  相似文献   

17.
Biliary stents inserted to relieve obstructive jaundice caused by biliary or pancreatic malignancies inevitably become occluded by microbial growth in the form of diverse microbial community biofilms. The scarce information available on these communities is based on cultivation methods, but such methods usually provide distorted overviews of community composition, so commonalities and differences in biliary stent communities are uncertain. We extracted DNA and RNA from the microbial communities of 11 biliary stents explanted from nine patients in hospitals from two different countries, amplified 16S rRNA and rDNA sequences, analysed the amplicons by the single-strand conformation polymorphism (SSCP) method, and sequenced and deduced phylogenetic assignments of the major amplicons representing the major biofilm community members. We used a Modified Robbins Device (MRD) to study de novo development of a stent biofilm from a patient stent microbial community. Single-strand conformation polymorphism fingerprinting revealed the same six abundant bacterial species, here designated Leitbakteria, namely Klebsiella pneumoniae, Enterococcus faecalis, Pseudomonas aeruginosa, Enterobacter aerogenes, and two unculturable bacteria distantly related to E. coli and Shigella sonnei, in all of the stent biofilm communities. In the experimental biliary stent system, a sequential colonization of the stent surface was observed, with P. aeruginosa being the pioneer colonizer, followed by K. pneumoniae and one of the unculturable Leitbakteria, followed by the remainder of the community. The overview of microbial biofilm communities of biliary stents gained by the use of culture-independent methods revealed new unculturable bacteria as major members of biliary stent biofilms, and the diversity of the abundant members of the stent biofilms is considerably lower than suggested from earlier studies based on cultivation methods, and that communities from different stents from different patients in different countries are remarkably similar and have similar major members, the stent Leitbakteria.  相似文献   

18.
The heterogeneous nature of lotic habitats plays an important role in the complex ecological and evolutionary processes that structure the microbial communities within them. Due to such complexity, our understanding of lotic microbial ecology still lacks conceptual frameworks for the ecological processes that shape these communities. We explored how bacterial community composition and underlying ecological assembly processes differ between lotic habitats by examining community composition and inferring community assembly processes across four major habitat types (free-living, particle-associated, biofilm on benthic stones and rocks, and sediment). This was conducted at 12 river sites from headwater streams to the main river in the River Thames, UK. Our results indicate that there are distinct differences in the bacterial communities between four major habitat types, with contrasting ecological processes shaping their community assembly processes. While the mobile free-living and particle-associated communities were consistently less diverse than the fixed sediment and biofilm communities, the latter two communities displayed higher homogeneity across the sampling sites. This indicates that the relative influence of deterministic environmental filtering is elevated in sediment and biofilm communities compared with free-living and particle-associated communities, where stochastic processes play a larger role.  相似文献   

19.
Alpine streams are dynamic habitats harboring substantial biodiversity across small spatial extents. The diversity of alpine stream biota is largely reflective of environmental heterogeneity stemming from varying hydrological sources. Globally, alpine stream diversity is under threat as meltwater sources recede and stream conditions become increasingly homogeneous. Much attention has been devoted to macroinvertebrate diversity in alpine headwaters, yet to fully understand the breadth of climate change threats, a more thorough accounting of microbial diversity is needed. We characterized microbial diversity (specifically Bacteria and Archaea) of 13 streams in two disjunct Rocky Mountain subranges through 16S rRNA gene sequencing. Our study encompassed the spectrum of alpine stream sources (glaciers, snowfields, subterranean ice, and groundwater) and three microhabitats (ice, biofilms, and streamwater). We observed no difference in regional (γ) diversity between subranges but substantial differences in diversity among (β) stream types and microhabitats. Within‐stream (α) diversity was highest in groundwater‐fed springs, lowest in glacier‐fed streams, and positively correlated with water temperature for both streamwater and biofilm assemblages. We identified an underappreciated alpine stream type—the icy seep—that are fed by subterranean ice, exhibit cold temperatures (summer mean <2°C), moderate bed stability, and relatively high conductivity. Icy seeps will likely be important for combatting biodiversity losses as they contain similar microbial assemblages to streams fed by surface ice yet may be buffered against climate change by insulating debris cover. Our results show that the patterns of microbial diversity support an ominous trend for alpine stream biodiversity; as meltwater sources decline, stream communities will become more diverse locally, but regional diversity will be lost. Icy seeps, however, represent a source of optimism for the future of biodiversity in these imperiled ecosystems.  相似文献   

20.
Drinking water distribution systems (DWDSs) harbor the microorganisms in biofilms and suspended communities, yet the diversity and spatiotemporal distribution have been studied mainly in the suspended communities. This study examined the diversity of biofilms in an urban DWDS, its relationship with suspended communities and its dynamics. The studied DWDS in Urbana, Illinois received conventionally treated and disinfected water sourced from the groundwater. Over a 2-year span, biomass were sampled from household water meters (n=213) and tap water (n=20) to represent biofilm and suspended communities, respectively. A positive correlation between operational taxonomic unit (OTU) abundance and occupancy was observed. Examined under a ‘core-satellite'' model, the biofilm community comprised 31 core populations that encompassed 76.7% of total 16 S rRNA gene pyrosequences. The biofilm communities shared with the suspended community highly abundant and prevalent OTUs, which related to methano-/methylotrophs (i.e., Methylophilaceae and Methylococcaceae) and aerobic heterotrophs (Sphingomonadaceae and Comamonadaceae), yet differed by specific core populations and lower diversity and evenness. Multivariate tests indicated seasonality as the main contributor to community structure variation. This pattern was resilient to annual change and correlated to the cyclic fluctuations of core populations. The findings of a distinctive biofilm community assemblage and methano-/methyltrophic primary production provide critical insights for developing more targeted water quality monitoring programs and treatment strategies for groundwater-sourced drinking water systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号