首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The vertical stratification of lepidopteran and coleopteran communities in a cool-temperate deciduous forest in Japan was examined to evaluate the hypothesis of an expected uniform distribution of mobile flying insects between the canopy and understory of temperate forests. Lepidopteran and coleopteran insects were trapped using light traps at three sites in each of the canopy and understory for three consecutive nights each month from April to October 2001. For Lepidoptera, species richness, abundance, and family richness were significantly higher in the understory than in the canopy. For Coleoptera, only abundance was larger in the canopy relative to the understory; species and family richness did not differ between the strata. The beta diversity of the lepidopteran community was larger between the strata than among sites, but the coleopteran community showed an inverse pattern. These results imply the presence of vertical stratification within the lepidopteran community, but not within the coleopteran community, in the temperate forest. The understory contributes more than the canopy to lepidopteran diversity in the temperate forest, although this stratification may be relatively weak because, in contrast to the situation in tropical forests, the canopy and understory assemblages share many species.  相似文献   

2.
Most insects' assemblages differ with forest type and show vertical stratification. We tested for differences in richness, abundance and composition of hymenopteran families and mymarid genera between sugar maple (Acer saccharum) and white pine (Pinus strobus) stands and between canopy and understory in northeastern temperate forests in Canada. We used flight interception traps (modified malaise traps) suspended in the canopy and the understory in a split-split block design, with forest type as the main factor, forest stratum as the first split factor, and collection bottle location as the second split factor. Hymenopteran families and mymarid genera differed in their diversity depending on forest type and stratum. Both family and genera richness were higher in maple than in pine forests, whereas family richness was higher in the canopy and top bottles and generic richness was higher in the understory and bottom bottles. Multivariate analysis separated samples by forest type, vegetation stratum, and bottle location. Family composition showed 77% similarity between forest types and 73% between the canopy and understory. At the lower taxa level, mymarid genera showed only 47% similarity between forest types and 40% between forest strata, indicating vertical stratification and relatively high beta-diversity. Our study suggests that hymenopteran diversity and composition is strongly dependent on forest type and structure, making flying members of this order particularly vulnerable to forest management practices. It also shows that insect assemblage composition (especially at low-taxon levels), rather than relative abundance and richness, is the community attribute most sensitive to forest type and vertical stratification.  相似文献   

3.
4.
Vertical niche partitioning might be one of the main driving forces explaining the high diversity of forest ecosystems. However, the forest’s vertical dimension has received limited investigation, especially in temperate forests. Thus, our knowledge about how communities are vertically structured remains limited for temperate forest ecosystems. In this study, we investigated the vertical structuring of an arboreal caterpillar community in a temperate deciduous forest of eastern North America. Within a 0.2-ha forest stand, all deciduous trees ≥ 5 cm diameter at breast height (DBH) were felled and systematically searched for caterpillars. Sampled caterpillars were assigned to a specific stratum (i.e. understory, midstory, or canopy) depending on their vertical position and classified into feeding guild as either exposed feeders or shelter builders (i.e. leaf rollers, leaf tiers, webbers). In total, 3892 caterpillars representing 215 species of butterflies and moths were collected and identified. While stratum had no effect on caterpillar density, feeding guild composition changed significantly with shelter-building caterpillars becoming the dominant guild in the canopy. Species richness and diversity were found to be highest in the understory and midstory and declined strongly in the canopy. Family and species composition changed significantly among the strata; understory and canopy showed the lowest similarity. Food web analyses further revealed an increasing network specialization towards the canopy, caused by an increase in specialization of the caterpillar community. In summary, our study revealed a pronounced stratification of a temperate forest caterpillar community, unveiling a distinctly different assemblage of caterpillars dwelling in the canopy stratum.  相似文献   

5.
Vertical stratification of avian communities has been studied in both temperate and tropical forests; however, the majority of studies used ground-based methods. In this study we used ground-to-canopy mist nets to collect detailed data on vertical bird distribution in primary rain forest in Wanang Conservation Area in Papua New Guinea (Madang Province). In total 850 birds from 86 species were caught. Bird abundance was highest in the canopy followed by the understory and lowest in the midstory. Overall bird diversity increased towards the canopy zone. Insectivorous birds represented the most abundant and species-rich trophic guild and their abundances decreased from the ground to canopy. The highest diversity of frugivorous and omnivorous birds was confined to higher vertical strata. Insectivorous birds did not show any pattern of diversity along the vertical gradient. Further, insectivores preferred strata with thick vegetation, while abundance and diversity of frugivores increased with decreasing foliage density. Our ground-to-canopy (0–27 m) mist netting, when compared to standard ground mist netting (0–3 m), greatly improved bird diversity assessment and revealed interesting patterns of avian community stratification along vertical forest strata.  相似文献   

6.
多样化松林中昆虫群落多样性特征   总被引:4,自引:2,他引:2  
刘兴平  刘向辉  王国红  韩瑞东  戈峰 《生态学报》2005,25(11):2976-2982
马尾松和湿地松是我国南方的2种主要松树。通过对6种不同林分结构下的马尾松林和湿地松林内昆虫群落调查与多样性指数分析,表明2种松树内的昆虫种类和数量无显著差异,混交林中的昆虫群落的种类和数量比纯林多,尤其以捕食天敌类群的种类和数量更为明显。整个昆虫群落和植食类群多样性指数以湿地松林内较大,而天敌(捕食类群和寄生类群)多样性指数则以马尾松林较高。从不同林分结构下昆虫多样性的比较来看,混交林内昆虫群落多样性指数波动较小,明显地高于纯林。但不同林分结构下昆虫多样性随水平分布和垂直分层格局而变化,松树北面和东面各样地之间的昆虫群落多样性指数差异显著,而南、西面之间差异较小;树冠层各样地之间的差异达极显著水平,而枯枝落叶层和树干层之间差异不显著。由此,还进一步讨论了混交林中昆虫群落稳定性问题。  相似文献   

7.
We investigated the community structure of ichneumonid wasps inhabiting beech forests at six sites in the Tanzawa Mountains of Japan under different magnitudes of impact by sika deer Cervus nippon and beech sawfly Fagineura crenativora on vegetation. Using yellow flight-interception traps, we captured 2,528 ichneumonid wasps representing 367 species in 23 subfamilies. The number of species at each site ranged from 77 to 136 and approximately 80% of these were low-density species (i.e. only one to two individuals captured per site). The number of individuals at each site ranged from 248 to 897, and the percentage of the beech sawfly parasitoids varied widely from 1% to 57%. The numbers of species in parasitoid groups categorized according to their hosts, that is, sawfly (not including the beech sawfly), Lepidoptera, woodborer, fungivore or the others, did not greatly differ among the study sites. Parasitoids attacking herbivorous insects exceeded others in species richness and abundance at all sites. Six sites were classified into four groups in terms of abundance of the host groups when excluding the parasitoids of the beech sawfly, but into only two groups when including these parasitoids. Species diversity and evenness were the highest at the least impacted site even if the beech sawfly parasitoids were excluded from calculation. We suggested some environmental factors, such as groundcover vegetation, abundance of the beech sawfly and structure and age of forest stands, that could have affected the community structure of ichneumonid wasps in the beech forests.  相似文献   

8.
Species assemblages and their interactions vary through space, generating diversity patterns at different spatial scales. Here, we study the local‐scale spatial variation of a cavity‐nesting bee and wasp community (hosts), their nest associates (parasitoids), and the resulting antagonistic network over a continuous and homogeneous habitat. To obtain bee/wasp nests, we placed trap‐nests at 25 sites over a 32 km2 area. We obtained 1,541 nests (4,954 cells) belonging to 40 host species and containing 27 parasitoid species. The most abundant host species tended to have higher parasitism rate. Community composition dissimilarity was relatively high for both hosts and parasitoids, and the main component of this variability was species turnover, with a very minor contribution of ordered species loss (nestedness). That is, local species richness tended to be similar across the study area and community composition tended to differ between sites. Interestingly, the spatial matching between host and parasitoid composition was low. Host β‐diversity was weakly (positively) but significantly related to geographic distance. On the other hand, parasitoid and host‐parasitoid interaction β‐diversities were not significantly related to geographic distance. Interaction β‐diversity was even higher than host and parasitoid β‐diversity, and mostly due to species turnover. Interaction rewiring between plots and between local webs and the regional metaweb was very low. In sum, species composition was rather idiosyncratic to each site causing a relevant mismatch between hosts and parasitoid composition. However, pairs of host and parasitoid species tended to interact similarly wherever they co‐occurred. Our results additionally show that interaction β‐diversity is better explained by parasitoid than by host β‐diversity. We discuss the importance of identifying the sources of variation to understand the drivers of the observed heterogeneity.  相似文献   

9.
Tropical forests accommodate rich species diversity, particularly among insects. Habitat heterogeneity along the vertical gradient extending from the forest understorey to the tree canopy influences diversity. The vertical distribution of forest insects is poorly understood across Africa, most especially eastern Africa. Food‐baited traps were used to study the vertical stratification of adult fruit‐feeding nymphalid butterflies in Mtai Forest Reserve, north‐eastern Tanzania. Traps were located in the forest canopy and understorey. A total of 277 individuals of 24 species were captured. Species composition differed by trap locations: 33% of the species captured were found in both the canopy and understorey strata; however, significantly more species were captured in the understorey (54%) than canopy (13%). Males were significantly more abundant than females and captured in both strata. A greater proportion of females were captured in the understorey than the canopy. The time of day affected capture rates, with more individuals caught in the afternoon; however, there was no association between the time period and the sex of individuals captured in canopy versus understorey locations. Understanding how the sexes of butterflies vary in understorey versus canopy offers new biological insights into the vertical stratification of insects.  相似文献   

10.
Plant diversity changes can impact the abundance, diversity, and functioning of species at higher trophic levels. We used an experimental gradient in grassland plant diversity ranging from 1 to 16 plant species to study multitrophic interactions among plants, cavity-nesting bees and wasps, and their natural enemies, and analysed brood cell density, insect diversity (species richness), and bee and wasp community similarity over two consecutive years. The bee and wasp communities were more similar among the high (16 species) diversity plots than among plots of the lower diversity levels (up to 8 species), and a more similar community of bees and wasps resulted in a more similar community of their parasitoids. Plant diversity, which was closely related to flower diversity, positively and indirectly affected bee diversity and the diversity of their parasitoids via increasing brood cell density of bees. Increasing plant diversity directly led to higher wasp diversity. Parasitism rates of bees and wasps (hosts) were not affected by plant diversity, but increased with the diversity of their respective parasitoids. Decreases in parasitism rates of bees arose from increasing brood cell density of bees (hosts), whereas decreasing parasitism rates of wasps arose from increasing wasp diversity (hosts). In conclusion, decreases in plant diversity propagated through different trophic levels: from plants to insect hosts to their parasitoids, decreasing density and diversity. The positive relationship between plant diversity and the community similarity of higher trophic levels indicates a community-stabilising effect of high plant diversity.  相似文献   

11.
Forest degradation is leading to widespread negative impacts on biodiversity in South-east Asia. Tropical peat-swamp forests are one South-east Asian habitat in which insect communities, and the impacts of forest degradation on them, are poorly understood. To address this information deficit, we investigated the impacts of forest gaps on fruit-feeding butterflies in the Sabangau peat-swamp forest, Central Kalimantan, Indonesia. Fruit-baited traps were used to monitor butterflies for 3 months during the 2009 dry season. A network of 34 traps (ngap = 17, nshade = 17) was assembled in a grid covering a 35 ha area. A total of 445 capture events were recorded, comprising 384 individuals from 8 species and 2 additional species complexes classified to genera. On an inter-site scale, canopy traps captured higher species richness than understory traps; however, understory traps captured higher diversity within each site. Species richness was positively correlated with percent canopy cover and comparisons of diversity indices support these findings. Coupled with results demonstrating morphological differences in thorax volume and forewing length between species caught in closed-canopy traps vs. those in gaps, this indicates that forest degradation has a profound effect on butterfly communities in this habitat, with more generalist species being favored in disturbed conditions. Further studies are necessary to better understand the influences of macro-habitat quality and seasonal variations on butterfly diversity and community composition in South-east Asian peat-swamp forests.  相似文献   

12.
Demography, spatial pattern, and diversity of canopy and subcanopy trees, shrubs, and lianas were compared in two cool and two warm temperate North American forests, paired at 30° and 40° north latitudes. All woody stems 1 cm dbh in 16 randomly located, non-contiguous plots totalling 1 ha at each of the four sites were measured, mapped, and identified. Basal area and overall density did not differ between latitudes. Demographic and spatial analyses revealed remarkable similarity in spatial dispersion, irrespective of density or species composition. At all sites, dispersion of canopy trees was random but all understory stems were uniformly distributed relative to all canopy trees. Species diversity and vertical structure differed between the warm and cool temperate sites, especially in species composition of individual strata. Associations of understory species relative to canopy species were more random at 30° than at 40° north, where a higher degree of association between canopy and understory species' patterns, coupled with their size class distributions, suggested more lengthy regeneration cycles and an alternation of species assemblages. The forests at 30°, those subject to periodic canopy disturbance by hurricanes, had more vertical mixing of species (i.e., canopy species represented in all size classes), more tree saplings, and significantly more shrub and liana species.  相似文献   

13.
Plant–soil interactions are increasingly recognized to play a major role in terrestrial ecosystems functioning. However, few studies to date have focused on slow dynamic ecosystems such as forests. As they are vertically stratified by multiple vegetation strata, canopy tree removal by thinning operations could alter forest plant community through tree canopy opening. Very little is known about cascading effects on soil biodiversity. We conducted a large‐scale, multi‐site assessment of collembolan assemblage response to long‐term canopy tree removal in sessile oak Quercus petraea temperate forests. A total of 33 experimental plots were studied covering a large gradient of canopy tree basal area, stand age and local abiotic contexts. Collembolan abundance strongly declined with canopy tree removal in early forest successional stage and this was mediated by negative effect of understory plant community composition changes, i.e. shift from moss and forb to tree seedling, fern, shrub and grass species. Negative effect of this composition shift on collembolan species richness was largely offset by positive effect of the increase in understory plant species richness. This gives support to both the plant mass‐ratio and functional diversity hypotheses. Collembolan functional groups had contrasting response patterns, which were mediated by different ecological factors. Epedaphic (r‐strategist) abundance and species richness increased with canopy tree removal in relation with the increase in understory plant species richness. In contrast, euedaphic (K‐strategist) abundance and species richness declined with canopy tree removal in early forest successional stage in relation with changes in understory plant community composition and species richness, as well as microclimatic conditions. Overall, our study provides experimental evidence that forest plant community can be a strong driver of collembolan assemblages. It also emphasizes the role of trees as foundation species of forest ecosystems that can shape soil biodiversity through their regulation of understory plant community and ecosystem abiotic conditions.  相似文献   

14.
Because of the magnitude of land use currently occurring in tropical regions, the local loss of animal species due to habitat fragmentation has been widely studied, particularly in the case of vertebrates. Many invertebrate groups and the ichneumonid wasps in particular, however, have been poorly studied in this context, despite the fact that they are one of the most species-rich groups and play an important role as regulators of other insect populations. Here, we recorded the taxonomic composition of ichneumonid parasitoids and assessed their species richness, abundance, similarity, and dominance in the Los Tuxtlas tropical rain forest, Mexico. We compared two forest types: a continuous forest (640 ha) and a forest fragment (19 ha). We sampled ichneumonids using four malaise traps in both forest types during the dry (September–October) and rainy (March–April) seasons. A total of 104 individuals of Ichneumonidae belonging to 11 subfamilies, 18 genera, and 42 species were collected in the continuous forest and 11 subfamilies, 15 genera, and 24 species were collected in the forest fragment. Species richness, abundance, and diversity of ichneumonids were greater in the continuous forest than in the forest fragment. We did not detect differences between seasons. Species rank/abundance curves showed that the ichneumonid community between the forest types was different. Species similarity between forest types was low. The most dominant species in continuous forest was Neotheronia sp., whereas in the forest fragment, it was Orthocentrus sp. Changes in the ichneumonid wasp community may compromise important tropical ecosystem processes.  相似文献   

15.
Temperate forests are one of the most important ecosystems in the world, and thus disentangling the factors that drive diversity within these ecosystems is of major concern. However, due to the complex interactions among forests layers, topography and soil factors, discovering the drivers of diversity is often complicated. In this study, we tested three a priori hypotheses about the effect of the dominant competitor (Pinus koraiensis) on the different forest layers in a 25 ha full mapped plot of temperate forest in the Changbai Mountain of northeastern China. Structural equation modelling (SEM) was used to study the direct and indirect interactions between four vertical forest layers (dominant competitor, canopy composition, sub‐canopy diversity and shrub diversity), topographic factors, edaphic factors to discover sub‐canopy and shrub diversity drivers. Our results suggest that the dominant competitor (Pinus koraiensis) is a key factor explaining canopy variation, and sub‐canopy diversity and shrub diversity, and that this competitor can act directly (through shading) and indirectly (through the modification of the soil). Topographic heterogeneity also had significant effects on the soil variation and the diversity of the sub‐canopy and shrub layers. Finally our results indicate that the influence of canopy composition on the diversity of the rest of forest layers is indirect and positive, suggesting that the dominant competitor is the main factor limiting diversity. In conclusion, we have found strong evidence that the dominant species of the canopy can influence, both directly and indirectly, the diversity of the different vertical forest layers. Patterns of diversity in forests are driven by a multiplicity of factors that are inherently related.  相似文献   

16.
为了解长期植被恢复的成熟人工林林下植物组成与多样性特征及其影响因素,基于广东鹤山生态系统国家野外科学观测研究站的南亚热带人工林生态系统,对环境相似(坡度、坡向、海拔)、30 a生4种类型人工林(桉树混交林、马占相思纯林、乡土混交林、针叶混交林)进行调查研究,分析林下植物组成和物种多样性(Shannon-Wiener指数、Simpson指数、Pielou指数)特征。结果表明,人工林林下植物类型丰富,均可形成乔-灌-草垂直结构;4种林型林下植物组成既有相似性,也有差异性,桉树混交林与针叶混交林、马占相思纯林与乡土混交林的灌木层组成相似;桉树混交林与马占相思纯林、乡土混交林与针叶混交林的草本层组成相似,而桉树混交林与针叶混交林的草本层组成极不相似。林分类型影响林下植物多样性,马占相思纯林林下灌草多样性显著低于其他3种混交林(P<0.05),灌木物种数、个体数最少;针叶混交林林下物种丰富度最高。林分郁闭度与林下植物多样性呈正相关(P<0.001),林下植物分布与土壤养分含量相关,桉树混交林、马占相思纯林林下植物多样性与不同形态氮含量相关,有效磷、全磷影响乡土混交林林下物种的分布,针叶混交林受土壤酸碱度、全钾的影响较为明显。在4种人工林林下植物群落中,乡土混交林多样性,均匀度最高,优势度最低,具有更佳的保育和维持林下生物多样性功能。因此,乡土树种混交林更适用于生态公益林构建或对一些针叶林及外来树种纯林进行林分改造。  相似文献   

17.
Abstract 1. Networks of feeding interactions among insect herbivores and natural enemies such as parasitoids, describe the structure of these assemblages and may be critically linked to their dynamics and stability. The present paper describes the first quantitative study of parasitoids associated with gall‐inducing insect assemblages in the tropics, and the first investigation of vertical stratification in quantitative food web structure. 2. Galls and associated parasitoids were sampled in the understorey and canopy of Parque Natural Metropolitano in the Pacific forest, and in the understorey of San Lorenzo Protected Area in the Caribbean forest of Panama. Quantitative host–parasitoid food webs were constructed for each assemblage, including 34 gall maker species, 28 host plants, and 57 parasitoid species. 3. Species richness was higher in the understorey for parasitoids, but higher in the canopy for gall makers. There was an almost complete turnover in gall maker and parasitoid assemblage composition between strata, and the few parasitoid species shared between strata were associated with the same host species. 4. Most parasitoid species were host specific, and the few polyphagous parasitoid species were restricted to the understorey. 5. These results suggest that, in contrast to better‐studied leaf miner–parasitoid assemblages, the influence of apparent competition mediated by shared parasitoids as a structuring factor is likely to be minimal in the understorey and practically absent in the canopy, increasing the potential for coexistence of parasitoid species. 6. High parasitoid beta diversity and high host specificity, particularly in the poorly studied canopy, indicate that tropical forests may be even more species rich in hymenopteran parasitoids than previously suspected.  相似文献   

18.
Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights into the important ecological associations between understory plant community composition and heterogeneity in ecosystem properties and processes within forests dominated by a single canopy species.  相似文献   

19.
该研究采用典型样地法,调查群落内物种分布并测量植物功能性状(叶面积和植株高度),对山西太岳山不同坡位华北落叶松-白桦混交林以及辽东栎次生林物种多样性及其功能多样性进行比较分析,探究环境因子对不同群落层次(乔木、灌木、草本)物种多样性及其功能多样性的影响机制,以及环境因子与群落构建之间的联系,为森林生态系统多样性研究以及经营管理提供理论依据。结果显示:(1)华北落叶松-白桦混交林的物种分布更加均匀,物种多样性和功能多样性(乔木层)均显著高于辽东栎次生林。(2)华北落叶松-白桦混交林乔木层功能均匀度与功能分散指数显著高于辽东栎次生林,但灌木草本层低于辽东栎次生林。(3)不同群落层次的物种多样性与功能多样性均呈正相关关系,影响物种分布和性状分布的环境因子存在差异,物种多样性受多种环境因子的综合影响,而单个环境因子对功能多样性影响较大,环境解释力与林分类型和群落层次相关。(4)乔木层物种多样性主要受土壤pH、冠层结构(MLA、林分开度)以及光照影响,灌木层物种多样性与土壤pH和MLA密切相关,林下总辐射、土壤养分(SOC、STN)、土壤相对含水率是影响草本层物种分布的主要环境因子;冠层结构(MLA、林分开度)是影响乔木层功能多样性最主要的环境因子,土壤pH和坡位分别是华北落叶松-白桦混交林和辽东栎次生林灌木层功能多样性的主要影响因子,影响草本层功能多样性的主要环境因子是土壤相对含水率与LAI。研究表明,在垂直分层的森林生态系统中,不同群落层次竞争的主要环境资源存在差异,乔木层通过改变冠层结构和林内环境限制林下物种分布和性状分布。  相似文献   

20.
The drosophilids of a gallery forest in the Brazilian savanna were investigated to identify the temporal and vertical patterns in the community structure of these insects. Twelve monthly collections were performed (December 2007 to November 2008) in three vertical strata of the forest (0, 4 and 8 m heights) using 30 traps baited with fermented banana. The drosophilid assemblage was composed of 61 species (7,623 individuals), experienced temporal fluctuations and was vertically stratified. Both the diversity and abundance of the flies were very low during the dry season, a time when the assemblages were dominated by the exotic species Drosophila simulans, whereas the community showed an increased abundance and richness of neotropical species and showed vertical stratification in the wet season. Rare species were found primarily at the ground level (flies usually associated with neotropical forests) or in the canopy, which harbors species currently associated with open vegetation, little-studied neotropical species and most likely several new species. These changes, which reflect drosophilid adaptations to different environments, involve a shifting of the ecological niches occupied by the flies in the forest over time. This process of change is termed niche construction. Thus, we conclude that this complex and dynamic community structure, which is related to the interaction of several environmental factors associated with different forest environments, contributes to the high diversity of gallery forests in the Brazilian savanna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号