首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
This study examined the role of endogenous abscisic acid (ABA) and jasmonic acid (JA) in indirect somatic embryogenesis of Medicago sativa L. A multiplex GC-MS/MS technique allowed quantitative single-run analyses of ABA, JA, 12-oxophytodienoic acid (OPDA) and indole-3-acetic acid (IAA). The preparation of initial explants led to a strong accumulation of ABA, JA and OPDA but not of IAA. Substantially higher levels of ABA, JA and OPDA were detected in developing somatic embryos than in callus or embryogenic suspension. Fluridone (FLD) decreased ABA, JA and OPDA levels. Indoprofen (INP) appeared to be a specific inhibitor of octadecanoid biosynthesis. Somatic embryo production and development were negatively affected by FLD or INP. Only INP (0.5 μM) applied during proliferation phase increased the number of cotyledonary embryos. The results strongly indicate the involvement of ABA and JA in somatic embryogenesis of M. sativa. Surprisingly, low IAA contents in comparison to stress-related compounds (ABA, JA and OPDA) were detected in explants, embryogenic tissues and somatic embryos.  相似文献   

2.
Root segments from spinach (Spinacia oleracea L. cv. Jiromaru) seedlings form embryogenic callus (EC) that responded to exogenous GA(3) by accumulating a 31-kDa glycoprotein [BP31 or S. oleracea ribosome-inactivating protein (EC 3.2.2.22) (SoRIP1)] in association with the expression of embryogenic potential. Microsequencing of this protein revealed significant similarity with type 1 RIPs. We identified cDNAs for SoRIP1 and S. oleracea RIP2 (SoRIP2), a novel RIP having a consensus shiga/ricin toxic domain and performed a comparative analysis of the expression of SoRIPs during somatic embryogenesis. Western blotting and quantitative polymerase chain reaction analyses revealed that the expression of SoRIP1 in calli increased remarkably in association with the acquisition of embryogenic potential, although the expression in somatic embryos decreased moderately with their development. However, the expression of SoRIP2 in calli remained low and constant but increased markedly with the development of somatic embryos. Treatment of callus with GA(3) and/or ABA for 24 h, or with ABA for a longer period, failed to stimulate the expression of either gene. Immunohistochemistry showed that SoRIP1 preferentially accumulated in the proembryos and peripheral meristem of somatic embryos early in development. Appreciable expression of SoRIP2 was not detected in the callus, but intense expression was found in the epidermis of somatic embryos. These results suggest that the expression of spinach RIP genes is differentially regulated in a development-dependent fashion during somatic embryogenesis in spinach.  相似文献   

3.
The effects of methyl jasmonate (MeJA) in relation to abscisic acid (ABA) on different phases of somatic embryogenesis were studied in Medicago sativa L. Different concentrations of both the growth inhibitors (0.0, 0.5, 5.0, 50.0 and 500.0 μM) were tested in five distinct phases of somatic embryogenesis, viz., induction, proliferation, differentiation, maturation and regeneration. Like ABA, MeJA also inhibited callus induction, callus growth, proliferation of embryogenic suspension as well as germination and conversion of somatic embryos. However, its inhibitory effects on various phases of somatic embryogenesis were less pronounced as compared to that due to ABA. In contrast to ABA, MeJA did not have any significant influence on the development of somatic embryos when applied in the differentiation phase. The study showed that ABA used routinely as an inducer of somatic embryo maturation in M. sativa could not be replaced by MeJA.  相似文献   

4.
Effects of abscisic acid (ABA) and methyl jasmonate (MeJA) on ethylene production, ACC oxidase (ACO) activity, and content of 1-aminocyclopropane-1-carboxylic acid (ACC) during indirect somatic embryogenesis (SE) of Medicago sativa L. were studied. ABA and MeJA, at 50 μM, were applied during the induction, proliferation, or differentiation phase. ABA decreased ethylene production at the beginning of callus and SE induction and during the differentiation of somatic embryos. The hormone inhibited ACO activity in explants with overgrowing callus during the first two weeks of induction, in embryogenic suspension and also in differentiating embryos. The ACC content was reduced by ABA in callus at the end of SE induction, in embryogenic suspension and in globular embryos, but elevated in cotyledonary embryos. MeJA had no significant effect on ethylene production during M. sativa SE, despite the fact, that it inhibited ACO activity during the first two weeks of induction and in torpedo and cotyledonary embryos. The ACC content was increased by MeJA in 14-day-old callus and embryogenic suspension but was inhibited in globular embryos. Both ABA and MeJA seem to be involved in the regulation of ethylene biosynthesis during distinct phases of SE in M. sativa. It might be considered that exogenous ABA, more probably than MeJA, exerts its inhibitory effect on M. sativa somatic embryo formation by modifying ethylene production.  相似文献   

5.
Three different types of morphogenesis were identified in embryogenic cultures of Prunus avium grown on a proliferation medium containing 0.54 μM NAA, 0.46 μM kinetin and 0.44 μM BA: a friable hyperhydric callus, repetitive embryogenesis and an embryogenic tissue. Translucent and white somatic embryos were produced from the three types of morphogenesis but mainly from the embryogenic tissue. These somatic embryos showed histological and cytological teratological features such as highly differentiated cells with shrunken cytoplasm and destructured nuclei. For the four lines studied, somatic embryo production was improved by transferring the embryogenic tissue to developmental media without auxin and cytokinin but supplemented with maltose alone or maltose and 10 μM ABA. Three weeks after transfer, the line showing the most embryogenesis produced 1404 somatic embryos per gram of embryogenic tissue. A concentration of 263 mM maltose significantly increased the number of white somatic embryos for L 10 line, while translucent somatic embryo production was improved by 88 mM maltose for L 16 line. The combination of maltose and ABA produced different effects with each line. When used with 88 mM maltose, 10 μM ABA significantly increased white somatic embryo production for two lines but decreased the production for one line. When combined with 263 mM maltose, ABA had no effect on white somatic embryo production but significantly decreased the number of translucent somatic embryos. Cells of white somatic embryos contained protein storage reserves and numerous lipid bodies, while those of translucent embryos did not contain storage reserves or lipid bodies. After a two-month cold treatment conversion rate of white and translucent somatic embryos reached 8.5% and 35.2% respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
In order to investigate the effect of ABA on secondary embryogenesis from somatic embryos inAralia cordata Thunb., embryogenic callus and somatic embryos were induced from inflorescence on solid MS basal medium supplemented with 1.5 mg/L 2,4-D after eight weeks without subculture. For mass production of somatic embryos, embryogenic cell clumps were maintained in liquid MS medium supplemented with 1.0 mg/L 2,4-D, and then transferred to 2, 4-D-free medium. When developing embryos at various stages were cultured separately in liquid medium with ABA (0 to 2.0 mg/L) for three weeks, and then cultured in ABA-free liquid medium for two weeks, torpedo-shaped embryos exhibited secondary embryogenesis of 65.9% in only 0.2 mg/L ABA pretreatment. Cotyledonary embryos in cultures by 0.2, 0.5 and 1.0 mg/L ABA pretreatment also exhibited secondary embryogenesis (73%, 9.4% and 6.0%, respectively). However, globular and heart-shaped somatic embryos treated with ABA did not form secondary embryos on their hypocotyl surfaces. When cotyledonary embryos were cultured in ABA-free medium or 0.2 mg/L ABA treated medium for three weeks, and then in ABA-free liquid medium for 6 weeks, the germination frequency was lower in medium with 0.2 mg/L ABA (45.9%) than in hormone-free medium (56.8%). This result seems to be related to the high frequency of secondary embryogenesis. It is suggested that secondary embryogenesis by ABA application depends upon the stage of embryo cultured and the ABA concentration.  相似文献   

7.
Endogenous indole-3-acetic acid, abscisic acid and cytokinins (zeatin, zeatin riboside, N-isopentenyladenine and N-isopentenyladenosine) were evaluated in initial explants (leaves) of in vitro propagated plants of alfalfa ( Medicago falcata L.) lines varying in embryogenic capacity and during the somatic embryogenesis process. Fast embryo-genic induction was correlated with high IAA and low ABA levels in the initial explants. No significant differences were observed in the cytokinin contents. Our results suggest that a certain hormone balance is necessary to allow the expression of the embryogenic potential. The consistent stages of the direct somatic embryogenesis are also characterized by changes in hormonal levels.  相似文献   

8.
Kikuchi A  Sanuki N  Higashi K  Koshiba T  Kamada H 《Planta》2006,223(4):637-645
Studies of carrot embryogenesis have suggested that abscisic acid (ABA) is involved in somatic embryogenesis. A relationship between endogenous ABA and the induction of somatic embryogenesis was demonstrated using stress-induced system of somatic embryos. The embryonic-specific genes C-ABI3 and embryogenic cell proteins (ECPs) were expressed during stress treatment prior to the formation of somatic embryos. The stress-induction system for embryogenesis was clearly distinguished by two phases: the acquisition of embryogenic competence and the formation of a somatic embryo. Somatic embryo formation was inhibited by the application of fluridone (especially at 10−4 M), a potent inhibitor of ABA biosynthesis, during stress treatment. The inhibitory effect of fluridone was nullified by the simultaneous application of fluridone and ABA. The level of endogenous ABA increased transiently during stress. However, somatic embryogenesis was not significantly induced by the application of only ABA to the endogenous level, in the absence of stress. These results suggest that the induction of somatic embryogenesis, in particular the acquisition of embryogenic competence, is caused not only by the presence of ABA but also by physiological responses that are directly controlled by stresses.  相似文献   

9.
从印度娃儿藤节间外植体获取愈伤组织,分析了糖、赤霉素(GA3)及脱落酸(ABA)对愈伤组织形成体细胞的影响。实验证明,含4μmol/L2,4-二氯苯氧乙酸(2,4-D)的MS培养基是获得具有成胚功能的愈伤组织的最佳培养基。在含有6μmol/L激动素(Kn)的MS培养基上,高达69%的愈伤组织分化为体细胞胚,平均单位外植体(每克愈伤组织)产胚25个。在6μmol/LKn存在的条件下,分析了蔗糖、葡糖糖对胚产生的影响,不同的糖及不同糖浓度对体细胞胚的发生影响很大。6μmol/L Kn与200mmol/L蔗糖处理胚胎发生率最大(71%),单位外植体生成49个胚。然而葡萄糖与Kn、或者葡糖糖、蔗糖与Kn三者加在一起则降低成胚率及产胚数。一定浓度的GA3和ABA能促进体细胞胚的产生。在含200mmol/L蔗糖的培养基中加10μmol/LGA3胚的生成率为98%,单位外植体产胚51个。在含200mmol/L蔗糖的培养基中加2μmol/L ABA能显著增加体细胞胚的量,该培养基上每外植体平均生成44个胚,产率为95%。本研究显示,含200mmol/L蔗糖的培养基中分别加入6μmol/L Kn、10μmol/L GA3或者2μmol/L ABA能显著提高印度娃儿藤体细胞胚发生率,而单独的葡萄糖或葡糖糖和蔗糖则有抑制作用。得到的胚均能正常发育并分化为植株。  相似文献   

10.
以大蒜的发芽叶基(鳞茎)为外植体诱导体细胞胚胎发生,研究大蒜体胚发生过程中SOD、POD和CAT 3种抗氧化酶的活性以及可溶性糖和可溶性蛋白质含量变化.结果表明:在大蒜体胚发生过程中,SOD、POD和CAT活性变化与胚性愈伤组织的诱导及体胚的发育密切相关,POD对体胚的诱导起主导作用,而SOD和CAT在体胚的发育和成熟中起主导作用.可溶性糖和可溶性蛋白质累积与大蒜体细胞胚胎发生密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号