首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In 1995 and 1996, we conducted a study of the hymenopteran parasitoids of macrolepidopteran larvae in the George Washington National Forest (GWNF), Augusta County, Virginia, and the Monongahela National Forest (MNF), Pocahontas County, West Virginia. Macrolepidopteran larvae were collected from canopy foliage and from under canvas bands placed around tree boles. A total of 115 macrolepidopteran species and 5,235 individual larvae were reared. Forty-two percent (2,221) of the larvae were gypsy moth, Lymantria dispar (L.) (Lymantriidae). A total of 43 primary and secondary (hyperparasitoid) hymenopteran parasitoid species were reared from 46 macrolepidopteran species. Hymenopteran families represented included Ichneumonidae (23 species), Braconidae (19), Eulophidae (6), Perilampidae (1), and Trigonalidae (1). We reared 41 and 28 parasitoid species from the GWNF and the MNF, respectively, with 19 species reared from both forests. Many parasitoid species were collected infrequently, suggesting that they are relatively rare on the sampled hosts. The introduced species Cotesia melanoscela (Ratzeburg) (Braconidae), and Euplectrus bicolor (Swederus) (Eulophidae) were among the most commonly reared parasitoids, the latter reared from native hosts. The four most commonly reared native parasitoids were Meteorus hyphantriae, Riley (Braconidae), Microplitis near hyphantriae (Ashmead) (Braconidae), Aleiodes preclarus Marsh & Shaw, and Euplectrus maculiventris (Westwood) (Eulophidae). A total of 53 new hymenopteran parasitoid-macrolepidopteran host records were documented. Results from this study will be used to evaluate long-term treatment effects of regional applications of Bacillus thuringiensis kurstaki, and the gypsy moth fungus Entomophaga maimaiga Humber, Shimazu & Soper on hymenopteran parasitoids of macrolepidopteran larvae.  相似文献   

2.
Generalist parasitoids are well‐known to be able to cope with the high genotypic and phenotypic plasticity of plant volatiles by learning odours during their host encounters. In contrast, specialised parasitoids often respond innately to host‐specific cues. Previous studies have shown that females of the specialised egg parasitoid Chrysonotomyia ruforum Krausse (Hymenoptera: Eulophidae) are attracted to volatiles from Pinus sylvestris L. induced by the egg deposition of its host Diprion pini L. (Hymenoptera: Diprionidae), when they have previously experienced pine twigs with host eggs. In this study we investigated by olfactometer bioassays how specifically C. ruforum responded to oviposition‐induced plant volatiles. Furthermore, we studied whether parasitoids show an innate response to oviposition‐induced pine volatiles. Naïve parasitoids were not attracted to oviposition‐induced pine volatiles. The attractiveness of volatiles from pines carrying eggs was shown to be specific for the pine and herbivore species, respectively (species specificity). We also tested whether not only oviposition, but also larval feeding, induces attractive volatiles (developmental stage specificity). The feeding of D. pini larvae did not induce the emission of P. sylvestris volatiles attractive to the egg parasitoid. Our results show that a specialist egg parasitoid does not innately show a positive response to oviposition‐induced plant volatiles, but needs to learn them. Furthermore, the results show that C. ruforum as a specialist does not learn a wide range of volatiles as some generalists do, but instead learns only a very specific oviposition‐induced plant volatile pattern, i.e., a pattern induced by the most preferred host species laying eggs on the most preferred food plant.  相似文献   

3.
The development of effective biological control programs in which predators are integrated with other natural enemies such as parasitoids and entomopathogens requires an understanding of their interactions. In this study we examined the extent to which the omnivorous mirid bug Dicyphus hesperus, an effective biological control agent of greenhouse whiteflies, accepts prey that are either parasitized by the specialist whitefly parasitoid, Encarsia formosa or infected by the generalist fungal entomopathogen, Beauveria bassiana. In non-choice laboratory experiments, we measured how parasitism and infection of greenhouse whitefly, Trialeurodes vaporariorum, as related to parasitoid age and course of fungal infection, might alter the probability of feeding by second instar or adult female predators. Predation by D. hesperus was similar for parasitized and unparasitized whiteflies, regardless of parasitoid age. However, predators generally avoided feeding on infected whiteflies, particularly when infection was manifested through the presence of oosporein or hyphae on the surface of prey.  相似文献   

4.
Plant–herbivore–parasitoid interactions are a common occurrence in terrestrial food webs. Few parasitoids are thought to be shared by host insects of different feeding guilds because different parasitism strategies are required to use hosts of different feeding types. However, this assumption has rarely been tested using data from nature. To clarify whether parasitoids are shared among host guilds, I examined the structure of parasitoid communities on herbivore guilds associated with two Rhododendron species (Ericaceae) in a temperate secondary forest in central Japan. Leaf- and flower-feeding insects were collected from Rhododendron reticulatum and Rhododendron macrosepalum shrubs and reared in the laboratory for 3 years from April 1999 to March 2002. In total, 79 species of holometabolous herbivores (Lepidoptera, Diptera, Coleoptera, and Hymenoptera) were recorded, with 62 species on R. reticulatum and 51 species on R. macrosepalum. A total of 81 parasitoid species (Hymenoptera and Diptera) was recorded from the sampled herbivores, with 48 species from those on R. reticulatum and 50 species from those on R. macrosepalum. In total, 36 herbivore species were parasitised by 1–18 parasitoid species per host species, although the number of parasitoid species was strongly affected by sample size. Parasitoids that had two or more host species frequently attacked herbivore species from different families or on different host plants, whereas they did not attack species from different herbivore guilds; no parasitoids were shared between external feeders and rollers. Therefore, my results support the hypothesis that few parasitoids are shared among herbivores of different feeding guilds.  相似文献   

5.
1 The braconid parasitoid Bracon hylobii Ratz. is one of the few specialist natural enemies of the large pine weevil, Hylobius abietis L., a destructive pest of conifer transplants. An assessment of its role as an agent of biological control requires a detailed knowledge of the allocation of its reproductive effort. 2 Parasitoid females were continuously observed in laboratory culture with individually reared host larvae in bark discs. The outcome of sequential parasitoid–host encounters was recorded by subsequent examination of hosts and by rearing all parasitoids. 3 Parasitoids avoided ovipositing on host larvae < 100 mg fresh weight, even though such larvae represented sufficient biomass for complete parasitoid development. All larger larvae were vulnerable to attack, which leaves a window of vulnerability for parasitoids of about 90% of weevil larval life. 4 Parasitoids presented with a range of host sizes showed no preference above 100 mg for the size of host first attacked, but allocated more eggs and a greater total handling time to larger hosts. 5 Most eggs were deposited on the first host attacked, with progressively fewer allocated to subsequent hosts. However, oviposition experience did not affect the time spent on the next host. 6 From these results it is anticipated that when weevil larval size is reduced by less favourable feeding substrates, fewer parasitoid eggs will be allocated to each but more host larvae will ultimately be attacked. 7 Generation time, host finding, oviposition rate, clutch size, life expectancy and diapause induction are strongly affected by temperature. Life expectancy is substantially shorter for parasitoids deprived of non‐host food supplement. At 15 and 20 °C the number of hosts attacked and the number of eggs deposited decreased with female age. 8 Bracon hylobii is inevitably poorly synchronized with a variable life‐cycle host; it is egg‐limited and can enter diapause at a relatively high field temperature. None of these characteristics suggest that it could stabilize the abundance of its host below an economically acceptable threshold density. However, the reproductive potential of the parasitoid suggests that it could make a significant contribution to larval mortality and suppress adult recruitment, thus complementing other control strategies.  相似文献   

6.
Parasitoid wasp communities of the canopy of temperate forests are still largely unexplored. Very little is known about the community composition of parasitoids between canopy and understory and how much of this difference is related to forest structure or parasitoid biological strategies. In this study we investigated upon the difference in the community composition of the parasitic wasps Ichneumonidae between canopy and understory in a lowland temperate forest in northern Italy. We used general linear models to test whether parasitic strategy modifies species vertical stratification and the effect of forest structure. We also tested differences in β‐diversity between canopy and understory traps and over time within single forest layers. We found that stand basal area was positively related to species richness, suggesting that the presence of mature trees can influence local wasp diversity, providing a higher number of microhabitats and hosts. The ichneumonid community of the canopy was different from that of the understory, and the β‐diversity analysis showed higher values for the canopy, due to a higher degree of species turnover between traps. In our analyses, the vertical stratification was different between groups of ichneumonids sharing different parasitic strategies. Idiobiont parasitoids of weakly or deeply concealed hosts were more diverse in the understory than in the canopy while parasitoids of spiders were equally distributed between the two layers. Even though the ichneumonid community was not particularly species‐rich in the canopy of the temperate forests, the extension of sampling to that habitat significantly increased the number of species recorded.  相似文献   

7.
A. D. Watt 《Oecologia》1989,78(2):251-258
Summary This paper reports part of a study to determine why damaging outbreaks of the pine beauty moth, Panolis flammea (D & S) (Lepidoptera: Noctuidae), in Scotland are frequent on lodgepole pine but do not occur on Scots pine, and why outbreaks on lodgepole pine are mainly confined to trees growing in deep unflushed peat. The elongation of shoots and the growth of needles of Scots pine occurred later in the season than did those of lodgepole pine. The foliage of Scots pine generally had a higher level of nitrogen, and consistently had a higher level of phosporus, but had a consistently lower level of tannins than that of lodgepole pine during the period when the larvae were feeding each year. The nitrogen content of the foliage of lodgepole pine growing in an iron pan soil was generally higher than that of lodgepole pine growing in deep peat during the same period but there were no general differences in the phosphorus or tannin contents of lodgepole pine in the 2 soil types. These findings suggest that Scots pine is a more suitable host plant than lodgepole pine and that the foliage of lodgepole pine growing in deep peat is not more suitable than lodgepole pine growing in an iron pan soil. On the basis of the chemical analyses used in this study, it is concluded that the abundance of pine beauty moth in Scotland is not strongly influenced by the nutritional suitability of its host plants.  相似文献   

8.
1. Induced plant responses can affect herbivores either directly, by reducing herbivore development, or indirectly, by affecting the performance of natural enemies. Both the direct and indirect impacts of induction on herbivore and parasitoid success were evaluated in a common experimental system, using clonal poplar trees Populus nigra (Salicales: Salicaceae), the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae), and the gregarious parasitoid Glyptapanteles flavicoxis (Marsh) (Hymenoptera: Braconidae). 2. Female parasitoids were attracted to leaf odours from both damaged and undamaged trees, however herbivore‐damaged leaves were three times more attractive to wasps than undamaged leaves. Parasitoids were also attracted to herbivore larvae reared on foliage and to larval frass, but they were not attracted to larvae reared on artificial diet. 3. Prior gypsy moth feeding elicited a systemic plant response that retarded the growth rate, feeding, and survival of gypsy moth larvae, however induction also reduced the developmental success of the parasitoid. 4. The mean number of parasitoid progeny emerging from hosts fed foliage from induced trees was 40% less than from uninduced trees. In addition, the proportion of parasitised larvae that survived long enough to issue any parasitoids was lower on foliage from induced trees. 5. A conceptual and analytical model is provided to describe the net impacts of induced plant responses on parasitoids, and implications for tritrophic interactions and biological control of insect pests are discussed.  相似文献   

9.
Laboratory experiments were conducted to examine the effect of ryegrass infection by the endophytic fungusAcremonium loliiLatch, Christensen and Samuels onMicroctonus hyperodaeLoan, a parasitoid ofListronotus bonariensis(Kuschel). Progression of parasitoids through the larval instar stages was shown to depend on adequate nutrition of the weevil host. Compared to confinement on endophyte-free ryegrass, parasitized weevils held on nonpreferred diets comprising leaf segments from endophyte-infected ryegrass and switchgrass contained parasitoid larvae with retarded development. Similarly, development of parasitoid larvae was retarded in hosts feeding on artificial diet containing diterpenes and alkaloids ofA. loliiorigin. Several diterpenes incorporated into the diet reduced survival of the parasitoid larvae. Attack rate of parasitoids was reduced when the quality of potential host weevils was compromised by confinement on nonpreferredA. lolii-infected ryegrass or without food for 14 days.  相似文献   

10.
In this study we examined the relationship between clutch size and parasitoid development of Muscidifurax raptorellus (Hymenoptera: Pteromalidae), a gregarious idiobiont attacking pupae of the housefly, Musca domestica (Diptera: Muscidae). Host quality was controlled in the experiments by presenting female parasitoids with hosts of similar size and age. This is the first study to monitor the development of a gregarious idiobiont parasitoid throughout the course of parasitism. Most female wasps laid clutches of one to four eggs per host, although some hosts contained eight or more parasitoid larvae. In both sexes, parasitoids completed development more rapidly, but emerging adult wasp size decreased as parasitoid load increased. Furthermore, the size variability of eclosing parasitoid siblings of the same sex increased with clutch size. Irrespective of clutch size, parasitoids began feeding and growing rapidly soon after eclosion from the egg and this continued until pupation. However, parasitoids in hosts containing five or more parasitoid larvae pupated one day earlier than hosts containing one to four larvae. The results are discussed in relation to adaptive patterns of host utilization by gregarious idiobiont and koinobiont parasitoids.  相似文献   

11.
The compatibility of infective juveniles (IJs) of the entomopathogenic nematode, Steinernema feltiae, the parasitic wasps Diglyphus isaea and Dacnusa sibirica, and chemical insecticides to control larval stages of the South American leafminer, Liriomyza huidobrensis, on leafy salad crops was investigated. In intact leaf mines, leafminer larvae already parasitized by D. isaea which had developed to the larval or pupal stage, and D. sibirica in the larval stage were subsequently also infected by S. feltiae following a foliar application. This reduced the potential of the wasps to survive until the adult stage. In similar tests foliar applied chemical insecticides reduced the survival to adulthood of D. sibirica and their host larvae. However, a soil drench of imidaclorpid did not cause a significant reduction in the number of D. sibirica which survived the treatment and developed to adult emergence. Tests to investigate the utilisation of parasitoids following foliar applications of nematodes found that adult D. isaea did not discriminate between the healthy and nematode-infected leafminer larvae for host feeding, although 98% of eggs laid by the female wasps were deposited alongside healthy larvae.  相似文献   

12.
Abstract.  Parasitoids locate hosts using reliable and predictable cues such as smells derived from host plants or from the hosts themselves. For host species that live with mutualistic organisms, such as several wood boring insects, cues derived from the symbionts are likely to be exploited by specific parasitoids. Through a set of bioassays, the behaviour of the parasitoid Ibalia leucospoides Hochenwarth (Hymenoptera: Ibaliidae) is studied in response to the fungus Amylostereum areolatum Boidin (Basidiomycotina: Corticiaceae), a symbiont of its host, the wood wasp Sirex noctilio Fabricius (Hymenoptera: Siricidae). The results show that parasitoids are attracted to the fungus when growing naturally within pine logs, and also when growing on an artificial medium. Fungal volatiles also elicit increased parasitoid activity and may provide information on relative densities of hosts available for parasitization. It is speculated that the the chemical information derived from the host fungal symbiont comprises reliable and detectable host-locating cues used by parasitoids to search for concealed hosts.  相似文献   

13.
Abstract 1. Networks of feeding interactions among insect herbivores and natural enemies such as parasitoids, describe the structure of these assemblages and may be critically linked to their dynamics and stability. The present paper describes the first quantitative study of parasitoids associated with gall‐inducing insect assemblages in the tropics, and the first investigation of vertical stratification in quantitative food web structure. 2. Galls and associated parasitoids were sampled in the understorey and canopy of Parque Natural Metropolitano in the Pacific forest, and in the understorey of San Lorenzo Protected Area in the Caribbean forest of Panama. Quantitative host–parasitoid food webs were constructed for each assemblage, including 34 gall maker species, 28 host plants, and 57 parasitoid species. 3. Species richness was higher in the understorey for parasitoids, but higher in the canopy for gall makers. There was an almost complete turnover in gall maker and parasitoid assemblage composition between strata, and the few parasitoid species shared between strata were associated with the same host species. 4. Most parasitoid species were host specific, and the few polyphagous parasitoid species were restricted to the understorey. 5. These results suggest that, in contrast to better‐studied leaf miner–parasitoid assemblages, the influence of apparent competition mediated by shared parasitoids as a structuring factor is likely to be minimal in the understorey and practically absent in the canopy, increasing the potential for coexistence of parasitoid species. 6. High parasitoid beta diversity and high host specificity, particularly in the poorly studied canopy, indicate that tropical forests may be even more species rich in hymenopteran parasitoids than previously suspected.  相似文献   

14.
Assessing the heat tolerance (CTmax) of organisms is central to understand the impact of climate change on biodiversity. While both environment and evolutionary history affect CTmax, it remains unclear how these factors and their interplay influence ecological interactions, communities and ecosystems under climate change. We collected and reared caterpillars and parasitoids from canopy and ground layers in different seasons in a tropical rainforest. We tested the CTmax and Thermal Safety Margins (TSM) of these food webs with implications for how species interactions could shift under climate change. We identified strong influence of phylogeny in herbivore–parasitoid community heat tolerance. The TSM of all insects were narrower in the canopy and parasitoids had lower heat tolerance compared to their hosts. Our CTmax-based simulation showed higher herbivore–parasitoid food web instability under climate change than previously assumed, highlighting the vulnerability of parasitoids and related herbivore control in tropical rainforests, particularly in the forest canopy.  相似文献   

15.
A host–parasitoid system with overlapping generations is considered. The dynamics of the system is described by differential equations with a control parameter describing the behavior of the parasitoids. The control parameter models how the parasitoids split their time between searching for hosts and searching for non-host food. The choice of the control parameter is based on the assumption that each parasitoid maximizes the instantaneous growth rate of the number of copies of its genotype. It is shown that optimal individual behavior of parasitoids, with respect to time sharing between hosts and food searching, may have a stabilizing effect on the host–parasitoid dynamics.  相似文献   

16.
The processes maintaining the enormous diversity of herbivore—parasitoid food webs depend on parasitism rate and parasitoid host specificity. The two parameters have to be evaluated in concert to make conclusions about the importance of parasitoids as natural enemies and guide biological control. We document parasitism rate and host specificity in a highly diverse caterpillar-parasitoid food web encompassing 266 species of lepidopteran hosts and 172 species of hymenopteran or dipteran parasitoids from a lowland tropical forest in Papua New Guinea. We found that semi-concealed hosts (leaf rollers and leaf tiers) represented 84 % of all caterpillars, suffered a higher parasitism rate than exposed caterpillars (12 vs. 5 %) and their parasitoids were also more host specific. Semi-concealed hosts may therefore be generally more amenable to biological control by parasitoids than exposed ones. Parasitoid host specificity was highest in Braconidae, lower in Diptera: Tachinidae, and, unexpectedly, the lowest in Ichneumonidae. This result challenges the long-standing view of low host specificity in caterpillar-attacking Tachinidae and suggests higher suitability of Braconidae and lower suitability of Ichneumonidae for biological control of caterpillars. Semi-concealed hosts and their parasitoids are the largest, yet understudied component of caterpillar—parasitoid food webs. However, they still remain much closer in parasitism patterns to exposed hosts than to what literature reports on fully concealed leaf miners. Specifically, semi-concealed hosts keep an equally low share of idiobionts (2 %) as exposed caterpillars.  相似文献   

17.
Closed-canopy upland hardwood stands often lack diverse understory structure and composition, limiting available nutrition for white-tailed deer (Odocoileus virginianus) as well as nesting and foraging structure for other wildlife. Various regeneration methods can positively influence understory development; however, non-commercial strategies are needed to improve available nutrition in many stands, as some contain timber that is not ready to harvest and others are owned by landowners who are not interested in harvesting timber. Applications of herbicide and prescribed fire have improved availability of food and cover for deer and other wildlife in pine (Pinus spp.) systems. However, this strategy has not been evaluated in hardwood systems. To evaluate the influence of fire and herbicide treatments on available deer forage in upland hardwood systems, we measured forage availability and calculated nutritional carrying capacity (NCC) at 14% crude protein mixed diet, following 7 silvicultural treatments, including controls, in 4 mixed upland hardwood stands July–September 2007 and 2008. We compared NCC among forest treatments and within 4 paired warm-season forage food plots to evaluate the usefulness of food plots in areas where forests are managed. Nutritional carrying capacity estimates (deer days/ha) were greatest following canopy reduction with prescribed fire treatments in both years. Understory herbicide application did not affect species composition or NCC 1 year or 2 years post-treatment. Production of forage plantings exceeded that of forest treatments both years with the exception of early-maturing soybeans and retention cut with fire 2 years post-treatment. We encourage land managers to use canopy reducing treatments and low-intensity prescribed fire to increase available nutrition and improve available cover where needed in upland hardwood systems. In areas where deer density may limit understory development, high-quality forage food plots may be used to buffer browsing while strategies to reduce deer density and stimulate the forest understory are implemented. © 2011 The Wildlife Society.  相似文献   

18.
In the adult stage, many parasitoids require hosts for their offspring growth and plant-derived food for their survival and metabolic needs. In agricultural fields, nectar provisioning can enhance biological control by increasing the longevity and fecundity of many species of parasitoids. Provided in a host patch, nectar can also increase patch quality for parasitoids and affect their foraging decisions, patch time residence, patch preference or offspring allocation. The aim of this study was to investigate the impact of extrafloral nectar (EFN) provisioning close to hosts on parasitoid aggregation in patches. The aphid parasitoid Diaeretiella rapae (M’Intosh) was released inside or outside patches containing Brassica napus L. infested by Brevicoryne brassicae L. aphids and Vicia faba L. with or without EFN. When parasitoids were released outside patches, more parasitoids were observed in patches with EFN than in patches deprived of EFN. This higher recruitment could be linked to a higher attraction of a combination of host and food stimuli or a learning process. A release–recapture experiment of labeled parasitoids released within patches showed the higher retention of parasitoids in patches providing EFN and hosts, suggesting that food close to the host patch affects patch residence time. Both attractiveness and patch retention could be involved in the higher number of parasitoids foraging in host patches surrounded by nectar and for the higher parasitism recorded. Nectar provisioning in host patches also affected female offspring allocation inside the patch.  相似文献   

19.
1 Predation and parasitism on litter‐buried cocoons of the common pine sawfly Diprion pini (L.) were compared in different forest types with endemic sawfly populations by field exposure of laboratory‐reared cocoons during three consecutive years (1993–1995). 2 The impact of cocoon predation was dependent on season and forest type. The highest predation (up to 95%) was found during autumn in forest stands with a dense understory vegetation. 3 Cocoon parasitism varied between year, season and forest type. The highest parasitoid attack was observed in pure pine forests with more or less barren soils, but did not exceed 24% of exposed cocoons. 4 Cocoons were exposed in small patches. Predators tended to exploit all cocoons of a patch, whereas parasitoids only attacked a few cocoons of a patch. Predation was similar on cocoons placed in the litter and those buried more deeply in the soil, whereas parasitism of soil‐buried cocoons was rare. 5 These results indicate that predators can have a remarkable potential for limiting endemic sawfly densities, if habitat conditions in a forest maintain their population and support their foraging behaviour. A notable effect of parasitoids on sawfly cocoons deposited in the litter is obviously restricted to typical pure and barren pine forests, but may play there a similar role as predation.  相似文献   

20.
1 When laying eggs, adult female Diprion pini discriminated between clones of Scots pine, Pinus sylvestris. 2 Larval survival was affected by Scots pine clone but was not correlated with oviposition preference. 3 Diprion pini laid most eggs on tougher needles of Scots pine. 4 There was no evidence to suggest that D. pini is responding to the monoterpene composition of the foliage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号