首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
Noise pollution is commonly associated with human environments and mounting evidence indicates that noise has a variety of negative effects on wildlife. Noise has also been linked to cognitive impairment in humans and because many animals use cognitively intensive processes to overcome environmental challenges, noise pollution has the potential to interfere with cognitive function in animals living in urban areas or near roads. We experimentally examined how road traffic noise impacts avian cognitive performance by testing adult zebra finches (Taeniopygia guttata) on a battery of foraging tasks in the presence or absence of traffic noise playback. Here, we show that traffic noise reduces cognitive performance, including inhibitory control, motor learning, spatial memory and social learning, but not associative colour learning. This study demonstrates a novel mechanism through which anthropogenic noise can impact animals, namely through cognitive interference, and suggests that noise pollution may have previously unconsidered consequences for animals.  相似文献   

2.
厦门市交通主干道绿化带结构及其减噪效果研究   总被引:4,自引:1,他引:3  
通过对厦门市主干道绿化带种类结构调查以及噪声测定等,分析了厦门市主干道绿化带结构及其减噪效果。结果表明,厦门市主干道绿化带可分为4种结构:单一乔木型、乔木+疏灌木/绿篱型、乔木+密灌木型以及乔木+小乔木+灌木/绿篱型,带宽多在4~10 m。厦门市主干道绿化带总体减噪能力为0.93~12.96 dB,绿化带对交通噪声超标治理率达70%。绿化带减噪能力y(dB)与带宽x(m)呈显著的线性关系:y=1.2251x+0.2416(R2=0.8603);绿化带的附加衰减与总衰减亦呈显著正相关:y=0.4535x+0.2698 (R2=0.9242),噪声的附加衰减主要受绿化带结构的影响,上述四种结构对噪声附加衰减平均值分别达0.93、2.25、4.43和6.72 dB。绿化带的宽度和结构均是影响其减噪效果的关键因素。  相似文献   

3.
While the negative impacts of road infrastructure on faunal diversity and abundance have been extensively studied, many traffic noise studies have been conducted in the presence of confounding factors. Therefore, the extent to which traffic noise alone is responsible for impacts is not well known and a better understanding is required to inform urban planning and management decisions. We examined the impact of traffic noise on soundscape patterns at road edges in urban forests. Acoustic sensors were deployed at road and powerline edges, as well as within interior habitat, at three sites in south‐east Queensland, Australia. Powerline edges were included to separate edge effects from traffic noise impacts. We used soundscape power (normalized watts per kHz) of technophony (traffic noise in the 1–2 kHz range) and biophony (animal sounds in the 3–11 kHz range) to investigate soundscape patterns. The results showed that biophony was consistently lower at road edges and was negatively correlated with traffic noise and positively correlated with distance to road edge. Technophony was higher at road edges and was found to correlate negatively with distance to road edge and positively with traffic noise. Technophony and biophony at powerline edges generally exhibited values comparable to interior habitat. These results indicate that traffic noise affects urban forest soundscape patterns at road edges in south‐eastern Australia.  相似文献   

4.
Road ecology, the study of the impacts of roads and their traffic on wildlife, including birds, is a rapidly growing field, with research showing effects on local avian population densities up to several kilometres from a road. However, in most studies, the effects of roads on the detectability of birds by surveyors are not accounted for. This could be a significant source of error in estimates of the impacts of roads on birds and could also affect other studies of bird populations. Using road density, traffic volume and bird count data from across Great Britain, we assess the relationships between roads and detectability of a range of bird species. Of 51 species analysed, the detectability of 36 was significantly associated with road exposure, in most cases inversely. Across the range of road exposure recorded for each species, the mean positive change in detectability was 52% and the mean negative change was 36%, with the strongest negative associations found in smaller-bodied species and those for which aural cues are more important in detection. These associations between road exposure and detectability could be caused by a reduction in surveyors’ abilities to hear birds or by changes in birds’ behaviour, making them harder or easier to detect. We suggest that future studies of the impacts of roads on populations of birds or other taxa, and other studies using survey data from road-exposed areas, should account for the potential impacts of roads on detectability.  相似文献   

5.
The construction of roads near protected forest areas alters ecosystem function by creating habitat fragmentation and through several direct and indirect negative effects such as increased pollution, animal mortality through collisions, disturbance caused by excessive noise and wind turbulence. Noise in particular may have strong negative effects on animal groups such as frogs and birds, that rely on sound for communication as it can negatively interfere with vocalizations used for territorial defense or courtship. Thus, birds are expected to be less abundant close to the road where noise levels are high. In this study, we examined the effects of road traffic noise levels on forest bird species in a protected tropical forest in Costa Rica. Data collection was conducted in a forest segment of the Carara National Park adjacent to the Coastal Highway. We carried out 120 ten minute bird surveys and measured road noise levels 192 times from the 19th to the 23rd of April and from the 21st to the 28th of November, 2008. To maximize bird detection for the species richness estimates we operated six 12 m standard mist nets simultaneously with the surveys. The overall mist-netting effort was 240 net/h. In addition, we estimated traffic volumes by tallying the number of vehicles passing by the edge of the park using 24 one hour counts throughout the study. We found that the relative abundance of birds and bird species richness decreased significantly with the increasing traffic noise in the dry and wet season. Noise decreased significantly and in a logarithmic way with distance from the road in both seasons. However, noise levels at any given distance were significantly higher in the dry compared to the wet season. Our results suggest that noise might be an important factor influencing road bird avoidance as measured by species richness and relative abundance. Since the protected forest in question is located in a national park subjected to tourist visitation, these results have conservation as well as management implications. A decrease in bird species richness and bird abundance due to intrusive road noise could negatively affect the use of trails by visitors. Alternatives for noise attenuation in the affected forest area include the enforcement of speed limits and the planting of live barriers.  相似文献   

6.
人类活动产生的噪声污染对动物和人类的影响正受到日益增多的关注。本文以雄性成年金色中仓鼠为实验动物模型,探讨了北京市主干道交通噪声对其焦虑行为及血象、应激生理的影响。分别以北京主干道噪声(80±10 dB SPL)暴露为实验组,实验室环境噪声(50±4 dB SPL)暴露为对照组,噪声处理动物1小时后进行旷场行为学测试,然后取血对比观测两组鼠血液学指标和应激响应、抗氧化酶活性等生理指标的变化。结果显示道路交通噪声没有导致仓鼠出现明显的焦虑行为;不过,实验组血小板数显著低于对照组(P = 0.044),其他血象指标两组间差异不显著;噪声对血清皮质醇,谷丙、谷草转氨酶影响不显著;实验组的血清谷胱甘肽过氧化物酶(GSH-Px)活性极显著低于对照组(P < 0.001),但超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、总抗氧化能力 (TAOC) 和丙二醛(MDA)水平两组间差异不显著;血清溶菌酶活性实验组降低较明显,接近显著水平(P = 0.0507)。我们的结果显示道路交通噪声胁迫导致了金色中仓鼠血象指标发生了变化,这提示北京市主干道交通噪声刺激对金色中仓鼠生理功能产生了一定的副作用。  相似文献   

7.
车辆运营对鸟类的影响已经引起了国际上广泛的关注,我国还鲜有相关研究。本文以云南三江并流区穿越云南高黎贡山国家级自然保护区的S316六库-片马公路为研究对象,采用慢速行车结合徒步调查的方法,于2009~2010年研究了交通视觉因素(车色、车型、车速)、交通噪声因素(路肩处与路域100m范围)、鸟类距离因素与鸟类行为反应之间的关系。结果表明,与鸟类行为反应有关系的因子有路肩噪声值(P=0.045,Spearman Correlation R=0.200)、路域100m范围噪声值(P=0.048,Spearman Correlation R=0.319)、车速(P=0.010,Spearman Correlation R=-0.236)、车型(P=0.030,Spearman Correlation R=-0.196)以及鸟类距公路的距离(P=0.027,Spearman Correlation R=-0.254)。为此提出在部分敏感路段应采用禁鸣、减噪路面等措施来减少交通运营对鸟类的影响。  相似文献   

8.
9.
Anthropogenic noise associated with highway construction and operation can have individual‐ and population‐level consequences for wildlife (e.g., reduced densities, decreased reproductive success, behavioral changes). We used a before–after control–impact study design to examine the potential impacts of highway construction and traffic noise on endangered golden‐cheeked warblers (Setophaga chrysoparia; hereafter warbler) in urban Texas. We mapped and monitored warbler territories before (2009–2011), during (2012–2013), and after (2014) highway construction at three study sites: a treatment site exposed to highway construction and traffic noise, a control site exposed only to traffic noise, and a second control site exposed to neither highway construction or traffic noise. We measured noise levels at varying distances from the highway at sites exposed to construction and traffic noise. We examined how highway construction and traffic noise influenced warbler territory density, territory placement, productivity, and song characteristics. In addition, we conducted a playback experiment within study sites to evaluate acute behavioral responses to highway construction noises. Noise decreased with increasing distance from the highways. However, noise did not differ between the construction and traffic noise sites or across time. Warbler territory density increased over time at all study sites, and we found no differences in warbler territory placement, productivity, behavior, or song characteristics that we can attribute to highway construction or traffic noise. As such, we found no evidence to suggest that highway construction or traffic noise had a negative effect on warblers during our study. Because human population growth will require recurring improvements to transportation infrastructure, understanding wildlife responses to anthropogenic noise associated with the construction and operation of roads is essential for effective management and recovery of prioritized species.  相似文献   

10.
In wildlife considerations in planning and managing road corridors little attention has been given to the effects of disturbance by traffic on populations of breeding birds. Recent studies, however, show evidence of strongly reduced densities of many species of woodland and open habitat in broad zones adjacent to busy roads. The density reduction is related to a reduced habitat quality, and traffic noise is probably the most critical factor. Because density can underestimate the habitat quality, the effects on breeding populations are probably larger than have been established. In consequence, species that did not show an effect on the density might still be affected by traffic noise. On the basis of this recent knowledge, methods have been developed that can be used in spatial planning procedures related to main roads, and in road management practice, and some practical points are discussed. An example of application shows that the effects are probably very important in The Netherlands with a dense network of extremely crowded main roads. For meadow birds, which are of international importance, the decrease in population in the West of The Netherlands may amount to 16%. Because breeding birds suffer from many other environmental influences there is also a great risk of an important cumulation of effects.  相似文献   

11.
Recent studies on the impacts of forest fragmentation on understory insectivorous birds in the Neotropics have highlighted that even narrow linear clearings, such as roads, can affect the movements of this guild of birds. We used playback trials of territorial vocalizations to assess the movements of three understory insectivorous bird species across two unpaved roads bisecting Parque Estadual Carlos Botelho in southeast Brazil, located within one of the largest remaining continuous Atlantic Forests. Movement patterns varied among species. While Chamaeza campanisona never crossed these roads, Pyriglena leucoptera crossed them in almost 100 percent of tests. Although Conopophaga lineata exhibited a significantly lower number of crossings along cleared sites, it was eventually willing to traverse the roads, showing an intermediate pattern. Shaded areas with connected canopy did not improve birds' willingness to cross roads compared with areas where treecrowns were at least 3 m apart. Similarly, birds' willingness to cross an 8‐m wide road with limited traffic (six vehicles/wk) was not significantly greater than that of a 12‐m wide road with more intense traffic (41 vehicles/d). Our findings suggest that the negative impact of roads on bird movement is an issue that should be addressed by managers of Atlantic Forest conservation units, especially as economic development results in pressure to pave and widen roads. Abstract in Portuguese is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

12.
We face a likely shift to electric vehicles (EVs) but the environmental and human consequences of this are not yet well understood. Simulated auditory traffic scenes were synthesized from recordings of real conventional and EVs. These sounded similar to what might be heard by a person near a major national road. Versions of the simulation had 0%, 20%, 40%, 60%, 80% and 100% EVs. Participants heard the auditory scenes in random order, rating each on five perceptual dimensions such as pleasant–unpleasant and relaxing–stressful. Ratings of traffic noise were, overall, towards the negative end of these scales, but improved significantly when there were high proportions of EVs in the traffic mix, particularly when there were 80% or 100% EVs. This suggests a shift towards a high proportion of EVs is likely to improve the subjective experiences of people exposed to traffic noise from major roads. The effects were not a simple result of EVs being quieter: ratings of bandpass-filtered versions of the recordings suggested that people’s perceptions of traffic noise were specifically influenced by energy in the 500–2000 Hz band. Engineering countermeasures to reduce noise in this band might be effective for improving the subjective experience of people living or working near major roads, even for conventional vehicles; energy in the 0–100 Hz band was particularly associated with people identifying sound as ‘quiet’ and, again, this might feed into engineering to reduce the impact of traffic noise on people.  相似文献   

13.
Road barrier effect is among the foremost negative impacts of roads on wildlife. Knowledge of the factors responsible for the road barrier effect is crucial to understand and predict species’ responses to roads, and to improve mitigation measures in the context of management and conservation. We built a set of hypothesis aiming to infer the most probable cause of road barrier effect (traffic effect or road surface avoidance), while controlling for the potentially confounding effects road width, traffic volume and road age. The wood mouse Apodemus sylvaticus was used as a model species of small and forest-dwelling mammals, which are more likely to be affected by gaps in cover such as those resulting from road construction. We confront genetic patterns from opposite and same roadsides from samples of three highways and used computer simulations to infer migration rates between opposite roadsides. Genetic patterns from 302 samples (ca. 100 per highway) suggest that the highway barrier effect for wood mouse is due to road surface avoidance. However, from the simulations we estimated a migration rate of about 5% between opposite roadsides, indicating that some limited gene flow across highways does occur. To reduce highway impact on population genetic diversity and structure, possible mitigation measures could include retrofitting of culverts and underpasses to increase their attractiveness and facilitate their use by wood mice and other species, and setting aside roadside strips without vegetation removal to facilitate establishment and dispersal of small mammals.  相似文献   

14.
The majority of Africa''s parks and conservation areas have a vast road network, facilitating motorized vehicle game viewing. These roads have an influence that is both road type‐ and species‐specific, on the surrounding ecosystem. Due to their higher traffic volumes, we hypothesized that tar roads and their immediate surrounds within the Kruger National Park, South Africa, are avoided to a greater extent by medium‐to‐large mammals than comparable dirt roads in the park. We systematically recorded the presence of medium‐to‐large mammal species from our vehicle, recording data at 401 tar and 369 dirt road stops in the Kruger National Park. In addition to species presence, we also estimated the proximity of animals to the road, as well as herd sizes. Our results indicate an equal likelihood of viewing the commonly recorded medium‐to‐large mammal species from both road types. The likelihood of observing larger herd sizes was also similar between tar and dirt roads for the three most commonly observed species, African elephant (Loxodonta africana), impala (Aepyceros melampus), and plains zebra (Equus quagga), and the likelihood of viewing impala and zebra close to the road also did not differ between tar and dirt roads. However, elephant was observed more often close to tar roads, compared to dirt roads. We interpreted this as the result of potentially increased woody cover associated with more water runoff in close proximity to tar roads compared with dirt roads. Our results not only have ecological significance, supporting the notion that many of the park''s species are habituated to human infrastructure, but also management implications, informing park officials about the influence of road traffic and road type on wildlife distributions.  相似文献   

15.
We assessed the magnitude, composition, and spatial and temporal patterns of road mortality of native vertebrates on two highways in southern Brazil from 18 January 2003 to 26 January 2004. The highways cross remnants of the Atlantic Rainforest, a global biodiversity hotspot, and differ in vehicle traffic and surrounding landscape. We compared the road-kill magnitude and composition of birds, mammals, and reptiles between roads and seasons. We used a modified K statistic to depict the spatial patterns of roadkills of these groups and tested the association between vehicle traffic and road mortality through linear regression. We recorded 869 kills of 92 species. The two roads differed regarding the abundance and composition of roadkills. Reptile road mortality was higher in summer than winter, but all other groups did not show significant difference in the magnitude of mortality between seasons. The composition of killed assemblages differed significantly for some of the taxonomic groups among seasons. We found only one positive association between roadkills and vehicle traffic (reptiles on one of the roads), suggesting that vehicle flow does not explain the road-kill temporal variation on these roads. Total vertebrate, bird, and mammal roadkills showed significant spatial aggregations possibly due to variation in vehicle traffic, highway design, and local landscape condition and arrangement. With expected expansion of the road network, mitigation measures for multi-species assemblages should include habitat protection, soil use regulation, road crossing structures, speed reducers, and campaigns to raise people’s awareness about road impacts on wildlife.  相似文献   

16.
Unpaved, low traffic roads are often assumed to have minimal effects on biodiversity. To explore this assertion, we sampled the bird communities in fifteen randomly selected sites in Pafos Forest, Cyprus and used multiple regression to quantify the effects of such roads on the total species richness. Moreover, we classified birds according to their migratory status and their global population trends, and tested each category separately. Besides the total length of unpaved roads, we also tested: a. the site's habitat diversity, b. the coefficient of variation in habitat (patch) size, c. the distance to the nearest agricultural field, and d. the human population size of the nearest village. We measured our variables at six different distances from the bird point-count locations. We found a strong negative relationship between the total bird richness and the total length of unpaved roads. The human population size of the nearest village also had a negative effect. Habitat diversity was positively related to species richness. When the categories were tested, we found that the passage migrants were influenced more by the road network while resident breeders were influenced by habitat diversity. Species with increasing and stable populations were only marginally affected by the variables tested, but the effect of road networks on species with decreasing populations was large. We conclude that unpaved and sporadically used roads can have detrimental effects on the bird communities, especially on vulnerable species. We propose that actions are taken to limit the extent of road networks within protected areas, especially in sites designated for their rich avifauna, such as Pafos Forest, where several of the affected species are species of European and global importance.  相似文献   

17.
Forest-dwelling carabid beetles that have no flight ability were studied using mark-recapture methods in late-June to mid-October 2007. This study was done to determine the effects of narrow roads in Nopporo Forest Park, Hokkaido on carabid beetle movement and habitat use. The investigation was conducted at four sites: one site was an abandoned grassy road with a width of 3.5 m, two sites were gravel roads with widths of 3.5 and 4.5 m, and another site was an asphalt-paved road with a width of 4.5 m. A total of 3,580 individuals from six species of carabid beetles were collected using dry pit-fall traps, and recapture rates ranged from 6.1 to 36.2%. All examined roads acted as barriers against the movement of Leptocarabus arboreus ishikarinus. All roads, except the abandoned grassy road, acted as a barrier against Carabus granulatus yezoensis movement. Forest–roadside verge comparisons demonstrated that some carabid beetles avoid even narrow roadside verges. Harmful effects increase with increasing road width and both paved roads and narrow roads negatively affect the movement of carabid beetles inhabiting the bordering forest. Therefore, forest specialist beetles are influenced by a barrier effect that starts at the forest road verge, and this barrier effect may be exacerbated by vehicular traffic. Therefore, these barrier effects on carabid beetles should be considered when planning and implementing road construction and maintenance in forests.  相似文献   

18.
Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative abundance of painted turtles (Chrysemys picta) in 20 ponds in Eastern Ontario, 10 as close as possible to high traffic roads (Road sites) and 10 as far as possible from any major roads (No Road sites). There was no significant effect of roads on painted turtle relative abundance. Furthermore, our data do not support other predictions of the road mortality hypothesis; we observed neither a higher relative frequency of males to females at Road sites than at No Road sites, nor a lower average body size of turtles at Road than at No Road sites. We speculate that, although roads can cause substantial adult mortality in turtles, other factors, such as release from predation on adults and/or nests close to roads counter the negative effect of road mortality in some populations. We suggest that road mitigation for painted turtles can be limited to locations where turtles are forced to migrate across high traffic roads due, for example, to destruction of local nesting habitat or seasonal drying of ponds. This conclusion should not be extrapolated to other species of turtles, where road mortality could have a larger population-level effect than on painted turtles.  相似文献   

19.
Roads and traffic may be contributing to global declines of insect populations. The ecological effects of roads often extend far into the surrounding habitat, over a distance known as the road‐effect zone. The quality of habitat in the road‐effect zone is generally degraded (e.g., due to edge effects, noise, light, and chemical pollution) and can be reflected in species presence, abundance, or demographic parameters. Road‐effect zones have been quantified for some vertebrate species but are yet to be quantified for insects. Investigating the road‐effect zone for insects will provide a better understanding of how roads impact ecosystems, which is particularly important given the role insects play as pollinators, predators, and prey for other species. We quantified the road‐effect zone for nocturnal flying insects along three major freeways in agricultural landscapes in southeast Australia. We collected insects using light traps at six points along 2‐km transects perpendicular to each highway (n = 17). We sorted the samples into order, and dried and weighed each order to obtain a measure of dry biomass. Using regression models within a Bayesian framework of inference, we estimated the change in biomass of each order with distance from the road, while accounting for environmental variables such as temperature, moon phase, and vegetation structure. The biomass of nine of the ten orders sampled did not change with distance from the freeway. Orthoptera (i.e., grasshoppers and crickets) was the only order whose biomass increased with distance from the freeway. From our findings, we suggest that the impacts of roads on insects are unlikely extending into the surrounding landscape over a distance of 2 km. Therefore, if there are impacts of roads on insects, these are more likely to be concentrated at the road itself, or on finer taxonomic scales such as family or genus level.  相似文献   

20.
Road building can lead to significant deleterious impacts on biodiversity, varying from direct road-kill mortality and direct habitat loss associated with road construction, to more subtle indirect impacts from edge effects and fragmentation. However, little work has been done to evaluate the specific effects of road networks and biodiversity loss beyond the more generalized effects of habitat loss. Here, we compared forest bird species richness and composition in the municipalities of Santarém and Belterra in Pará state, eastern Brazilian Amazon, with a road network metric called ‘roadless volume (RV)’ at the scale of small hydrological catchments (averaging 3721 ha). We found a significant positive relationship between RV and both forest bird richness and the average number of unique species (species represented by a single record) recorded at each site. Forest bird community composition was also significantly affected by RV. Moreover, there was no significant correlation between RV and forest cover, suggesting that road networks may impact biodiversity independently of changes in forest cover. However, variance partitioning analysis indicated that RV has partially independent and therefore additive effects, suggesting that RV and forest cover are best used in a complementary manner to investigate changes in biodiversity. Road impacts on avian species richness and composition independent of habitat loss may result from road-dependent habitat disturbance and fragmentation effects that are not captured by total percentage habitat cover, such as selective logging, fire, hunting, traffic disturbance, edge effects and road-induced fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号